BTS 452 T Smart Power High-Side-Switch Features Product Summary • Overload protection Overvoltage protection Vbb(AZ) • Current limitation Operating voltage Vbb(on) • Short circuit protection On-state resistance RON 200 mΩ • Thermal shutdown with restart Nominal load current IL(ISO) 1.8 A 62 V 6...52 V • Overvoltage protection (including load dump) • Fast demagnetization of inductive loads • Reverse battery protection with external resistor • CMOS compatible input • Loss of GND and loss of Vbb protection • ESD - Protection P-TO252-5-11 • Very low standby current Application • All types of resistive, inductive and capacitive loads • µC compatible power switch for 12 V, 24 V and 42 V DC applications • Replaces electromechanical relays and discrete circuits General Description N channel vertical power FET with charge pump, ground referenced CMOS compatible input, monolithically integrated in Smart SIPMOS technology. Providing embedded protective functions. Page 1 2004-01-27 BTS 452 T Block Diagram + V bb Voltage Overvoltage Current Gate source protection limit protection V Logic Limit for unclamped ind. loads Charge pump Level shifter Rectifier OUT Temperature sensor IN Load Logic ESD miniPROFET GND Load GND Signal GND Pin Symbol Function 1 GND Logic ground 2 IN 3 Vbb Positive power supply voltage 4 NC not connected 5 OUT Output to the load TAB Vbb Positive power supply voltage Input, activates the power switch in case of logic high signal Pin configuration Top view Tab = VBB 1 2 GND IN (3) 4 5 NC OUT Page 2 2004-01-27 BTS 452 T Maximum Ratings at Tj = 25°C, unless otherwise specified Parameter Symbol Value Unit Supply voltage Vbb 52 Supply voltage for full short circuit protection Vbb(SC) 50 Continuous input voltage VIN -10 ... +16 Load current (Short - circuit current, see page 5) IL self limited Current through input pin (DC) I IN ±5 mA Operating temperature Tj -40 ...+150 °C Storage temperature T stg -55 ... +150 Power dissipation 1) Ptot 41.6 W Inductive load switch-off energy dissipation 1)2) EAS 150 mJ V A single pulse, (see page 8) Tj =150 °C, IL = 1 A Load dump protection 2) VLoadDump3)= VA + VS V VLoaddump RI=2Ω, td=400ms, VIN= low or high, VA=13,5V RL = 13.5 Ω 73.5 RL = 27 Ω 88.5 kV Electrostatic discharge voltage (Human Body Model) VESD according to ANSI EOS/ESD - S5.1 - 1993 ESD STM5.1 - 1998 Input pin ±1 all other pins ±5 Thermal Characteristics junction - case: RthJC - - 3 K/W Thermal resistance @ min. footprint Rth(JA) - 80 - K/W Thermal resistance @ 6 cm 2 cooling area 1) Rth(JA) - 45 60 1Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air. (see page 16) 2not subject to production test, specified by design 3V Loaddump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 . Supply voltages higher than V bb(AZ) require an external current limit for the GND pin, e.g. with a 150Ω resistor in GND connection. A resistor for the protection of the input is integrated. Page 3 2004-01-27 BTS 452 T Electrical Characteristics Parameter and Conditions Symbol at Tj = -40...150°C, Vbb = 12..42V, unless otherwise specified Values min. typ. Unit max. Load Switching Capabilities and Characteristics On-state resistance RON mΩ Tj = 25 °C, IL = 1 A, V bb = 9...52 V - 150 200 Tj = 150 °C - 270 380 1.8 2.2 - A µs Nominal load current; Device on PCB 1) I L(ISO) TC = 85 °C, VON = 0.5 V to 90% VOUT t on - 80 180 to 10% VOUT t off - 80 200 dV/dt on - 0.7 2 -dV/dt off - 0.9 2 Operating voltage Vbb(on) 6 - 52 Undervoltage shutdown of charge pump Vbb(under) Tj = -40...+85 °C - - 4 Tj = 150 °C - - 5.5 - 4 5.5 Turn-on time RL = 47 Ω Turn-off time RL = 47 Ω Slew rate on 10 to 30% VOUT , V/µs RL = 47 Ω, V bb = 13.5 V Slew rate off 70 to 40% V OUT, RL = 47 Ω, V bb = 13.5 V Operating Parameters Undervoltage restart of charge pump Vbb(u cp) Standby current Ibb(off) µA Tj = -40...