PD- 91751A IRG4IBC30FD Fast CoPack IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C Features • • • • Very Low 1.59V votage drop 2.5kV, 60s insulation voltage 4.8 mm creapage distance to heatsink Fast: Optimized for medium operating frequencies ( 1-5 kHz in hard switching, >20 kHz in resonant mode). • IGBT co-packaged with HEXFREDTM ultrafast, ultrasoft recovery antiparallel diodes • Tighter parameter distribution • Industry standard Isolated TO-220 FullpakTM outline VCES = 600V VCE(on) typ. = 1.59V G @VGE = 15V, IC = 17A E n-ch an nel Benefits • Simplified assembly • Highest efficiency and power density • HEXFREDTM antiparallel Diode minimizes switching losses and EMI TO-220 FULLPAK Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM Visol VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current RMS Isolation Voltage, Terminal to Case Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw. Max. Units 600 20.3 11 120 120 8.5 120 2500 ± 20 45 18 -55 to +150 V A V W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m) Thermal Resistance Parameter RθJC RθJC RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Junction-to-Ambient, typical socket mount Weight Typ. Max. ––– ––– ––– 2.0 (0.07) 2.8 4.1 65 ––– Units °C/W g (oz) 1 3/26/99 IRG4IBC30FD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Collector-to-Emitter Breakdown Voltage ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage VCE(on) Collector-to-Emitter Saturation Voltage V(BR)CES VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Min. 600 ––– ––– ––– ––– Gate Threshold Voltage 3.0 Temperature Coeff. of Threshold Voltage ––– Forward Transconductance 6.1 Zero Gate Voltage Collector Current ––– ––– Diode Forward Voltage Drop ––– ––– Gate-to-Emitter Leakage Current ––– Typ. ––– 0.69 1.59 1.99 1.70 ––– -11 10 ––– ––– 1.4 1.3 ––– Max. Units Conditions ––– V VGE = 0V, IC = 250µA ––– V/°C VGE = 0V, I C = 1.0mA 1.8 IC = 17A VGE = 15V ––– V IC = 31A See Fig. 2, 5 ––– IC = 17A, TJ = 150°C 6.0 VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 250µA ––– S VCE = 100V, IC = 17A 250 µA VGE = 0V, VCE = 600V 2500 VGE = 0V, VCE = 600V, TJ = 150°C 1.7 V IC = 12A See Fig. 13 1.6 IC = 12A, TJ = 150°C ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres t rr I rr Q rr di(rec)M/dt 2 Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Diode Peak Reverse Recovery Current ––– ––– Diode Reverse Recovery Charge ––– ––– Diode Peak Rate of Fall of Recovery ––– During tb ––– Typ. 51 7.9 19 42 26 230 160 0.63 1.39 2.02 42 27 310 310 3.2 7.5 1100 74 14 42 80 3.5 5.6 80 220 180 120 Max. Units Conditions 77 IC = 17A 12 nC VCC = 400V See Fig. 8 28 VGE = 15V ––– TJ = 25°C ––– ns IC = 17A, VCC = 480V 350 VGE = 15V, RG = 23Ω 230 Energy losses include "tail" and ––– diode reverse recovery. ––– mJ See Fig. 9, 10, 11, 18 3.9 ––– TJ = 150°C, See Fig. 9, 10, 11, 18 ––– ns IC = 17A, VCC = 480V ––– VGE = 15V, RG = 23Ω ––– Energy losses include "tail" and ––– mJ diode reverse recovery. ––– nH Measured 5mm from package ––– VGE = 0V ––– pF VCC = 30V See Fig. 7 ––– ƒ = 1.0MHz 60 ns TJ = 25°C See Fig. 120 TJ = 125°C 14 IF = 12A 6.0 A TJ = 25°C See Fig. 10 TJ = 125°C 15 VR = 200V 180 nC TJ = 25°C See Fig. 600 TJ = 125°C 16 di/dt 200A/µs ––– A/µs TJ = 25°C See Fig. ––– TJ = 125°C 17 www.irf.com IRG4IBC30FD 16 LOAD CURRENT (A) F o r b o th : D u ty c y c le : 5 0 % TJ = 1 2 5 ° C T sink = 9 0 ° C G a te d riv e a s s p e c ifie d P o w e r D is s ip a tio n = 13 W 12 S q u a re w a v e : 6 0% of rate d volta ge 8 I 4 Id e a l d io d e s 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = I RMS of fundamental) 1000 I C , Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) 1000 TJ = 25°C 100 T J = 150°C 10 V G E = 15V 20µs PULSE WIDTH 1 1 A 10 VC E , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com 100 TJ = 150°C T J = 25°C 10 V C C = 50V 5µs PULSE WIDTH A 1 5 6 7 8 9 10 11 12 13 VG E , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4IBC30FD 25 V C E , Collector-to-Emitter Voltage (V) Maximum DC Collector Current(A) 2.5 20 15 10 5 V G E = 15V 80µs PULSE WIDTH I C = 34A 2.0 I C = 17A 1.5 I C = 8.5A 0 25 50 75 100 125 150 Fig. 4 - Maximum Collector Current vs. Case Temperature A 1.0 -60 TC , Case Temperature ( °C) -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 0.01 0.00001 P DM 0.02 t1 0.01 t2 SINGLE PULSE (THERMAL RESPONSE) 0.0001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4IBC30FD 