IRF IRGI4055PBF

PD - 97186
IRGI4055PbF
PDP TRENCH IGBT
Features
l Advanced Trench IGBT Technology
l Optimized for Sustain and Energy Recovery
circuits in PDP applications
TM)
l Low VCE(on) and Energy per Pulse (EPULSE
for improved panel efficiency
l High repetitive peak current capability
l Lead Free package
Key Parameters
VCE min
VCE(ON) typ. @ 36A
300
1.10
V
V
IRP max @ TC= 25°C c
TJ max
220
150
A
°C
C
E
C
G
G
TO-220AB
Full-Pak
E
n-channel
G
Gate
C
Collector
E
Emitter
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Absolute Maximum Ratings
Parameter
VGE
Max.
Units
Gate-to-Emitter Voltage
Continuous Collector Current, VGE @ 15V
±30
V
IC @ TC = 25°C
36
A
IC @ TC = 100°C
Continuous Collector, VGE @ 15V
18
220
c
IRP @ TC = 25°C
Repetitive Peak Current
PD @TC = 25°C
Power Dissipation
PD @TC = 100°C
Power Dissipation
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
46
W
19
0.37
-40 to + 150
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
x
300
W/°C
°C
x
10lb in (1.1N m)
N
Thermal Resistance
Parameter
RθJC
www.irf.com
Junction-to-Case
d
Typ.
Max.
Units
–––
2.7
°C/W
1
02/17/06
IRGI4055PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Typ. Max. Units
Conditions
BVCES
Collector-to-Emitter Breakdown Voltage
300
–––
–––
V
VGE = 0V, ICE = 1 mA
V(BR)ECS
Emitter-to-Collector Breakdown Voltagee
18
–––
–––
V
VGE = 0V, ICE = 1 A
∆ΒVCES/∆TJ
Breakdown Voltage Temp. Coefficient
–––
0.23
–––
VCE(on)
Static Collector-to-Emitter Voltage
V/°C Reference to 25°C, ICE = 1mA
VGE = 15V, ICE = 18A e
VGE = 15V, ICE = 36A e
–––
0.95
–––
–––
1.10
1.35
–––
1.65
–––
–––
1.90
–––
VGE = 15V, ICE = 110A e
VGE = 15V, ICE = 150A e
–––
2.30
–––
VGE = 15V, ICE = 150A, TJ = 150°C
V
VCE = VGE, ICE = 1mA
VGE(th)
Gate Threshold Voltage
2.6
–––
5.0
V
∆VGE(th)/∆TJ
ICES
Gate Threshold Voltage Coefficient
–––
-11
–––
mV/°C
Collector-to-Emitter Leakage Current
–––
2.0
25
µA
VCE = 300V, VGE = 0V
IGES
Gate-to-Emitter Forward Leakage
nA
VGE = 30V
–––
100
–––
–––
–––
100
Gate-to-Emitter Reverse Leakage
–––
–––
-100
gfe
Qg
Forward Transconductance
Total Gate Charge
–––
–––
38
132
–––
–––
Qgc
Gate-to-Collector Charge
–––
42
–––
tst
Shoot Through Blocking Time
100
–––
–––
EPULSE
Energy per Pulse
–––
705
–––
–––
915
–––
Ciss
Input Capacitance
–––
4280
–––
Coss
Output Capacitance
–––
200
–––
Crss
Reverse Transfer Capacitance
–––
125
–––
LC
Internal Collector Inductance
–––
5.0
–––
VCE = 300V, VGE = 0V, TJ = 150°C
VGE = -30V
S
nC
VCE = 25V, ICE = 36A
VCE = 200V, IC = 36A, VGE = 15Ve
ns
VCC = 240V, VGE = 15V, RG= 5.1Ω
L = 220nH, C= 0.40µF, VGE = 15V
µJ
VCC = 240V, RG= 5.1Ω, TJ = 25°C
L = 220nH, C= 0.40µF, VGE = 15V
VCC = 240V, RG= 5.1Ω, TJ = 100°C
VGE = 0V
pF
ƒ = 1.0MHz,
Internal Emitter Inductance
–––
13
–––
See Fig.13
Between lead,
nH
LE
VCE = 30V
6mm (0.25in.)
from package
and center of die contact
Notes:
 Half sine wave with duty cycle = 0.10, ton=2µsec.
