PD - 95613 IRG4BC15UDPbF UltraFast CoPack IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C Features UltraFast: Optimized for high frequencies from10 to 30 kHz in hard switching • IGBT Co-packaged with ultra-soft-recovery antiparallel diode • Industry standard TO-220AB package • Lead-Free Benefits VCES = 600V VCE(on) typ. = 2.02V G @VGE = 15V, IC = 7.8A E n-channel Best Value for Appliance and Industrial Applications • High noise immune "Positive Only" gate driveNegative bias gate drive not necessary • For Low EMI designs- requires little or no snubbing • Single Package switch for bridge circuit applications • Compatible with high voltage Gate Driver IC's • Allows simpler gate drive TO-220AB Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw. Max. Units 600 14 7.8 42 42 4.0 16 ± 20 49 19 -55 to +150 V A V W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m) Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Min. Typ. Max. ––– ––– ––– ––– ––– ––– ––– 0.50 ––– 2 (0.07) 2.7 7.0 ––– 80 ––– Units °C/W g (oz) 1 8/2/04 IRG4BC15UDPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Collector-to-Emitter Breakdown Voltage ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage VCE(on) Collector-to-Emitter Saturation Voltage V(BR)CES VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Min. 600 ––– ––– ––– ––– Gate Threshold Voltage 3.0 Temperature Coeff. of Threshold Voltage ––– Forward Transconductance 4.1 Zero Gate Voltage Collector Current ––– ––– Diode Forward Voltage Drop ––– ––– Gate-to-Emitter Leakage Current ––– Typ. ––– 0.63 2.02 2.56 2.21 ––– -10 6.2 ––– ––– 1.5 1.4 ––– Max. Units Conditions ––– V VGE = 0V, IC = 250µA ––– V/°C VGE = 0V, IC = 1.0mA 2.4 IC = 7.8A VGE = 15V ––– V IC = 14A ––– IC = 7.8A, TJ = 150°C 6.0 VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 250µA ––– S VCE = 100V, IC = 7.8A 250 µA VGE = 0V, VCE = 600V 1400 VGE = 0V, VCE = 600V, TJ = 150°C 1.8 V IC = 4.0A 1.7 IC = 4.0A, TJ = 150°C ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres trr Irr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge di(rec)M/dt Diode Peak Rate of Fall of Recovery During tb Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. 23 4.0 9.6 17 20 160 83 0.24 0.26 0.50 16 21 180 220 0.76 7.5 410 37 5.3 28 38 2.9 3.7 40 70 280 240 Max. Units Conditions 35 IC = 7.8A 6.0 nC VCC = 400V 14 VGE = 15V ––– TJ = 25°C ––– ns IC = 7.8A, VCC = 480V 240 VGE = 15V, RG = 75Ω 120 Energy losses include "tail" and ––– diode reverse recovery. ––– mJ 0.63 ––– TJ = 150°C, ––– ns IC = 7.8A, VCC = 480V ––– VGE = 15V, RG = 75Ω ––– Energy losses include "tail" and ––– mJ diode reverse recovery. ––– nH Measured 5mm from package ––– VGE = 0V ––– pF VCC = 30V ––– ƒ = 1.0MHz 42 ns TJ = 25°C 57 TJ = 125°C IF = 4.0A 5.2 A TJ = 25°C 6.7 TJ = 125°C VR = 200V 60 nC TJ = 25°C 110 TJ = 125°C di/dt 200A/µs ––– A/µs TJ = 25°C ––– TJ = 125°C IRG4BC15UDPbF 10 Duty cycle : 50% Tj = 125°C Tsink = 90°C Gate drive as specified Turn-on losses include effects of reverse recovery Power Dissipation = 11W Load Current ( A ) 8 6 60% of rated voltage 4 Ideal diodes 2 0 0.1 1 10 100 f , Frequency ( kHz ) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 10 TJ = 150 °C 1 TJ = 25 °C 0.1 0.1 V GE = 15V 20µs PULSE WIDTH 1 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics 10 I C, Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) 100 TJ = 150 °C 10 1 0.1 5.0 TJ = 25 °C V CC = 50V 5µs PULSE WIDTH 10.0 15.0 20.0 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics IRG4BC15UDPbF 4.0 VCE , Collector-to Emitter Voltage (V) Maximum DC Collector Current(A) 14 12 10 8 6 4 2 0 VGE = 15V 80µs PULSE WIDTH IC = 14A 3.0 IC = 7.8A 2.0 IC = 3.9A 1.0 25 50 75 100 125 150 TC , Case Temperature ( °C) -60 -40 -20 0 20 40 60 80 100 120 140 T J , Junction Temperature (°C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 0.01 0.00001 0.02 0.01 PDM t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 