2000 20 C, Capacitance (pF) SHORTED Coes = Cce + Cgc 1600 C ies 1200 800 C oes 400 C res A 0 1 VC E = 400V I C = 17A f = 1 MHz Cies = Cge + Cgc + Cce Cres = Cce V G E , Gate-to-Emitter Voltage (V) VGE = 0V 10 16 12 8 4 A 0 100 0 10 V C E , Collector-to-Emitter Voltage (V) 2.10 2.00 1.90 A 1.80 20 40 R G, Gate Resistance ( 60 Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 50 60 10 = 480V = 15V = 25°C = 17A 0 40 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage Total Switchig Losses (mJ) Total Switchig Losses (mJ) VC C VG E TJ IC 30 Q g , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 2.20 20 80 I C = 34A I C = 17A 1 0.1 I C = 8.5A R G = 23 Ω V G E = 15V V C C = 480V -60 -40 -20 0 A 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4IBC30FD = = = = 1000 23 Ω 150°C 480V 15V I C , C ollecto r-to -Em itter Cu rrent (A) RG TJ V CC V GE 6.0 4.0 2.0 A 0.0 0 10 20 30 VGGE E= 2 0V T J = 12 5 °C 100 S A FE O P E R A TIN G A R E A 10 1 40 1 10 100 1000 V C E , Collecto r-to-E m itter V oltage (V ) I C , Collector-to-Emitter Current (A) Fig. 12 - Turn-Off SOA Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 100 In s ta n ta n e o u s F o rw a rd C u rre n t - I F (A ) Total Switchig Losses (mJ) 8.0 TJ = 1 50 °C TJ = 1 25 °C 10 TJ = 25 °C 1 0.4 0.8 1.2 1.6 2.0 2.4 F o rw a rd V o lta g e D ro p - V F M (V ) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4IBC30FD 100 160 VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C 120 I IR R M - (A ) t rr - (ns) I F = 24 A I F = 1 2A 80 I F = 6 .0 A I F = 24 A I F = 12 A 10 I F = 6.0 A 40 0 100 d i f /d t - (A /µ s) 1 100 1000 1000 d i f /d t - (A /µ s ) Fig. 14 - Typical Reverse Recovery vs. dif/dt Fig. 15 - Typical Recovery Current vs. dif/dt 600 10000 VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C d i(re c )M /d t - (A /µ s) VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C Q R R - (n C ) 400 I F = 2 4A I F = 1 2A 200 1000 IF = 6.0 A I F = 12 A 100 I F = 2 4A I F = 6.0 A 0 100 d i f /d t - (A /µ s) Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com 1000 10 100 1000 d i f /d t - (A /µ s) Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7 IRG4IBC30FD Same ty pe device as D .U.T. 90% 10% Vge 430µF 80% of Vce VC D .U .T. 90% t d(off) 10% IC 5% tf tr t d(on) t=5µs Eon Fig. 18a - Test Circuit for Measurement of Eoff E ts = (Eon +Eoff ) ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf G A T E V O L T A G E D .U .T . 1 0 % +V g trr Q rr = Ic ∫ trr id d t tx +Vg tx 10% Vcc 1 0 % Irr V cc D UT VO LTAG E AN D CU RRE NT Vce V pk Irr Vcc 1 0 % Ic Ip k 9 0 % Ic Ic D IO D E R E C O V E R Y W A V E FO R M S tr td (o n ) 5% Vce t1 ∫ t2 E o n = V ce ie d t t1 t2 E re c = D IO D E R E V E R S E REC OVERY ENER GY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ t4 V d id d t t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4IBC30FD V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T . V O L T A G E IN D .U .T . C U R R E N T IN D 1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit D.U.T. L 1000V Vc* RL= 480V 4 X IC @25°C 0 - 480V 50V 6000µ F 100 V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4IBC30FD Notes: Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10µH, RG = 23Ω (figure 19) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. t = 60s, f = 60Hz Case Outline TO-220 FULLPAK 1 0 .6 0 (.4 1 7 ) 1 0 .4 0 (.4 0 9 ) ø 3 .4 0 (.1 3 3 ) 3 .1 0 (.1 2 3 ) 4 .8 0 (.1 8 9 ) 4 .6 0 (.1 8 1 ) -A 3 .7 0 (.1 4 5 ) 3 .2 0 (.1 2 6 ) 1 6 .0 0 (.6 3 0 ) 1 5 .8 0 (.6 2 2 ) 2 .8 0 (.1 10 ) 2 .6 0 (.1 02 ) L E A D A S S IG N M E N T S LEAD ASSIGMENTS 1 - GATE 1- GATE 2 - D R A IN 2- COLLECTOR 3 - S OU R CE 3- EMITTER 7 .10 (.2 8 0 ) 6 .70 (.2 6 3 ) 1 .1 5 (.0 4 5 ) M IN . NOTES: 1 D IM E N S IO N IN G & T O L E R A N C IN G P E R A N S I Y 1 4 .5 M , 1 9 8 2 1 2 3 2 C O N T R O L L IN G D IM E N S IO N : IN C H . 3 .3 0 (.1 3 0 ) 3 .1 0 (.1 2 2 ) -B - 1 3 .7 0 (.5 4 0 ) 1 3 .5 0 (.5 3 0 ) C A 1 .4 0 (.0 5 5 ) 3X 1 .0 5 (.0 4 2 ) 0 .9 0 (.0 3 5 ) 3 X 0 .7 0 (.0 2 8 ) 0 .2 5 (.0 1 0) 2 .5 4 (.1 0 0 ) 2X 3X M A M B 0 .4 8 (.0 1 9 ) 0 .4 4 (.0 1 7 ) 2 .8 5 (.1 1 2 ) 2 .6 5 (.1 0 4 ) D B M IN IM U M C R E E P A G E D IS T A N C E B E T W E E N A -B -C -D = 4 .8 0 (.1 89 ) WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 http://www.irf.com/ Data and specifications subject to change without notice. 3/99 10 www.irf.com