+85 °C, VIN = low - - 15 Tj = +150 °C2) , VIN = low - - 18 IL(off) - - 5 IGND - 0.8 2 Leakage output current (included in Ibb(off)) V VIN = low Operating current mA VIN = high 1Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air. (see page 16) 2higher current due temperature sensor Page 4 2004-01-27 BTS 452 T Electrical Characteristics Parameter and Conditions Symbol at Tj = -40...150°C, Vbb = 12..42V, unless otherwise specified Values min. typ. Unit max. Protection Functions1) Initial peak short circuit current limit (pin 3 to 5) A I L(SCp) Tj = -40 °C, Vbb = 20 V, tm = 150 µs - - 9 Tj = 25 °C - 6.5 - Tj = 150 °C 4 - - Tj = -40...+150 °C, Vbb > 40 V , ( see page 11 ) - 5 2) - Tj = Tjt (see timing diagrams) Vbb < 40 V - 6 - Vbb > 40 V - 4.5 - VON(CL) 59 63 - Vbb(AZ) 62 - - Thermal overload trip temperature T jt 150 - - °C Thermal hysteresis ∆Tjt - 10 - K Reverse battery 4) -Vbb - - 52 V Drain-source diode voltage (VOUT > Vbb) -VON - 600 - Repetitive short circuit current limit I L(SCr) Output clamp (inductive load switch off) V at VOUT = Vbb - VON(CL), Ibb = 4 mA Overvoltage protection 3) Ibb = 4 mA Reverse Battery mV Tj = 150 °C 1Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation . 2not subject to production test, specified by design 3 see also VON(CL) in circuit diagram on page 7 4Requires a 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation! Input current has to be limited (see max. ratings page 3). Page 5 2004-01-27 BTS 452 T Parameter and Conditions Symbol at Tj = -40...150°C, Vbb = 12..42V, unless otherwise specified Values Unit min. typ. max. Input Input turn-on threshold voltage VIN(T+) - - 2.2 Input turn-off threshold voltage VIN(T-) 0.8 - - Input threshold hysteresis ∆V IN(T) - 0.4 - Off state input current I IN(off) 1 - 25 I IN(on) 3 - 25 RI 2 3.5 5 V µA VIN = 0.7 V On state input current VIN = 5 V Input resistance (see page 7) Page 6 kΩ 2004-01-27 BTS 452 T Terms Inductive and overvoltage output clamp Ibb + V bb V Z Vbb V I IN IL IN PROFET ON VON OUT OUT V GND GND IN V bb R IGND VOUT GND V ON clamped to 59V min. Input circuit (ESD protection) R IN Overvoltage protection of logic part + V bb I V ESD- ZD I I IN I Z2 RI L o gic GND V Z1 The use of ESD zener diodes as voltage clamp at DC conditions is not recommended GND R GN D S ignal GND VZ1 =6.1V typ., VZ2 =Vbb(AZ) =62V min., Reverse battery protection RI=3.5 kΩ typ., RGND=150Ω - V bb Internal output pull down Logic IN RI OUT V Power Inverse Diode bb GND RL R GND Signal GND V Power GND RGND=150Ω, RI=3.5kΩ typ., R Temperature protection is not active during inverse current OUT O S ignal G N D RO = 200 kΩ typ. Page 7 2004-01-27 BTS 452 T Vbb disconnect with charged inductive GND disconnect load Vbb Vbb IN high OUT PROFET IN bb V OUT GND GND V PROFET V GND IN V bb GND disconnect with GND pull up Inductive Load switch-off energy dissipation Vbb IN PROFET OUT E bb E AS GND E Load Vbb V bb V IN V GND IN PROFET OUT L = GND ZL { R EL ER L Energy stored in load inductance: EL = ½ * L * IL2 While demagnetizing load inductance, the enérgy dissipated in PROFET is EAS = Ebb + EL - ER = VON(CL) * iL(t) dt, with an approximate solution for RL > 0Ω: E AS = Page 8 IL * R L IL * L ) * ( V b b + | V O U T ( C L )| ) * ln (1 + | V O U T ( C L )| 2 * RL 2004-01-27 BTS 452 T Typ. transient thermal impedance Typ. transient thermal impedance ZthJA=f(tp) @ 6cm 2 heatsink area Z thJA=f(tp) @ min. footprint Parameter: D=tp/T Parameter: D=tp/T 10 2 K/W 10 2 D=0.5 K/W D=0.5 D=0.2 10 1 D=0.2 10 1 D=0.05 10 0 D=0.02 D=0.1 D=0.05 Z thJA ZthJA D=0.1 D=0.02 10 0 D=0.01 D=0.01 10 -1 10 -1 D=0 10 -2 -7 -6 -5 -4 -3 -2 -1 0 1 2 10 10 10 10 10 10 10 10 10 10 s 10 D=0 10 -2 -7 -6 -5 -4 -3 -2 -1 0 1 2 10 10 10 10 10 10 10 10 10 10 4 tp 10 V Vbb 50 tp Typ. on-state resistance Typ. on-state resistance RON = f(Tj) ; Vbb = 