IRF IRG6B330UDPBF

PD - 96304
IRG6B330UDPbF
PDP TRENCH IGBT
Features
l Advanced Trench IGBT Technology
l Optimized for Sustain and Energy Recovery
Circuits in PDP Applications
TM)
l Low VCE(on) and Energy per Pulse (EPULSE
for Improved Panel Efficiency
l High Repetitive Peak Current Capability
l Lead Free Package
Key Parameters
VCE min
VCE(ON) typ. @ IC = 70A
IRP max @ TC= 25°C
TJ max
330
1.69
250
150
c
V
V
A
°C
C
G
G
C
E
E
n-channel
G
G ate
TO-220AB
C
C ollector
E
E m itter
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Absolute Maximum Ratings
Parameter
VGE
IC @ TC = 25°C
Max.
Units
±30
V
70
A
Gate-to-Emitter Voltage
Continuous Collector Current, VGE @ 15V
IC @ TC = 100°C
Continuous Collector, VGE @ 15V
40
IRP @ TC = 25°C
Repetitive Peak Current
250
PD @TC = 25°C
Power Dissipation
PD @TC = 100°C
Power Dissipation
Linear Derating Factor
1.3
W/°C
TJ
Operating Junction and
-40 to + 150
°C
TSTG
Storage Temperature Range
c
160
W
63
Soldering Temperature for 10 seconds
x
300
x
10lb in (1.1N m)
Mounting Torque, 6-32 or M3 Screw
N
Thermal Resistance
Parameter
RθJC (IGBT)
RθJC (Diode)
RθCS
RθJA
www.irf.com
d
d
Thermal Resistance Junction-to-Case-(each IGBT)
Thermal Resistance Junction-to-Case-(each Diode)
Case-to-Sink (flat, greased surface)
Junction-to-Ambient (typical socket mount)
Weight
d
Typ.
Max.
Units
–––
1.6
0.24
–––
6.0 (0.21)
0.80
2.4
–––
40
–––
°C/W
g (oz)
1
4/20/10
IRG6B330UDPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
BVCES
∆ΒVCES/∆TJ
Collector-to-Emitter Breakdown Voltage
Breakdown Voltage Temp. Coefficient
VCE(on)
Static Collector-to-Emitter Voltage
VGE(th)
∆VGE(th)/∆TJ
ICES
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Collector-to-Emitter Leakage Current
IGES
gfe
Qg
Qgc
td(on)
tr
td(off)
tf
td(on)
tr
td(off)
tf
tst
Gate-to-Emitter Forward Leakage
Gate-to-Emitter Reverse Leakage
Forward Transconductance
Total Gate Charge
Gate-to-Collector Charge
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Shoot Through Blocking Time
EPULSE
Energy per Pulse
Min.
