IRF IRG4PSH71UDPBF

PD - 95908
IRG4PSH71UDPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
UltraFast Copack IGBT
Features
• UltraFast switching speed optimized for operating
frequencies 8 to 40kHz in hard switching, 200kHz
in resonant mode soft switching
• Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency
(minimum switching and conduction losses) than
prior generations
• Industry-benchmark Super-247 package with
higher power handling capability compared to
same footprint TO-247
• Creepage distance increased to 5.35mm
• Lead-Free
C
VCES = 1200V
VCE(on) typ. = 2.52V
G
@VGE = 15V, IC = 50A
E
n-channel
Benefits
• Generation 4 IGBT's offer highest efficiencies
available
• Maximum power density, twice the power
handling of the TO-247, less space than TO-264
• IGBTs optimized for specific application conditions
• Cost and space saving in designs that require
multiple, paralleled IGBTs
• HEXFREDTM antiparallel Diode minimizes
switching losses and EMI
SUPER - 247
Absolute Maximum Ratings
Parameter
V CES
IC @ T C = 25°C
IC @ T C = 100°C
ICM
ILM
V GE
IF @ Tc = 100°C
IFM
P D @ T C = 25°C
P D @ T C = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulse Collector Current
Clamped Inductive Load current
Gate-to-Emitter Voltage
Diode Continuous Forward Current
Diode Maximum Forward Current
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Storage Temperature Range, for 10 sec.
c
d
Max.
Units
1200
99
50
200
200
±20
70
200
350
140
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
Thermal / Mechanical Characteristics
Parameter
R θJC
R θJC
R θCS
R θJA
Wt
www.irf.com
Junction-to-Case- IGBT
Junction-to-Case- Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Recommended Clip Force
Weight
Min.
Typ.
Max.
Units
–––
–––
–––
–––
20 (2.0)
–––
–––
–––
0.24
–––
0.36
0.36
–––
38
°C/W
6 (0.21)
–––
N (kgf)
g (oz.)
1
09/20/04
IRG4PSH71UDPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
e
Collector-to-Emitter Breakdown Voltage
V(BR)CES
1200 —
—
V VGE = 0V, IC = 250µA
V(BR)ECS
Emitter-to-Collector Breakdown Voltage
19
—
—
V VGE = 0V, IC = 1.0A
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage
— 0.78 — V/°C VGE = 0V, IC = 1mA
IC = 70A
VGE = 15V
— 2.52 2.70
V
VCE(on)
IC = 140A
See Fig.2, 5
Collector-to-Emitter Saturation Voltage
— 3.17 —
IC = 70A, TJ = 150°C
— 2.68 —
VGE(th)
VCE = VGE, IC = 250µA
Gate Threshold Voltage
3.0
—
6.0
∆VGE(th)/∆TJ Threshold Voltage temp. coefficient
—
-9.2
— mV/°C VCE = VGE, IC = 1.0mA
48
72
—
S VCE = 100V, IC = 70A
gfe
Forward Transconductance
ICES
Zero Gate Voltage Collector Current
—
—
500 µA VGE = 0V, VCE = 1200V
VGE = 0V, VCE = 10V
—
—
2.0
VGE = 0V, VCE = 1200V, TJ = 150°C
—
— 5000
VFM
Diode Forward Voltage Drop
— 2.92 3.9
V IF = 70A See Fig.13
IF = 70A, TJ = 150°C
— 2.88 3.7
IGES
Gate-to-Emitter Leakage Current
—
— ±100 nA VGE = ±20V
f
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
ETS
LE
Cies
Coes
Cres
trr
Total Gate Charge (turn-on)
Gate-to-Emitter Charge (turn-on)
Gate-to-Collector Charge (turn-on)