13,5V ; Vin = high RON = f(V bb); IL = 1 A ; Vin = high 400 300 mΩ mΩ 150°C RON 300 RON s 200 250 200 150 25°C 150 100 -40°C 100 50 0 -40 -20 50 0 20 40 60 80 100 120 °C Tj 160 Page 9 0 0 5 10 15 20 25 30 35 40 2004-01-27 4 BTS 452 T Typ. turn on time Typ. turn off time ton = f(Tj ); RL = 47Ω toff = f(Tj); RL = 47Ω 160 160 µs µs 9V 120 13.5V 100 80 toff t on 120 100 80 42V 60 60 40 40 20 20 0 -40 -20 0 20 40 60 80 100 120 °C Tj 9...42V 0 -40 -20 160 0 20 40 60 Typ. slew rate on Typ. slew rate off dV/dton = f(T j) ; RL = 47 Ω dV/dtoff = f(Tj); R L = 47 Ω 2 80 100 120 °C Tj 160 3.5 V/µs V/µs -dV dtoff dV dton 1.6 1.4 1.2 2.5 2 1 42V 1.5 0.8 42V 0.6 1 13.5V 0.4 9V 13.5V 9V 0.5 0.2 0 -40 -20 0 20 40 60 80 100 120 °C Tj 0 -40 -20 160 Page 10 0 20 40 60 80 100 120 °C Tj 160 2004-01-27 BTS 452 T Typ. standby current Typ. leakage current Ibb(off) = f(Tj ) ; Vbb = 42V ; VIN = low I L(off) = f(Tj) ; Vbb = 42V ; VIN = low 10 2.5 µA I L(off) I bb(off) µA 6 1.5 4 1 2 0.5 0 -40 -20 0 20 40 60 80 100 120 °C Tj 0 -40 -20 160 0 20 40 60 80 100 120 °C Tj 160 Typ. initial peak short circuit current limit Typ. initial short circuit shutdown time IL(SCp) = f(Vbb) toff(SC) = f(Tj,start) ; Vbb = 20V 10 6 ms -40°C toff(SC) IL(SCp) A 25°C 6 150°C 4 3 4 2 2 0 0 1 10 20 30 40 0 -40 -20 60 V Vbb Page 11 0 20 40 60 80 100 120 °C Tj 160 2004-01-27 BTS 452 T Typ. input current Typ. input current IIN(on/off) = f(Tj); Vbb = 13,5V; VIN = low/high I IN = f(VIN); V bb = 13.5V VINlow ≤ 0,7V; VINhigh = 5V 50 12 µA µA 8 IIN IIN -40...25°C 150°C 30 on 6 20 off 4 10 2 0 -40 -20 0 20 40 60 80 100 120 °C Tj 0 0 160 1 2 3 4 5 Typ. input threshold voltage Typ. input threshold voltage VIN(th) = f(Tj ) ; Vbb = 13,5V VIN(th) = f(V bb) ; Tj = 25°C 2 8 V on on 1.6 off 1.4 1.2 V IN(th) 1.6 V IN(th) V VIN 2 V 1.4 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 20 40 60 80 100 120 °C Tj 0 0 160 off 1.2 1 0 -40 -20 6 10 20 30 50 V Vbb Page 12 2004-01-27 BTS 452 T Maximum allowable load inductance Maximum allowable inductive switch-off for a single switch off energy, single pulse L = f(IL); Tjstart =150°C, RL=0Ω EAS = f(I L); T jstart = 150°C, Vbb = 13,5V 13.5V 4500 1200 mH mJ 3500 L EAS 3000 800 2500 42V 600 2000 1500 400 1000 200 500 0 0 0.25 0.5 0.75 1 1.25 1.5 A IL 0 0 2 Page 13 0.25 0.5 0.75 1 1.25 1.5 A IL 2 2004-01-27 BTS 452 T Timing diagrams Figure 2b: Switching a lamp, Figure 1a: Vbb turn on: IN IN OUT V bb I V OUT L t t Figure 2a: Switching a resistive load, turn-on/off time and slew rate definition Figure 2c: Switching an inductive load IN IN V V OUT OUT 90% t on d V /d to n 10% d V /d to f f t o ff I IL L t t Page 14 2004-01-27 BTS 452 T Figure 3a: Turn on into short circuit, shut down by overtemperature, restart by cooling Figure 5: Undervoltage restart of charge pump IN Vo n t I L I L(SCp) V b b( u c p ) I L(SCr) Vbb( under ) tm t off(SC) Vbb t Heating up of the chip may require several milliseconds, depending on external conditions. Figure 4: Overtemperature: Reset if Tj < T jt IN V OUT T J t Page 15 2004-01-27 BTS 452 T Package and ordering code all dimensions in mm Package: Ordering code: P-TO252-5-11 Q67060-S7406 6.5 +0.15 -0.05 A 1) 2.3 +0.05 -0.10 0.9 +0.20 -0.01 0...0.15 0.5 +0.08 -0.04 5 x 0.6 ±0.1 1.14 4.56 0.5 +0.08 -0.04 0.51 MIN. 0.15 MAX. per side B (5) 0.8 ±0.15 (4.24) 1 ±0.1 9.98 ±0.5 6.22 -0.2 5.7 MAX. 0.1 B 0.25 M A B Printed circuit board (FR4, 1.5mm thick, one layer 70µm, 6cm2 active heatsink area ) as 1) Includes mold flashes on each side. All metal surfaces tin plated, except area of cut. a reference for max. power dissipation Ptot Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81669 München © Infineon Technologies AG 2001 All Rights Reserved. nominal load current IL(nom) and thermal resistance R thja Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Page 16 2004-01-27