Conditions
Typ. Max. Units
330
–––
–––
–––
–––
–––
–––
2.6
–––
–––
–––
–––
–––
–––
–––
–––
–––
—
—
—
—
—
—
—
—
100
–––
0.34
1.18
1.36
1.69
2.26
1.93
–––
-11
2.0
5.0
100
–––
–––
50
85
31
47
37
176
99
45
38
228
183
–––
–––
–––
1.48
1.68
2.09
2.76
–––
5.0
–––
25
–––
–––
100
-100
–––
–––
–––
—
—
—
—
—
—
—
—
–––
–––
834
–––
–––
985
–––
Ciss
Coss
Crss
LC
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Internal Collector Inductance
–––
–––
–––
–––
2297
141
74
5.0
–––
–––
–––
–––
LE
Internal Emitter Inductance
–––
13
–––
V
V/°C
V
VGE = 0V, ICE = 1 mA
Reference to 25°C, ICE = 1mA
VGE = 15V, ICE = 25A
VGE = 15V, ICE = 40A
VGE = 15V, ICE = 70A
VGE = 15V, ICE = 120A
VGE = 15V, ICE = 70A, TJ = 150°C
VCE = VGE, ICE = 500µA
e
e
e
e
V
mV/°C
µA VCE = 330V, VGE = 0V
VCE = 330V, VGE = 0V, TJ = 100°C
VCE = 330V, VGE = 0V, TJ = 150°C
nA VGE = 30V
VGE = -30V
VCE = 25V, ICE = 25A
S
nC VCE = 200V, IC = 25A, VGE = 15V
e
ns
IC = 25A, VCC = 196V
RG = 10Ω, L=200µH, LS= 200nH
TJ = 25°C
ns
IC = 25A, VCC = 196V
RG = 10Ω, L=200µH, LS= 200nH
TJ = 150°C
ns
µJ
pF
nH
VCC = 240V, VGE = 15V, RG= 5.1Ω
L = 220nH, C= 0.40µF, VGE = 15V
VCC = 240V, RG= 5.1Ω, TJ = 25°C
L = 220nH, C= 0.40µF, VGE = 15V
VCC = 240V, RG= 5.1Ω, TJ = 100°C
VGE = 0V
VCE = 30V
ƒ = 1.0MHz,
See Fig.13
Between lead,
6mm (0.25in.)
from package
and center of die contact
Diode Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
IF(AV)
IFSM
VF
Average Forward Current at
TC=155°C
Non Repetitive Peak Surge Current
Forward Voltage
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Irr
Peak Recovery Current
Notes:
 Half sine wave with duty cycle = 0.1, ton=2µsec.
‚ Rθ is measured at TJ of approximately 90°C.
2
Min.
Typ. Max. Units
–––
–––
8.0
A
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
1.19
0.94
35
43
67
60
210
2.8
6.3
100
1.3
1.0
60
–––
–––
–––
–––
–––
–––
A
V
ns
nC
A
Conditions
TJ = 155°C, PW = 6.0ms half sine wave
IF = 8A
IF = 8A, TJ = 150°C
IF = 1A, di/dt = -50A/µs, VR =30V
TJ = 25°C
IF = 8A
TJ = 125°C
TJ = 25°C
di/dt = 200A/µs
VR = 200V
TJ = 125°C
TJ = 25°C
TJ = 125°C
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
www.irf.com
IRG6B330UDPbF
200
200
VGE = 18V
VGE = 18V
160
VGE = 15V
160
VGE = 15V
VGE = 12V
VGE = 10V
120
ICE (A)
ICE (A)
VGE = 12V
VGE = 8.0V
VGE = 6.0V
80
40
VGE = 10V
120
VGE = 8.0V
VGE = 6.0V
80
40
0
0
0
4
8
12
16
0
4
VCE (V)
8
12
VCE (V)
Fig 1. Typical Output Characteristics @ 25°C
Fig 2. Typical Output Characteristics @ 75°C
200
200
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
VGE = 18V
VGE = 15V
160
160
VGE = 12V
VGE = 10V
120
VGE = 8.0V
ICE (A)
ICE (A)
16
VGE = 6.0V
80
40
120
80
40
0
0
0
4
8
12
16
0
4
VCE (V)
8
12
16
V CE (V)
Fig 3. Typical Output Characteristics @ 125°C
Fig 4. Typical Output Characteristics @ 150°C
300
14
250
12
IC = 25A
10
VCE (V)
ICE (A)
200
150
100
T J = 25°C
TJ = 25°C
TJ = 150°C
8
6
4
T J = 150°C
50
2
0
0
2
4
6
8
10
12
14
VGE (V)
Fig 5. Typical Transfer Characteristics
www.irf.com
16
0
5
10
15
20
V GE (V)
Fig 6. VCE(ON) vs. Gate Voltage
3
IRG6B330UDPbF
