IRF IRGP4065PBF

PD - 97208
IRGP4065PbF
PDP TRENCH IGBT
Features
l Advanced Trench IGBT Technology
l Optimized for Sustain and Energy Recovery
circuits in PDP applications
TM)
l Low VCE(on) and Energy per Pulse (EPULSE
for improved panel efficiency
l High repetitive peak current capability
l Lead Free package
Key Parameters
VCE min
VCE(ON) typ. @ IC = 70A
IRP max @ TC= 25°C c
TJ max
300
1.75
205
150
C
V
V
A
°C
C
E
C
G
G
E
TO-247AC
n-channel
G
Gate
C
Collector
E
Emitter
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Absolute Maximum Ratings
Parameter
VGE
IC @ TC = 25°C
Gate-to-Emitter Voltage
Continuous Collector Current, VGE @ 15V
Max.
Units
±30
V
70
A
IC @ TC = 100°C
Continuous Collector, VGE @ 15V
40
IRP @ TC = 25°C
Repetitive Peak Current c
205
PD @TC = 25°C
Power Dissipation
178
PD @TC = 100°C
Power Dissipation
71
Linear Derating Factor
1.4
W/°C
TJ
Operating Junction and
-40 to + 150
°C
TSTG
Storage Temperature Range
300
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
W
10lbxin (1.1Nxm)
N
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
www.irf.com
Junction-to-Case d
Case-to-Sink (flat, greased surface)
Junction-to-Ambient (typical socket mount)
Typ.
Max.
Units
–––
0.24
–––
0.80
–––
40
°C/W
1
05/10/06
IRGP4065PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
BVCES
∆ΒVCES/∆TJ
Min. Typ. Max. Units
gfe
Qg
Qgc
tst
Collector-to-Emitter Breakdown Voltage 300
Breakdown Voltage Temp. Coefficient –––
–––
–––
Static Collector-to-Emitter Voltage
–––
–––
–––
Gate Threshold Voltage
2.6
Gate Threshold Voltage Coefficient
–––
Collector-to-Emitter Leakage Current
–––
–––
Gate-to-Emitter Forward Leakage
–––
Gate-to-Emitter Reverse Leakage
–––
Forward Transconductance
–––
Total Gate Charge
–––
Gate-to-Collector Charge
–––
Shoot Through Blocking Time
100
–––
0.23
1.20
1.35
1.75
2.35
2.00
–––
-11
2.0
50
–––
–––
26
62
20
–––
EPULSE
Energy per Pulse
–––
875
–––
975
–––
–––
–––
–––
2200
110
55
5.0
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
ICES
IGES
Ciss
Coss
Crss
LC
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Internal Collector Inductance
ƒ = 1.0MHz,
–––
–––
nH
LE
Internal Emitter Inductance
–––
13
Conditions
–––
V VGE = 0V, ICE = 1 mA
––– V/°C Reference to 25°C, ICE = 1mA
VGE = 15V, ICE = 25A e
1.40
VGE = 15V, ICE = 40A e
–––
2.10
V VGE = 15V, ICE = 70A e
VGE = 15V, ICE = 120A e
–––
VGE = 15V, ICE = 70A, TJ = 150°C
–––
5.0
V VCE = VGE, ICE = 500µA
––– mV/°C
25
µA VCE = 300V, VGE = 0V
VCE = 300V, VGE = 0V, TJ = 150°C
–––
100
nA VGE = 30V
VGE = -30V
-100
–––
S VCE = 25V, ICE = 25A
–––
nC VCE = 200V, IC = 25A, VGE = 15Ve
–––
–––
ns VCC = 240V, VGE = 15V, RG= 5.1Ω
L = 220nH, C= 0.40µF, VGE = 15V
–––
µJ VCC = 240V, RG= 5.1Ω, TJ = 25°C
L = 220nH, C= 0.40µF, VGE = 15V
–––
VCC = 240V, RG= 5.1Ω, TJ = 100°C
V
–––
GE = 0V
–––
pF VCE = 30V
–––
See Fig.13
Between lead,
6mm (0.25in.)
from package
and center of die contact
Notes:
 Half sine wave with duty cycle = 0.25, ton=1µsec.
