PD- 94077 IRG4BC20UD-S UltraFast CoPack IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C Features • UltraFast: Optimized for high operating frequencies 8-40 kHz in hard switching, >200kHz in resonant mode • Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than Generation 3 • IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations • Industry standard D2Pak package VCES = 600V VCE(on) typ. = 1.85V G @VGE = 15V, IC = 6.5A E N-channel Benefits • Generation 4 IGBTs offers highest efficiencies available • Optimized for specific application conditions • HEXFRED diodes optimized for performance with IGBTs . Minimized recovery characteristics require less/no snubbing • Designed to be a "drop-in" replacement for equivalent industry-standard Generation 3 IR IGBTs D2Pak Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Max. Units 600 13 6.5 52 52 7.0 52 ± 20 60 24 -55 to +150 V A V W °C °C 300 (0.063 in. (1.6mm) from case) Thermal Resistance Parameter RθJC RθCS RθJA Wt www.irf.com Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient, typical socket mount Weight Typ. Max. ––– 0.5 ––– 1.44 2.1 ––– 40 ––– Units °C/W g (oz) 1 1/12/01 IRG4BC20UD-S Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. V(BR)CES Collector-to-Emitter Breakdown Voltage 600 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage ––– VCE(on) Collector-to-Emitter Saturation Voltage ––– ––– ––– VGE(th) Gate Threshold Voltage 3.0 ∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage ––– gfe Forward Transconductance 1.4 ICES Zero Gate Voltage Collector Current ––– ––– VFM Diode Forward Voltage Drop ––– ––– IGES Gate-to-Emitter Leakage Current ––– Typ. Max. Units ––– ––– V 0.69 ––– V/°C 1.85 2.1 2.27 ––– V 1.87 ––– ––– 6.0 -11 ––– mV/°C 4.3 ––– S ––– 250 µA ––– 1700 1.4 1.7 V 1.3 1.6 ––– ±100 nA Conditions VGE = 0V, IC = 250µA VGE = 0V, IC = 1.0mA IC = 6.5A VGE = 15V IC = 13A See Fig. 2, 5 IC = 6.5A, TJ = 150°C VCE = VGE, IC = 250µA VCE = VGE, IC = 250µA VCE = 100V, IC = 6.5A VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150°C IC = 8.0A See Fig. 13 IC = 8.0A, TJ = 150°C VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres trr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge di(rec)M /dt Diode Peak Rate of Fall of Recovery During tb 2 Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. 27 4.5 10 39 15 93 110 0.16 0.13 0.29 38 17 100 220 0.49 7.5 530 39 7.4 37 55 3.5 4.5 65 124 240 210 Max. Units Conditions 41 IC = 6.5A 6.8 nC VCC = 400V See Fig. 8 16 VGE = 15V ––– TJ = 25°C ––– ns IC = 6.5A, VCC = 480V 140 VGE = 15V, RG = 50Ω 170 Energy losses include "tail" and ––– diode reverse recovery. ––– mJ See Fig. 9, 10, 11, 18 0.3 ––– TJ = 150°C, See Fig. 9, 10, 11, 18 ––– ns IC = 6.5A, VCC = 480V ––– VGE = 15V, RG = 50Ω ––– Energy losses include "tail" and ––– mJ diode reverse recovery. ––– nH Measured 5mm from package ––– VGE = 0V ––– pF VCC = 30V See Fig. 7 ––– ƒ = 1.0MHz 55 ns TJ = 25°C See Fig. 90 TJ = 125°C 14 IF = 8.0A 5.0 A TJ = 25°C See Fig. 8.0 TJ = 125°C 15 VR = 200V 138 nC TJ = 25°C See Fig. 360 TJ = 125°C 16 di/dt 200A/µs ––– A/µs TJ = 25°C See Fig. ––– TJ = 125°C 17 www.irf.com IRG4BC20UD-S 12 D u ty c y c le : 5 0 % T J = 1 2 5 °C T s in k = 9 0 °C G a te d riv e a s s p e c ifie d T u rn -o n los s e s in c lu d e e ffe c ts o f re v e rs e r e c o v e ry P ow er Diss ip ation = 13W L oa d C u rre n t (A ) 10 8 6 0% o f ra te d v oltag e 6 4 2 A 0 0.1 1 10 100 