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
380
61
130
46
77
250
220
8.8
9.4
18.2
43
78
330
480
26
13
6640
420
60
110
570
24
200
—
—
350
330
—
—
19.7
—
—
—
—
—
—
—
—
—
170
Irr
Diode Peak Reverse Recovery Current
—
—
180
6.0
270
9.0
A
Qrr
Diode Reverse Recovery Charge
—
—
8.9
350
13
530
nC TJ=25°C
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
—
—
—
TJ=125°C
870 1300
150 230 A/µs TJ=25°C
TJ=125°C
130 200
2
IC = 70A
See Fig.8
nC VCC = 400V
VGE = 15V
IC = 70A, VCC = 960V
ns VGE = 15V, RG = 5.0Ω
Energy losses include "tail"
See Fig. 9, 10, 11, 14
mJ
ns
TJ = 150°C, See Fig. 9, 10, 11, 14
IC = 70A, VCC = 960V
VGE = 15V, RG = 5.0Ω
Energy losses include "tail"
mJ
nH Measured 5mm from package
VGE = 0V
See Fig.7
pF VCC = 30V,
f = 1.0MHz
See Fig
ns TJ=25°C
TJ=125°C
14
TJ=25°C
See Fig
TJ=125°C
IF = 70A
15
VR = 200V
See Fig
16
di/dt = 200A/µs
See Fig
17
www.irf.com
IRG4PSH71UDPbF
40
Duty cycle : 50%
Tj = 125°C
Tsink = 90°C
Gate drive as specified
Turn-on losses include
effects of
reverse recovery
Power Dissipation = 58W
Load Current ( A )
30
20
Square wave:
60% of rated
voltage
10
Ideal diodes
0
0.1
1
10
100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK)
1000.0
IC, Collector-to-Emitter Current (A)
IC , Collector-to Emitter Current (A)
1000
100
TJ = 150°C
10
T J = 25°C
1
VGE= 15V
< 60µs PULSE WIDTH
100.0
T J = 150°C
10.0
T J = 25°C
1.0
VCC = 50V
< 60µs PULSE WIDTH
0.1
0.1
4
0
1
2
3
4
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
6
8
10
5
VGE, Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4PSH71UDPbF
4.0
100
VCE , Collector-to Emitter Voltage (V)
Maximum DC Collector Current (A)
V GE = 15V
80
60
40
20
VGE = 15V
380µs PULSE WIDTH
IC = 140A
3.5
3.0
IC = 70A
2.5
IC = 35A
2.0
1.5
0
25
50
75
100
125
-60 -40 -20
150
0
20
40
60
80 100 120 140 160
T J , Junction Temperature (°C)
T J , Junction Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Collector-to-Emitter Voltage vs.
Junction Temperature
1
Thermal Response ( Z thJC )
D = 0.50
0.1
0.01
0.20
0.10
0.05
0.02
0.01
τJ
0.001
0.0001
SINGLE PULSE
( THERMAL RESPONSE )
R1
R1
τJ
τ1
R2
R2
τC
τ2
τ1
τ2
τ
Ri (°C/W) τi (sec)
0.253
0.009159
0.1057
0.038041
Ci= τi/Ri
Ci= i/Ri
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
1E-005
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4PSH71UDPbF
14000
C, Capacitance (pF)
12000
20
C oes = C ce + Cgc
10000
VCC = 400V
IC = 70A
SHORTED
VGE, Gate-to-Emitter Voltage (V)
VGE = 0V,
f = 1 MHZ
C ies = C ge + C gc, C ce
C res = C gc
Cies
8000
6000
Coes
4000
Cres
2000
0
16
12
8
4
0
1
10
100
1000
0
100
VCE, Collector-to-Emitter Voltage (V)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
300
400
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
1000
22
R G = 5.0Ω
VGE = 15V
VCC = 960V
Total Switching Losses (mJ)
VCC = 960V
VGE = 15V
Switching Losses (mJ)
200
QG, Total Gate Charge (nC)
T J = 25°C
I C = 70A
20
18
100
I C = 140A
I C = 70A
10
I C = 35A
1
16
0
10
20
30
RG, Gate Resistance (Ω)
Fig. 9 - Typical Switching Losses vs.