1 IRG4BC15UDPbF 20 VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc VGE , Gate-to-Emitter Voltage (V) C, Capacitance (pF) 800 600 Cies 400 Coes 200 Cres 0 16 12 8 4 0 1 10 100 0 5 10 15 20 25 QG , Total Gate Charge (nC) VCE , Collector-to-Emitter Voltage (V) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 0.48 10 VCC = 480V VGE = 15V TJ = 25°C I C = 7.8A Total Switching Losses (mJ) Total Switching Losses (mJ) VCC = 400V I C = 7.8A 0.46 0.44 RG = 75Ω VGE = 15V VCC = 480V IC = 14A 1 IC = 7.8A IC = 3.9A 0.1 0.42 0 10 20 30 40 RG, Gate Resistance (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance 50 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J, Junction Temperature (°C) Fig. 10 - Typical Switching Losses vs. Junction Temperature IRG4BC15UDPbF 100 RG = 75Ω TJ = 150°C VGE = 15V 1.6 IC, Collector-to-Emitter Current (A) Total Switching Losses (mJ) 2.0 VCC = 480V 1.2 0.8 0.4 0.0 VGE = 20V T J = 125° SAFE OPERATING AREA 10 1 2 4 6 8 10 12 14 16 1 10 IC, Collector Current (A) 100 VDS, Drain-to-Source Voltage (V) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA 100 TJ = 150°C 10 T = 125°C J T = 25°C J 1 0.1 0.0 1.0 2.0 3.0 4.0 5.0 6.0 Forward Voltage Drop - V FM(V) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 1000 IRG4BC15UDPbF 50 14 I F = 8.0A 45 12 I F = 4.0A 10 I F = 8.0A I F = 4.0A Irr- ( A) trr- (nC) 40 VR = 200V TJ = 125°C TJ = 25°C 35 8 6 30 4 25 2 VR = 200V TJ = 125°C TJ = 25°C 20 100 di f /dt - (A/µs) 0 100 1000 di f /dt - (A/µs) 1000 Fig. 15 - Typical Recovery Current vs. dif/dt Fig. 14 - Typical Reverse Recovery vs. dif/dt 200 1000 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C 160 I F = 8.0A di (rec) M/dt- (A /µs) I F = 4.0A Qrr- (nC) 120 I F = 8.0A 80 I F = 4.0A 40 0 100 di f /dt - (A/µs) 1000 Fig. 16 - Typical Stored Charge vs. dif/dt 100 100 A di f /dt - (A/µs) Fig. 17 - Typical di(rec)M/dt vs. dif/dt, 1000 IRG4BC15UDPbF 90% Vge Same type device as D.U.T. +Vge Vce 430µF 80% of Vce D.U.T. Ic 90% Ic 10% Vce Ic 5% Ic td(off) tf Eoff = Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf ∫ t1+5µS Vce icIcdtdt Vce t1 t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf GATE VOLTAGE D.U.T. 10% +Vg trr Ic Qrr = tx DUT VOLTAGE AND CURRENT Vce 10% Ic 90% Ic tr td(on) ∫ +Vg 10% Irr 10% Vcc Vcc trr id Icdtdt tx Ipk Vpk Vcc Irr Ic DIODE RECOVERY WAVEFORMS 5% Vce t1 ∫ t2 VceieIcdt dt Eon = Vce t1 t2 DIODE REVERSE RECOVERY ENERGY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr ∫ t4 Erec = Vd VdidIcdt dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr IRG4BC15UDPbF Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T. VOLTAGE IN D.U.T. CURRENT IN D1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit D.U.T. L 1000V Vc* RL = 0 - 480V 480V 4 X I C @25°C 50V 6000µF 100V Figure 19. Clamped Inductive Load Test Circuit Figure 20. Pulsed Collector Current Test Circuit IRG4BC15UDPbF Notes: Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature VCC=80%(VCES), VGE=20V, L=10µH, RG = 75Ω Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. TO-220AB Package Outline 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) LEAD ASSIGNMENTS 1.15 (.045) MIN 1 2 1234- 14.09 (.555) 13.47 (.530) 2 - DRAIN GATE 3 - SOURCE DRAIN SOURCE 4 - DRAIN DRAIN IGBTs, CoPACK 1- GATE 2- COLLECTOR 3- EMITTER 4- COLLECTOR 4.06 (.160) 3.55 (.140) 3X 3X LEAD ASSIGNMENTS HEXFET 1 - GATE 3 1.40 (.055) 1.15 (.045) 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information E XAMP LE : T HIS IS AN IRF 1010 LOT CODE 1789 AS S E MB LE D ON WW 19, 1997 IN T H E AS S E MB L Y LINE "C" Note: "P" in assembly line position indicates "Lead-Free" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y LOT CODE PAR T NU MB E R DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C Data and specifications subject to change without notice. This product has been designed and qualified for the industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.08/04