DISCRETE SEMICONDUCTORS DATA SHEET BF1100; BF1100R Dual-gate MOS-FETs Product specification File under Discrete Semiconductors, SC07 Philips Semiconductors 1995 Apr 25 Philips Semiconductors Product specification Dual-gate MOS-FETs BF1100; BF1100R and substrate interconnected and an internal bias circuit to ensure good cross-modulation performance during AGC. FEATURES • Specially designed for use at 9 to 12 V supply voltage • Short channel transistor with high forward transfer admittance to input capacitance ratio CAUTION The device is supplied in an antistatic package. The gate-source input must be protected against static discharge during transport or handling. • Low noise gain controlled amplifier up to 1 GHz • Superior cross-modulation performance during AGC. APPLICATIONS PINNING • VHF and UHF applications such as television tuners and professional communications equipment. DESCRIPTION Enhancement type field-effect transistor in a plastic microminiature SOT143 or SOT143R package. The transistor consists of an amplifier MOS-FET with source 4 1 s, b 2 d drain 3 g2 gate 2 4 g1 gate 1 DESCRIPTION source handbook, halfpage 3 3 1 Top view SYMBOL d d handbook, halfpage PIN 4 g2 g2 g1 g1 2 2 s,b MAM124 1 Top view BF1100 marking code: M56. s,b MAM125 - 1 BF1100R marking code: M57. Fig.1 Simplified outline (SOT143) and symbol. Fig.2 Simplified outline (SOT143R) and symbol. QUICK REFERENCE DATA SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT VDS drain-source voltage − − 14 V ID drain current − − 30 mA Ptot total power dissipation − − 200 mW Tj operating junction temperature − − 150 °C yfs forward transfer admittance 24 28 33 mS Cig1-s input capacitance at gate 1 − 2.2 2.6 pF Crs reverse transfer capacitance f = 1 MHz − 25 35 fF F noise figure f = 800 MHz − 2 − dB 1995 Apr 25 2 Philips Semiconductors Product specification Dual-gate MOS-FETs BF1100; BF1100R LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134). SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT VDS drain-source voltage − 14 V ID drain current − 30 mA IG1 gate 1 current − ±10 mA IG2 gate 2 current − ±10 mA Ptot total power dissipation see Fig.3 BF1100 up to Tamb = 50 °C; note 1 − 200 mW BF1100R up to Tamb = 40 °C; note 1 − 200 mW Tstg storage temperature −65 +150 °C Tj operating junction temperature − +150 °C Note 1. Device mounted on a printed-circuit board. MLD156 MLD155 40 250 handbook, halfpage Ptot (mW) 200 Y fs (mS) 30 150 20 BF1100R BF1100 100 10 50 0 0 0 50 100 50 150 200 Tamb ( oC) Fig.4 Fig.3 Power derating curves. 