f, F re q u e n c y (k H z ) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 I C , C ollec tor-to-E m itte r C u rre nt (A ) I C , Collector-to-Emitter Current (A) 100 T J = 25°C T J = 150°C 10 1 V G E = 15V 20µs PULSE WIDTH 0.1 0.1 1 Fig. 2 - Typical Output Characteristics www.irf.com A TJ = 25 °C 1 V C C = 10 V 5 µs P U L S E W IDTH 0.1 10 VC E , Collector-to-Emitter Voltage (V) TJ = 1 5 0°C 10 4 6 8 10 A 12 VG E , Ga te -to-Em itter Volta ge (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4BC20UD-S 14 2.6 V C E , C ollector-to-E m itter V oltag e (V) V G E = 15 V M aximum D C Collector Current (A ) 12 10 8 6 4 2 V G E = 1 5V 8 0 µs P U L S E W ID TH I C = 1 3A 2.2 1.8 I C = 6 .5A 1.4 I C = 3.3 A A 1.0 0 25 50 75 100 125 -60 150 -40 -20 0 20 40 60 80 100 120 140 160 T J , J u n c tio n Te m p e ra tu re (°C ) T C , C ase Tem perature (°C) Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Fig. 4 - Maximum Collector Current vs. Case Temperature Therm al Response (Z thJ C ) 10 1 D = 0.50 0 .2 0 0 .10 PD M 0.0 5 0 .1 0.0 2 0 .01 t SIN G LE P U LS E (T H ER M AL R E SP O N SE ) t2 N o te s : 1 . D u ty fa c to r D = t 0 .0 1 0 .0 0 0 0 1 1 1 / t 2 2 . P e a k TJ = P D M x Z th J C + T C 0 .0 0 0 1 0 .0 0 1 0 .0 1 0 .1 1 10 t 1 , R ectangular Pulse Duration (sec) Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4BC20UD-S V GE = C ie s = C re s = C oes = 800 20 0V , f = 1M H z C g e + C g c , C ce S H O R TE D C gc C ce + C g c V G E , G a te -to -E m itte r V o lta g e (V ) C, Ca pac itanc e (p F) 1000 C ie s 600 C oes 400 C re s 200 A 0 1 10 VCE = 400V I C = 6 .5 A 16 12 8 4 A 0 0 100 5 V C E , C o lle c to r-to -E m itte r V o lta g e (V ) 10 = 480V = 15V = 25 °C = 6 .5A 0.31 0.30 A 0.29 0 10 20 30 40 50 R G , G a te R e sista n c e ( Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 20 25 30 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage Total S witching Los se s (m J) Total Switching Losses (m J) V CC VGE TJ IC 15 Q g , T o ta l G a te C h a rg e (n C ) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 0.32 10 60 R G = 50 Ω V GE = 15V V CC = 4 8 0 V IC = 1 3 A 1 I C = 6 .5 A I C = 3 .3 A A 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , J u n ctio n T e m p e ra tu re (°C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4BC20UD-S 1000 = 50 Ω = 1 5 0 °C = 480V = 15V I C , C ollecto r-to -Em itter Cu rrent (A) RG TJ V CC V GE 0.9 0.6 0.3 A 0.0 0 2 4 6 8 10 12 VGGE E= 2 0V T J = 12 5 °C 100 S A FE O P E R A TIN G A R E A 10 1 0 .1 1 14 10 100 1000 V C E , Collecto r-to-E m itter V oltage (V ) I C , C o lle cto r-to -E m itte r C u rre n t (A ) Fig. 12 - Turn-Off SOA Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 100 In s ta n ta n e o u s F o rw a rd C u rre n t - I F (A ) Total Switc hing Losses (mJ ) 1.2 10 TJ = 1 50 °C TJ = 1 25 °C TJ = 25 °C 1 0.1 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 F o rw a rd V o lta g e D ro p - V F M (V ) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4BC20UD-S 100 100 VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C 80 I F = 8 .0A I IR R M - (A ) t rr - (ns) IF = 16 A 60 I F = 1 6A 10 IF = 8 .0 A 40 I F = 4.0 A I F = 4 .0 A 20 0 100 1 100 1000 d i f /d t - (A /µ s) 1000 di f /dt - (A /µs) Fig. 14 - Typical Reverse Recovery vs. dif/dt Fig. 15 - Typical Recovery Current vs. dif/dt 500 10000 VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C di(rec)M/dt - (A /µ s) Q R R - (nC ) 400 300 I F = 16 A 200 I F = 8 .0A I F = 4 .0A 1000 I F = 8.0 A I F = 16 A 100 IF = 4.0 A 0 100 di f /dt - (A /µs) Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com 1000 100 100 1000 di f /dt - (A /µs) Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7 IRG4BC20UD-S Same ty pe device as D .U.T. 90% 10% Vge 430µF 80% of Vce VC D .U .T. 90% td(off) 10% IC 5% tf tr t d(on) t=5µs E on Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf E off E ts = (Eon +Eoff ) Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf G A T E V O L T A G E D .U .T . 1 0 % +V g trr Q rr = Ic ∫ trr id d t tx +Vg tx 10% Vcc 1 0 % Irr V cc D UT VO LTAG E AN D CU RRE NT Vce V pk Irr Vcc 1 0 % Ic Ip k 9 0 % Ic Ic D IO D E R E C O V E R Y W A V E FO R M S tr td (o n ) 5% Vce t1 ∫ t2 E o n = V ce ie d t t1 t2 E re c = D IO D E R E V E R S E REC OVERY ENER GY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ t4 V d id d t t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4BC20UD-S V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T . V O L T A G E IN D .U .T . C U R R E N T IN D 1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit D.U.T. L 1000V Vc* RL= 480V 4 X IC @25°C 0 - 480V 50V 6000µ F 100 V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4BC20UD-S D2Pak Package Outline 1 0.54 (.4 15) 1 0.29 (.4 05) 1.4 0 (.055 ) M AX. -A- 1.3 2 (.05 2) 1.2 2 (.04 8) 2 1.7 8 (.07 0) 1.2 7 (.05 0) 1 1 0.16 (.4 00 ) RE F. -B - 4.69 (.1 85) 4.20 (.1 65) 6.47 (.2 55 ) 6.18 (.2 43 ) 3 15 .4 9 (.6 10) 14 .7 3 (.5 80) 2.7 9 (.110 ) 2.2 9 (.090 ) 2.61 (.1 03 ) 2.32 (.0 91 ) 5 .28 (.20 8) 4 .78 (.18 8) 3X 1.40 (.0 55) 1.14 (.0 45) 5 .08 (.20 0) 0.5 5 (.022 ) 0.4 6 (.018 ) 0 .93 (.03 7 ) 3X 0 .69 (.02 7 ) 0 .25 (.01 0 ) M 8.8 9 (.3 50 ) R E F. 1.3 9 (.0 5 5) 1.1 4 (.0 4 5) B A M M IN IM U M R E CO M M E ND E D F O O TP R IN T 1 1.43 (.4 50 ) NO TE S: 1 D IM EN S IO N S A FTER SO L D ER D IP. 2 D IM EN S IO N IN G & TO LE RA N C IN G PE R A N S I Y1 4.5M , 198 2. 3 C O N TRO L LIN G D IM EN SIO N : IN C H . 4 H E ATSINK & L EA D D IM EN S IO N S D O N O T IN C LU D E B UR R S. LE A D A SS IG N M E N TS 1 - G A TE 2 - D R AIN 3 - S O U RC E 8.89 (.3 50 ) 17 .78 (.70 0) 3 .8 1 (.15 0) 2 .08 (.08 2) 2X 2.5 4 (.100 ) 2X D2Pak Part Marking Information IN TE R N A TIO N A L R E C T IF IE R LO G O A S S E M B LY LO T C O D E 10 A PART NUM BER F530S 9 24 6 9B 1M DATE CODE (Y YW W ) YY = Y E A R W W = W EEK www.irf.com IRG4BC20UD-S D2Pak Tape & Reel Information TR R 1 .6 0 (.0 6 3 ) 1 .5 0 (.0 5 9 ) 4 .1 0 (.16 1 ) 3 .9 0 (.15 3 ) F E ED D IR E C TIO N 1 .8 5 ( .0 7 3 ) 1.60 (.06 3) 1.50 (.05 9) 1 1.60 (.457 ) 1 1.40 (.449 ) 1 .6 5 ( .0 6 5 ) 0.3 68 (.01 45 ) 0.3 42 (.01 35 ) 1 5.42 (.60 9) 1 5.22 (.60 1) 2 4.30 (.9 57 ) 2 3.90 (.9 41 ) TR L 10.90 (.42 9) 10.70 (.42 1) 1.75 (.0 69 ) 1.25 (.0 49 ) 4.72 (.1 36 ) 4.52 (.1 78 ) 1 6.10 (.6 3 4) 1 5.90 (.6 2 6) F E E D D IR E C T IO N 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 33 0.00 (14.173) M A X. 60.00 (2.36 2) MIN . N OT ES : 1. C O MF OR MS TO EIA-418. 2. C O NTR O LLIN G DIM EN SIO N: M ILLIM ET ER. 3. D IM ENSIO N M EAS UR ED @ HU B. 4. IN CLU D ES F LAN G E D ISTO RT IO N @ O UT ER ED GE. 26.40 (1.0 39) 24.40 (.96 1) 30.40 (1.197) M AX. 4 3 Notes: Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (Figure 20) VCC=80%(VCES), VGE=20V, L=10µH, RG = 50Ω (Figure 19) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.1/01 www.irf.com 11