Gate Resistance
www.irf.com
40
-60 -40 -20
0
20
40
60
80 100 120 140 160
T J, Junction Temperature (°C)
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4PSH71UDPbF
1000
70
VGE = 20V
T J = 125°
R G = 5.0Ω
Total Switching Losses (mJ)
60
IC, Collector-to-Emitter Current (A)
TJ = 150°C
VGE = 15V
VCC = 960V
50
40
30
20
10
100
SAFE OPERATING AREA
10
1
0
20
40
60
80
100
120
140
160
1
10
100
1000
10000
VCE, Collector-to-Emitter Voltage (V)
IC, Collector Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
Instantaneous Forward Current - I F ( A )
1000
100
10
T J = 150°C
T J = 25°C
1
0.1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Forward Voltage Drop - V F ( V )
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4PSH71UDPbF
400
100
IF = 140A
IF = 70A
IF = 35A
300
80
IF = 140A
IRRM - (A)
trr - (ns)
IF = 70A
200
60
IF = 35A
40
100
VR = 200V
T J = 125°C
20
VR = 200V
T J = 125°C
T J = 25°C
T J = 25°C
0
0
100 200 300 400 500 600 700 800 900 1000
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
dif / dt - (A / µs)
Fig. 14 - Typical Reverse Recovery vs. dif/dt
Fig. 15 - Typical Recovery Current vs. dif/dt
12000
10000
IF = 140A
1700
IF = 70A
IF = 35A
di(rec)M/dt - (A)
Qrr - (nC)
8000
6000
1300
IF = 140A
IF = 70A
IF = 35A
900
4000
500
2000
VR = 200V
T J = 125°C
VR = 200V
T J = 125°C
T J = 25°C
0
T J = 25°C
100
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
Fig. 16 - Typical Stored Charge vs. dif/dt
www.irf.com
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
7
IRG4PSH71UDPbF
Same type
device as
D.U.T.
90%
10%
Vge
430µF
80%
of Vce
VC
D.U.T.
90%
td(off)
10%
IC 5%
tf
tr
t d(on)
t=5µs
Eon
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
Eoff
Ets= (Eon +Eoff )
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T.
10% +Vg
trr
Qrr =
Ic
∫
trr
id dt
tx
+Vg
tx
10% Irr
10% Vcc
Vcc
DUT VOLTAGE
AND CURRENT
Vce
Vpk
Irr
Vcc
10% Ic
90% Ic
Ipk
Ic
DIODE RECOVERY
WAVEFORMS
tr
td(on)
5% Vce
t1
∫
t2
Eon = Vce ie dt
t1
t2
DIODE REVERSE
RECOVERY ENERGY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
∫
t4
Erec = Vd id dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4PSH71UDPbF
Vg GATE SIGNAL
DEVICE UNDER TEST
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
1000V
Vc*
RL =
0 - 480V
480V
4 X IC @25°C
50V
6000µF
100V
Figure 19. Clamped Inductive Load Test Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4PSH71UDPbF
Case Outline and Dimensions — Super-247
Super TO-247™ package is not recommended for Surface Mount Application.
Notes:
 Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
‚ VCC=80%(VCES), VGE=20V, L=10µH, RG= 5.0 Ω (figure 13a)
ƒ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
„ Pulse width 5.0µs, single shot.
… Repetitive rating; pulse width limited by maximumjunction temperature.
10
www.irf.com
IRG4PSH71UDPbF
Super-247 (TO-274AA) Part Marking Information
EXAMPLE: THIS IS AN IRFPS37N50A WITH
ASSEMBLY LOT CODE 1789
ASSEMBLED ON WW 19, 1997
IN THE ASSEMBLY LINE "C"
PART NUMBER
INTERNATIONAL RECTIFIER
LOGO
IRFPS37N50A
719C
17
89
ASSEMBLY LOT CODE
Note: "P" in assembly line position
indicates "Lead-Free"
DATE CODE
YEAR 7 = 1997
WEEK 19
LINE C
TOP
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.09/04
www.irf.com
11