1995 Apr 25 3 0 50 100 150 T j ( oC) Forward transfer admittance as a function of junction temperature; typical values. Philips Semiconductors Product specification Dual-gate MOS-FETs BF1100; BF1100R THERMAL CHARACTERISTICS SYMBOL Rth j-a Rth j-s PARAMETER CONDITIONS VALUE UNIT BF1100 500 K/W BF1100R 550 K/W thermal resistance from junction to ambient note 1 thermal resistance from junction to soldering point note 2 BF1100 Ts = 92 °C 290 K/W BF1100R Ts = 78 °C 360 K/W Notes 1. Device mounted on a printed-circuit board. 2. Ts is the temperature at the soldering point of the source lead. STATIC CHARACTERISTICS Tj = 25 °C; unless otherwise specified. SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT V(BR)G1-SS gate 1-source breakdown voltage VG2-S = VDS = 0; IG1-S = 1 mA 13.2 20 V V(BR)G2-SS gate 2-source breakdown voltage VG1-S = VDS = 0; IG2-S = 1 mA 13.2 20 V V(F)S-G1 forward source-gate 1 voltage VG2-S = VDS = 0; IS-G1 = 10 mA 0.5 1.5 V V(F)S-G2 forward source-gate 2 voltage VG1-S = VDS = 0; IS-G2 = 10 mA 0.5 1.5 V VG1-S(th) gate 1-source threshold voltage VG2-S = 4 V; VDS = 9 V; ID = 20 µA 0.3 1 V VG2-S = 4 V; VDS = 12 V; ID = 20 µA 0.3 1 V VG1-S = 4 V; VDS = 9 V; ID = 20 µA 0.3 1.2 V VG1-S = 4 V; VDS = 12 V; ID = 20 µA 0.3 1.2 V VG2-S = 4 V; VDS = 9 V; RG1 = 180 kΩ; note 1 8 13 mA VG2-S = 4 V; VDS = 12 V; RG1 = 250 kΩ; note 2 8 13 mA VG2-S(th) IDSX gate 2-source threshold voltage drain-source current IG1-SS gate 1 cut-off current VG2-S = VDS = 0; VG1-S = 12 V − 50 nA IG2-SS gate 2 cut-off current VG1-S = VDS = 0; VG2-S = 12 V − 50 nA Notes 1. RG1 connects gate 1 to VGG = 9 V; see Fig.27. 2. RG1 connects gate 1 to VGG = 12 V; see Fig.27. 1995 Apr 25 4 Philips Semiconductors Product specification Dual-gate MOS-FETs BF1100; BF1100R DYNAMIC CHARACTERISTICS Common source; Tamb = 25 °C; VG2-S = 4 V; ID = 10 mA; unless otherwise specified. SYMBOL PARAMETER yfs CONDITIONS forward transfer admittance input capacitance at gate 1 Cig1-s input capacitance at gate 2 Cig2-s drain-source capacitance Cos MIN. TYP. MAX. UNIT pulsed; Tj = 25 °C VDS = 9 V 24 28 33 mS VDS = 12 V 24 28 33 mS VDS = 9 V − 2.2 2.6 pF VDS = 12 V − 2.2 2.6 pF VDS = 9 V − 1.6 − pF VDS = 12 V − 1.4 − pF VDS = 9 V − 1.4 1.8 pF VDS = 12 V − 1.1 1.5 pF VDS = 9 V − 25 35 fF VDS = 12 V − 25 35 fF VDS = 9 V − 2 2.8 dB VDS = 12 V − 2 2.8 dB f = 1 MHz f = 1 MHz f = 1 MHz reverse transfer capacitance f = 1 MHz Crs F f = 800 MHz; GS = GSopt; BS = BSopt noise figure MLD157 MLD158 120 0 handbook, halfpage handbook, gain halfpage Vunw (dBµV) reduction (dB) 10 (1) 110 (2) 20 100 30 90 40 80 50 0 1 2 3 4 0 10 20 30 VAGC (V) 40 50 gain reduction (dB) (1) RG = 250 kΩ to VGG = 12 V (2) RG = 180 kΩ to VGG = 9 V fw = 50 MHz; funw = 60 MHz; Tamb = 25 °C. f = 50 MHz. Tj = 25 °C. Fig.6 Fig.5 1995 Apr 25 Gain reduction as a function of the AGC voltage; typical values. 