‚ Rθ is measured at TJ of approximately 90°C.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRGI4055PbF
200
200
Top
150
150
Bottom
ICE (A)
ICE (A)
Bottom
Top
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
100
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
100
50
50
0
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0.0
3.5
0.5
1.0
Fig 1. Typical Output Characteristics @ 25°C
2.5
3.0
3.5
200
Top
150
Top
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
150
Bottom
ICE (A)
Bottom
ICE (A)
2.0
Fig 2. Typical Output Characteristics @ 75°C
200
100
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
100
50
50
0
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0.0
3.5
0.5
1.0
1.5
2.0
2.5
3.0
3.5
V CE (V)
V CE (V)
Fig 3. Typical Output Characteristics @ 125°C
Fig 4. Typical Output Characteristics @ 150°C
20
300
IC = 36A
T J = 25°C
250
15
T J = 150°C
200
VCE (V)
IC, Collector-to-Emitter Current (A)
1.5
V CE (V)
V CE (V)
150
T J = 25°C
10
T J = 150°C
100
5
50
10µs PULSE WIDTH
0
0
0
5
10
VGE, Gate-to-Emitter Voltage (V)
Fig 5. Typical Transfer Characteristics
www.irf.com
15
5
10
15
20
VGE (V)
Fig 6. VCE(ON) vs. Gate Voltage
3
IRGI4055PbF
40
240
Repetitive Peak Current (A)
IC, Collector Current (A)
200
30
25
20
15
10
180
160
140
120
100
80
60
40
5
20
0
0
0
25
50
75
100
125
25
150
T C, Case Temperature (°C)
75
100
125
150
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
1000
1000
V CC = 240V
900
L = 220nH
C = 0.4µF
900
L = 220nH
C = variable
700
Energy per Pulse (µJ)
800
100°C
600
25°C
500
400
800
700
100°C
600
500
25°C
400
300
300
200
160
170
180
190
200
210
220
230
150 160 170 180 190 200 210 220 230 240
Ic , Peak Collector Current (A)
V CE, Collector-to-Emitter Voltage (V)
Fig 9. Typical EPULSE vs. Collector Current
1200
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage
1000
V CC = 240V
L = 220nH
t = 1µs half sine
1000
OPERATION IN THIS AREA
LIMITED BY V CE(on)
C= 0.4µF
100
1µsec
800
10µsec
IC (A)
Energy Pulse (µJ)
50
Case Temperature (°C)
Fig 7. Maximum Collector Current vs. Case Temperature
Energy per Pulse (µJ)
ton= 2µs
Duty cycle <= 0.10
Half Sine Wave
220
35
C= 0.3µF
600
100µsec
10
C= 0.2µF
400
200
1
25
50
75
100
125
TJ, Temperature (ºC)
Fig 11. EPULSE vs. Temperature
4
150
1
10
100
1000
VCE (V)
Fig 12. Forrward Bias Safe Operating Area
www.irf.com
IRGI4055PbF
100000
VGE, Gate-to-Emitter Voltage (V)
C oes = C ce + C gc
10000
Capacitance (pF)
16
VGS = 0V,
f = 1 MHZ
C ies = C ge + C gd, C ce SHORTED
C res = C gc
Cies
1000
Coes
Cres
100
14
IC = 30A
IC = 36A
12
10
8
6
4
2
0
10
0
50
100
150
200
0
25
V CE, Collector-toEmitter-Voltage(V)
50
75
100
125
150
Q G, Total Gate Charge (nC)
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
Thermal Response ( Z thJC )
10
1
0.1
D = 0.50
0.20
0.10
0.05
0.02
0.01
τJ
0.01
0.001
0.0001
1E-006
SINGLE PULSE
( THERMAL RESPONSE )
R1
R1
τJ
τ1
τ1
R2
R2
τ2
τ2
R3
R3
τ3
τC
τ
Ri (°C/W)
0.2933
τ3
Ci= τi/Ri
Ci τi/Ri
τi (sec)
0.00049
1.1021
0.190978
1.3046
2.786
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRGI4055PbF
A
RG
C
DRIVER
PULSE A
L
VCC
B
RG
PULSE B
Ipulse
DUT
tST
Fig 16b. tst Test Waveforms
Fig 16a. tst and EPULSE Test Circuit
VCE
Energy
L
IC Current
VCC
DUT
0
1K
Fig 16c. EPULSE Test Waveforms
6
Fig. 17 - Gate Charge Circuit (turn-off)
www.irf.com
IRGI4055PbF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
(;$03/( 7+,6,6$1,5),*
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(.
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
,5),*
.
'$7(&2'(
<($5 :((.
/,1(.
TO-220AB Full-Pak package is not recommended for Surface Mount Application.
The specifications set forth in this data sheet are the sole and
exclusive specifications applicable to the identified product,
and no specifications or features are implied whether by
industry custom, sampling or otherwise. We qualify our
products in accordance with our internal practices and
procedures, which by their nature do not include qualification to
all possible or even all widely used applications. Without
limitation, we have not qualified our product for medical use or
applications involving hi-reliability applications. Customers are
encouraged to and responsible for qualifying product to their
own use and their own application environments, especially
where particular features are critical to operational performance
or safety. Please contact your IR representative if you have
specific design or use requirements or for further information.
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.02/06
www.irf.com
7