‚ Rθ is measured at TJ of approximately 90°C.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRGP4065PbF
200
200
TOP
160
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
120
BOTTOM
TOP
ICE (A)
ICE (A)
160
80
120
BOTTOM
80
40
40
0
0
0
2
4
6
8
10
12
14
16
0
2
4
6
VCE (V)
8
10
12
14
16
VCE (V)
Fig 1. Typical Output Characteristics @ 25°C
Fig 2. Typical Output Characteristics @ 75°C
360
280
TOP
200
TOP
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
240
BOTTOM
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
320
280
BOTTOM
240
160
ICE (A)
ICE (A)
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
120
200
160
120
80
80
40
40
0
0
0
2
4
6
8
10
12
14
0
16
2
4
Fig 3. Typical Output Characteristics @ 125°C
8
10
12
14
16
Fig 4. Typical Output Characteristics @ 150°C
600
20
IC = 25A
500
15
400
T J = 25°C
T J = 125°C
VCE (V)
ICE, Collector-to-Emitter Current (A)
6
VCE (V)
VCE (V)
300
T J = 25°C
T J = 150°C
10
200
5
100
0
0
0
5
10
15
VGE, Gate-to-Emitter Voltage (V)
Fig 5. Typical Transfer Characteristics
www.irf.com
20
0
5
10
15
20
VGE (V)
Fig 6. VCE(ON) vs. Gate Voltage
3
IRGP4065PbF
80
220
Repetitive Peak Current (A)
IC, Collector Current (A)
60
50
40
30
20
180
160
140
120
100
80
60
40
10
20
0
0
0
25
50
75
100
125
150
25
T C, Case Temperature (°C)
75
100
125
150
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
1000
1000
V CC = 240V
L = 220nH
C = 0.4µF
900
L = 220nH
C = variable
100°C
Energy per Pulse (µJ)
900
800
25°C
700
600
500
100°C
800
700
25°C
600
500
400
300
200
400
160
170
180
190
200
210
220
150 160 170 180 190 200 210 220 230 240
230
VCE, Collector-to-Emitter Voltage (V)
IC, Peak Collector Current (A)
Fig 9. Typical EPULSE vs. Collector Current
1400
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage
1000
OPERATION IN THIS AREA
LIMITED BY V CE(on)
V CC = 240V
L = 220nH
t = 1µs half sine
1200
C= 0.4µF
1000
10µsec
100
800
IC (A)
Energy per Pulse (µJ)
50
Case Temperature (°C)
Fig 7. Maximum Collector Current vs. Case Temperature
Energy per Pulse (µJ)
ton= 1µs
Duty cycle = 0.25
Half Sine Wave
200
70
C= 0.3µF
600
100µsec
10
1msec
C= 0.2µF
400
200
1
25
50
75
100
125
TJ, Temperature (ºC)
Fig 11. EPULSE vs. Temperature
4
150
1
10
100
1000
VCE (V)
Fig 12. Forrward Bias Safe Operating Area
www.irf.com
IRGP4065PbF
100000
VGE, Gate-to-Emitter Voltage (V)
IC = 25A
Coes = Cce + Cgc
10000
Capacitance (pF)
25
VGS = 0V,
f = 1 MHZ
C ies = C ge + C gd , C ce SHORTED
Cres = C gc
Cies
1000
100
Coes
Cres
20
VCE = 240V
VCE = 200V
VCE = 150V
15
10
5
0
10
0
50
100
150
200
250
0
300
10
VCE, Collector-toEmitter-Voltage(V)
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
20
30
40
50
60
70
80
Q G, Total Gate Charge (nC)
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
R1
R1
0.05
0.01
0.001
1E-006
τJ
0.02
0.01
τJ
τ1
τ1
R2
R2
τ2
τ3
τ2
Ci= τi/Ri
Ci τi/Ri
0.0001
τC
τ
τ3
Ri (°C/W) τi (sec)
0.146
0.000131
0.382
0.001707
0.271
0.014532
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
R3
R3
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRGP4065PbF
A
RG
C
DRIVER
PULSE A
L
VCC
B
RG
PULSE B
Ipulse
DUT
tST
Fig 16b. tst Test Waveforms
Fig 16a. tst and EPULSE Test Circuit
VCE
Energy
L
IC Current
DUT
0
VCC
1K
Fig 16c. EPULSE Test Waveforms
6
Fig. 17 - Gate Charge Circuit (turn-off)
www.irf.com
IRGP4065PbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
,5)3(
+
'$7(&2'(
<($5 :((.
/,1(+
TO-247AC package is not recommended for Surface Mount Application.
The specifications set forth in this data sheet are the sole and
exclusive specifications applicable to the identified product,
and no specifications or features are implied whether by
industry custom, sampling or otherwise. We qualify our
products in accordance with our internal practices and
procedures, which by their nature do not include qualification to
all possible or even all widely used applications. Without
limitation, we have not qualified our product for medical use or
applications involving hi-reliability applications. Customers are
encouraged to and responsible for qualifying product to their
own use and their own application environments, especially
where particular features are critical to operational performance
or safety. Please contact your IR representative if you have
specific design or use requirements or for further information.
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.05/06
www.irf.com
7