5 Unwanted voltage for 1% cross-modulation as a function of gain reduction; typical values; see Fig.27. Philips Semiconductors Product specification Dual-gate MOS-FETs BF1100; BF1100R MLD159 MLD160 20 20 handbook, halfpage handbook, halfpage ID (mA) 16 ID (mA) 16 V G1 S = 1.4 V 1.3 V 1.2 V 12 V G2 S = 4 V 3 V 2.5 V 2V 12 1.1 V 1.5 V 8 8 1.0 V 0.9 V 4 4 1V 0 0 0 4 8 12 0 16 0.4 0.8 1.2 1.6 2.0 V G1 S (V) V DS (V) VG2-S = 4 V. Tj = 25 °C. VDS = 9 to 12 V. Tj = 25 °C. Fig.7 Output characteristics; typical values. Fig.8 Transfer characteristics; typical values. MLD162 MLD161 250 40 handbook, halfpage handbook, halfpage I G1 (µA) V G2 S = 4 V y fs (mS) 200 3.5 V V G2 S = 4 V 3.5 V 30 3V 150 3V 20 100 2.5 V 10 2V 50 2.5 V 2V 0 0 0 1 2 V G1 S (V) 0 3 VDS = 9 to 12 V. Tj = 25 °C. Fig.9 1995 Apr 25 10 20 I D (mA) 30 VDS = 9 to 12 V. Tj = 25 °C. Gate 1 current as a function of gate 1 voltage; typical values. Fig.10 Forward transfer admittance as a function of drain current; typical values. 6 Philips Semiconductors Product specification Dual-gate MOS-FETs BF1100; BF1100R MLD164 MLD163 16 20 handbook, halfpage handbook, halfpage ID (mA) R G1 = 100 kΩ ID (mA) 12 147 kΩ 15 180 kΩ 205 kΩ 8 249 kΩ 10 301 kΩ 402 kΩ 511 kΩ 4 5 0 0 0 20 40 60 I G1 (µA) 80 0 4 8 12 V GG = V DS (V) 16 VG2-S = 4 V. RG1 connected to VGG. Tj = 25 °C. VDS = 9 to 12 V. VG2-S = 4 V. Tj = 25 °C. Fig.12 Drain current as a function of gate 1 supply voltage (= VGG) and drain supply voltage; typical values; see Fig.27. Fig.11 Drain current as a function of gate 1 current; typical values. MLD165 12 MLD166 12 handbook, halfpage handbook, halfpage ID (mA) ID (mA) 8 8 4 4 0 0 0 2 4 6 8 10 V GG (V) 0 VDS = 9 V; VG2-S = 4 V. RG1 = 180 kΩ (connected to VGG); Tj = 25 °C. 8 V GG (V) 12 VDS = 12 V; VG2-S = 4 V. RG1 = 250 kΩ (connected to VGG); Tj = 25 °C. Fig.13 Drain current as a function of gate 1 voltage (= VGG); typical values; see Fig.27. 1995 Apr 25 4 Fig.14 Drain current as a function of gate 1 voltage; (= VGG); typical values; see Fig.27. 7 Philips Semiconductors Product specification Dual-gate MOS-FETs BF1100; BF1100R MLD167 50 MLD168 50 handbook, halfpage handbook, halfpage I G1 (µA) 40 I G1 (µA) 40 V GG = 9 V V GG = 12 V 11 V 8V 10 V 7V 30 9V 30 8V 6V 7V 5V 20 20 4V 10 10 0 0 0 2 4 V G2 S (V) 6 0 2 4 V G2 S (V) 6 VDS = 9 V. RG1 = 180 kΩ (connected to VGG). Tj = 25 °C. VDS = 12 V. RG1 = 250 kΩ (connected to VGG). Tj = 25 °C. Fig.15 Gate 1 current as a function of gate 2 voltage; typical values. Fig.16 Gate 1 current as a function of gate 2 voltage; typical values. MLD169 MLD170 16 16 handbook, halfpage handbook, halfpage ID (mA) ID (mA) V GG = 9 V 12 12 V GG = 12 V 8 11 V 10 V 9V 8V 7V 8V 7V 6V 8 5V 4V 4 4 0 0 0 2 4 V G2 S (V) 6 0 2 VDS = 9 V. VDS = 12 V. RG1 = 180 kΩ (connected to VGG). Tj = 25 °C. RG1 = 250 kΩ (connected to VGG). Tj = 25 °C. Fig.17 Drain current as a function of the gate 2 voltage; typical values; see Fig.27. 