80
300
Repetitive Peak Current (A)
IC, Collector Current (A)
70
60
50
40
30
20
200
100
ton= 2µs
Duty cycle = 0.1
Half Sine Wave
10
0
0
0
25
50
75
100
125
25
150
T C, Case Temperature (°C)
Fig 7. Maximum Collector Current vs. Case Temperature
75
100
125
150
Case Temperature (°C)
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
1000
1000
VCC = 240V
L = 220nH
C = variable
L = 220nH
C = 0.4µF
900
100°C
100°C
Energy per Pulse (µJ)
900
Energy per Pulse (µJ)
50
800
700
25°C
600
800
700
25°C
600
500
500
400
400
170
180
190
200
210
220
230
240
180
IC, Peak Collector Current (A)
190
200
210
220
230
240
VCE, Collector-to-Emitter Voltage (V)
Fig 9. Typical EPULSE vs. Collector Current
1400
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage
1000
VCC = 240V
L = 220nH
t = 1µs half sine
C= 0.4µF
100 µs
100
1000
IC (A)
Energy per Pulse (µJ)
1200
C= 0.3µF
800
10 µs
1ms
10
600
C= 0.2µF
400
1
200
25
50
75
100
125
TJ, Temperature (ºC)
Fig 11. EPULSE vs. Temperature
4
150
1
10
100
1000
VCE (V)
Fig 12. Forward Bias Safe Operating Area
www.irf.com
IRG6B330UDPbF
25
VGE, Gate-to-Source Voltage (V)
10000
Capacitance (pF)
Cies
1000
100
Coes
Cres
ID= 25A
VDS= 240V
20
VDS= 200V
VDS= 150V
15
10
5
0
10
0
100
200
0
300
20
40
60
80
100
120
QG Total Gate Charge (nC)
VCE (V)
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
R1
R1
0.05
τJ
0.02
0.01
0.01
τJ
τ1
R2
R2
τ2
τ1
R3
R3
τ3
τ2
τC
τ
Ri (°C/W) τi (sec)
0.146
0.000131
0.382
0.271
τ3
Ci= τi/Ri
Ci i/Ri
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001707
0.014532
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Response ( ZthJC )
10
D = 0.50
1
0.20
0.10
0.05
0.02
0.01
0.1
τJ
R1
R1
τJ
τ1
τ1
R2
R2
τ2
R3
R3
τC
τ
τ3
τ2
Ci= τi/Ri
Ci i/Ri
0.01
R4
R4
τ3
τ4
τ4
Ri (°C/W)
0.07854
0.829201
1.002895
0.490875
τι (sec)
0.000637
0.000532
0.003412
0.055432
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 16. Maximum Effective Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
5
IRG6B330UDPbF
90
80
70
10
trr - (ns)
IF, Instantaneous Forward Current (A)
100
1
Tj = 150°C
Tj = 25°C
IF = 8.0A, T J =125°C
60
50
40
IF = 8.0A, T J =25°C
30
0.1
0.0
0.5
1.0
1.5
2.0
20
2.5
100
VFM, Forward Voltage Drop (V)
1000
dif / dt - (A / µs)
Fig. 18 - Typical Reverse Recovery vs. di F /dt
Fig. 17 - Typical Forward Voltage Drop Characteristics
400
IF = 8.0A, T J =125°C
Qrr - (ns)
300
200
Fig.20 - Switching Loss Circuit
100
A
IF = 8.0A, T J =25°C
RG
100
L
1000
dif / dt - (A / µs)
VCC
Fig. 19- Typical Stored Charge vs. di F /dt
VCE
C
DRIVER
0
B
RG
Ipulse
DUT
Energy
IC Current
Fig 21a. tst and EPULSE Test Circuit
Fig 21b. tst Test Waveforms
PULSE A
L
0
PULSE B
1K
tST
Fig 21c. EPULSE Test Waveforms
6
VCC
DUT
Fig. 22 - Gate Charge Circuit (turn-off)
www.irf.com
IRG6B330UDPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
(;$03/( 7+,6,6$1,5)
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
TO-220AB packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkigbt.html
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.04/2010
www.irf.com
7