1995 Apr 25 4 V G2 S (V) 6 Fig.18 Drain current as a function of the gate 2 voltage; typical values; see Fig.27. 8 Philips Semiconductors Product specification Dual-gate MOS-FETs BF1100; BF1100R MLD172 10 2 handbook, halfpage MLD173 10 3 10 3 ϕ rs (deg) y rs (µS) y is (mS) 10 2 10 ϕ rs b is 10 2 y rs 10 1 10 g is 10 1 10 102 f (MHz) 1 10 3 10 VDS = 9 V; VG2 = 4 V. ID = 10 mA; Tamb = 25 °C. 102 f (MHz) 10 3 VDS = 9 V; VG2 = 4 V. ID = 10 mA; Tamb = 25 °C. Fig.19 Input admittance as a function of frequency; typical values. MLD174 10 2 Fig.20 Reverse transfer admittance and phase as a function of frequency; typical values. 10 handbook, halfpage yos (mS) ϕ fs y fs (mS) MLD175 10 2 y fs bos (deg) 1 ϕ fs 10 10 10 1 gos 10 2 10 1 1 10 102 f (MHz) 10 3 VDS = 9 V; VG2 = 4 V. ID = 10 mA; Tamb = 25 °C. 102 f (MHz) 10 3 VDS = 9 V; VG2 = 4 V. ID =10 mA; Tamb = 25 °C. Fig.21 Forward transfer admittance and phase as a function of frequency; typical values. 1995 Apr 25 1 Fig.22 Output admittance as a function of frequency; typical values. 9 Philips Semiconductors Product specification Dual-gate MOS-FETs BF1100; BF1100R MLD176 10 2 handbook, halfpage MLD177 10 3 10 3 ϕ rs (deg) y rs (µS) y is (mS) 10 2 10 ϕ rs b is 10 2 y rs 10 1 10 g is 10 1 10 102 f (MHz) 1 1 10 3 10 VDS = 12 V; VG2 = 4 V. ID = 10 mA; Tamb = 25 °C. 102 f (MHz) 10 3 VDS = 12 V; VG2 = 4 V. ID = 10 mA; Tamb = 25 °C. Fig.23 Input admittance as a function of frequency; typical values. MLD178 10 2 y fs MLD179 10 2 10 handbook, halfpage yos (mS) ϕ fs y fs (mS) Fig.24 Reverse transfer admittance and phase as a function of frequency; typical values. (deg) bos 1 ϕ fs 10 10 10 1 gos 10 2 10 1 1 10 102 f (MHz) 10 3 VDS = 12 V; VG2 = 4 V. ID = 10 mA; Tamb = 25 °C. f (MHz) 10 3 VDS = 12 V; VG2 = 4 V. ID = 10 mA; Tamb = 25 °C. Fig.25 Forward transfer admittance and phase as a function of frequency; typical values. 1995 Apr 25 102 Fig.26 Output admittance as a function of frequency; typical values. 10 Philips Semiconductors Product specification Dual-gate MOS-FETs BF1100; BF1100R VAGC handbook, full pagewidth R1 10 k Ω C1 4.7 nF C2 R GEN 50 Ω R2 50 Ω C3 DUT 4.7 nF 12 pF L1 ≈ 450 nH RL 50 Ω C4 RG 4.7 nF VI VGG V DS For VGG = VDS = 9 V, RG = 180 kΩ. For VGG = VDS = 12 V, RG = 250 kΩ. Fig.27 Cross-modulation test set-up. 1995 Apr 25 11 MGC420 Philips Semiconductors Product specification Dual-gate MOS-FETs Table 1 f (MHz) BF1100; BF1100R Scattering parameters: VDS = 9 V; VG2-S = 4 V; ID = 10 mA s11 s21 s12 s22 MAGNITUDE (ratio) ANGLE (deg) MAGNITUDE (ratio) ANGLE (deg) MAGNITUDE (ratio) ANGLE (deg) MAGNITUDE (ratio) ANGLE (deg) 0.986 −3.6 2.528 174.4 0.001 63.7 1.000 −2.0 50 100 0.983 −7.4 2.531 169.8 0.001 80.7 1.000 −4.2 200 0.974 −14.7 2.490 159.5 0.002 81.0 0.996 −8.1 300 0.960 −21.8 2.446 149.8 0.002 80.3 0.994 −11.9 400 0.953 −28.7 2.412 139.8 0.003 76.3 0.992 −15.7 500 0.933 −35.4 2.341 130.1 0.003 76.5 0.987 −19.4 600 0.915 −42.0 2.283 120.4 0.004 79.0 0.984 −23.0 700 0.895 −47.9 2.205 111.6 0.003 81.5 0.981 −26.7 800 0.880 −53.5 2.146 102.9 0.003 90.8 0.978 −30.3 900 0.864 −59.6 2.087 93.4 0.003 106.6 0.974 −33.9 1000 0.839 −65.0 1.998 84.4 0.003 135.4 0.971 −37.6 Table 2 Table 3 f (MHz) Noise data: VDS = 9 V; VG2-S = 4 V; ID = 10 mA Γopt f (MHz) Fmin (dB) (ratio) (deg) 800 2.00 0.67 43.9 rn 0.89 Scattering parameters: VDS = 12 V; VG2-S = 4 V; ID = 10 mA s21 s11 MAGNITUDE (ratio) ANGLE (deg) MAGNITUDE (ratio) s12 ANGLE (deg) MAGNITUDE (ratio) s22 ANGLE (deg) MAGNITUDE (ratio) ANGLE (deg) 50 0.986 −3.7 2.478 174.7 0.001 72.2 1.000 −1.6 100 0.984 −7.4 2.480 170.3 0.001 80.9 1.000 −3.5 200 0.974 −14.6 2.440 160.6 0.002 82.7 0.997 −6.6 300 0.960 −21.8 2.400 151.4 0.002 79.9 0.996 −9.7 400 0.953 −28.7 2.371 141.9 0.003 77.7 0.994 −12.8 500 0.933 −35.3 2.306 132.7 0.003 77.1 0.991 −15.8 600 0.915 −41.9 2.255 123.6 0.004 77.1 0.989 −18.7 700 0.894 −47.8 2.183 115.3 0.004 79.3 0.986 −21.7 800 0.879 −53.5 2.131 107.2 0.003 83.9 0.984 −24.6 900 0.863 −59.5 2.080 98.2 0.003 95.1 0.982 −27.5 1000 0.838 −65.0 1.999 89.7 0.003 115.8 0.980 −30.4 Table 4 Noise data: VDS = 12 V; VG2-S = 4 V; ID = 10 mA Γopt f (MHz) Fmin (dB) (ratio) (deg) 800 2.00 0.66 43.3 1995 Apr 25 12 rn 0.97 Philips Semiconductors Product specification Dual-gate MOS-FETs BF1100; BF1100R PACKAGE OUTLINES handbook, full pagewidth 0.75 0.60 3.0 2.8 0.150 0.090 B 1.9 4 3 0.1 max o 10 max 0.2 M A B A 2.5 max 1.4 1.2 o 10 max 2 1 1.1 max o 30 max 0.88 0 0.1 0.48 0 0.1 0.1 M A B MBC845 1.7 TOP VIEW Dimensions in mm. Fig.28 SOT143. 3.0 2.8 handbook, full pagewidth 0.150 0.090 0.40 0.25 B 1.9 3 4 0.1 max o 10 max 0.2 M A A 1.4 1.2 o 2.5 max 10 max 2 1.1 max o 30 max 1 0.48 0.38 0.88 0.78 1.7 0.1 M B TOP VIEW Dimensions in mm. Fig.29 SOT143R. 1995 Apr 25 13 MBC844 Philips Semiconductors Product specification Dual-gate MOS-FETs BF1100; BF1100R DEFINITIONS Data Sheet Status Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications. Limiting values Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. 1995 Apr 25 14