PD - 96304 IRG6B330UDPbF PDP TRENCH IGBT Features l Advanced Trench IGBT Technology l Optimized for Sustain and Energy Recovery Circuits in PDP Applications TM) l Low VCE(on) and Energy per Pulse (EPULSE for Improved Panel Efficiency l High Repetitive Peak Current Capability l Lead Free Package Key Parameters VCE min VCE(ON) typ. @ IC = 70A IRP max @ TC= 25°C TJ max 330 1.69 250 150 c V V A °C C G G C E E n-channel G G ate TO-220AB C C ollector E E m itter Description This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP applications. Absolute Maximum Ratings Parameter VGE IC @ TC = 25°C Max. Units ±30 V 70 A Gate-to-Emitter Voltage Continuous Collector Current, VGE @ 15V IC @ TC = 100°C Continuous Collector, VGE @ 15V 40 IRP @ TC = 25°C Repetitive Peak Current 250 PD @TC = 25°C Power Dissipation PD @TC = 100°C Power Dissipation Linear Derating Factor 1.3 W/°C TJ Operating Junction and -40 to + 150 °C TSTG Storage Temperature Range c 160 W 63 Soldering Temperature for 10 seconds x 300 x 10lb in (1.1N m) Mounting Torque, 6-32 or M3 Screw N Thermal Resistance Parameter RθJC (IGBT) RθJC (Diode) RθCS RθJA www.irf.com d d Thermal Resistance Junction-to-Case-(each IGBT) Thermal Resistance Junction-to-Case-(each Diode) Case-to-Sink (flat, greased surface) Junction-to-Ambient (typical socket mount) Weight d Typ. Max. Units ––– 1.6 0.24 ––– 6.0 (0.21) 0.80 2.4 ––– 40 ––– °C/W g (oz) 1 4/20/10 IRG6B330UDPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter BVCES ∆ΒVCES/∆TJ Collector-to-Emitter Breakdown Voltage Breakdown Voltage Temp. Coefficient VCE(on) Static Collector-to-Emitter Voltage VGE(th) ∆VGE(th)/∆TJ ICES Gate Threshold Voltage Gate Threshold Voltage Coefficient Collector-to-Emitter Leakage Current IGES gfe Qg Qgc td(on) tr td(off) tf td(on) tr td(off) tf tst Gate-to-Emitter Forward Leakage Gate-to-Emitter Reverse Leakage Forward Transconductance Total Gate Charge Gate-to-Collector Charge Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On delay time Rise time Turn-Off delay time Fall time Shoot Through Blocking Time EPULSE Energy per Pulse Min. Conditions Typ. Max. Units 330 ––– ––– ––– ––– ––– ––– 2.6 ––– ––– ––– ––– ––– ––– ––– ––– ––– — — — — — — — — 100 ––– 0.34 1.18 1.36 1.69 2.26 1.93 ––– -11 2.0 5.0 100 ––– ––– 50 85 31 47 37 176 99 45 38 228 183 ––– ––– ––– 1.48 1.68 2.09 2.76 ––– 5.0 ––– 25 ––– ––– 100 -100 ––– ––– ––– — — — — — — — — ––– ––– 834 ––– ––– 985 ––– Ciss Coss Crss LC Input Capacitance Output Capacitance Reverse Transfer Capacitance Internal Collector Inductance ––– ––– ––– ––– 2297 141 74 5.0 ––– ––– ––– ––– LE Internal Emitter Inductance ––– 13 ––– V V/°C V VGE = 0V, ICE = 1 mA Reference to 25°C, ICE = 1mA VGE = 15V, ICE = 25A VGE = 15V, ICE = 40A VGE = 15V, ICE = 70A VGE = 15V, ICE = 120A VGE = 15V, ICE = 70A, TJ = 150°C VCE = VGE, ICE = 500µA e e e e V mV/°C µA VCE = 330V, VGE = 0V VCE = 330V, VGE = 0V, TJ = 100°C VCE = 330V, VGE = 0V, TJ = 150°C nA VGE = 30V VGE = -30V VCE = 25V, ICE = 25A S nC VCE = 200V, IC = 25A, VGE = 15V e ns IC = 25A, VCC = 196V RG = 10Ω, L=200µH, LS= 200nH TJ = 25°C ns IC = 25A, VCC = 196V RG = 10Ω, L=200µH, LS= 200nH TJ = 150°C ns µJ pF nH VCC = 240V, VGE = 15V, RG= 5.1Ω L = 220nH, C= 0.40µF, VGE = 15V VCC = 240V, RG= 5.1Ω, TJ = 25°C L = 220nH, C= 0.40µF, VGE = 15V VCC = 240V, RG= 5.1Ω, TJ = 100°C VGE = 0V VCE = 30V ƒ = 1.0MHz, See Fig.13 Between lead, 6mm (0.25in.) from package and center of die contact Diode Characteristics @ TJ = 25°C (unless otherwise specified) Parameter IF(AV) IFSM VF Average Forward Current at TC=155°C Non Repetitive Peak Surge Current Forward Voltage trr Reverse Recovery Time Qrr Reverse Recovery Charge Irr Peak Recovery Current Notes: Half sine wave with duty cycle = 0.1, ton=2µsec. Rθ is measured at TJ of approximately 90°C. 2 Min. Typ. Max. Units ––– ––– 8.0 A ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 1.19 0.94 35 43 67 60 210 2.8 6.3 100 1.3 1.0 60 ––– ––– ––– ––– ––– ––– A V ns nC A Conditions TJ = 155°C, PW = 6.0ms half sine wave IF = 8A IF = 8A, TJ = 150°C IF = 1A, di/dt = -50A/µs, VR =30V TJ = 25°C IF = 8A TJ = 125°C TJ = 25°C di/dt = 200A/µs VR = 200V TJ = 125°C TJ = 25°C TJ = 125°C Pulse width ≤ 400µs; duty cycle ≤ 2%. www.irf.com IRG6B330UDPbF 200 200 VGE = 18V VGE = 18V 160 VGE = 15V 160 VGE = 15V VGE = 12V VGE = 10V 120 ICE (A) ICE (A) VGE = 12V VGE = 8.0V VGE = 6.0V 80 40 VGE = 10V 120 VGE = 8.0V VGE = 6.0V 80 40 0 0 0 4 8 12 16 0 4 VCE (V) 8 12 VCE (V) Fig 1. Typical Output Characteristics @ 25°C Fig 2. Typical Output Characteristics @ 75°C 200 200 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V VGE = 18V VGE = 15V 160 160 VGE = 12V VGE = 10V 120 VGE = 8.0V ICE (A) ICE (A) 16 VGE = 6.0V 80 40 120 80 40 0 0 0 4 8 12 16 0 4 VCE (V) 8 12 16 V CE (V) Fig 3. Typical Output Characteristics @ 125°C Fig 4. Typical Output Characteristics @ 150°C 300 14 250 12 IC = 25A 10 VCE (V) ICE (A) 200 150 100 T J = 25°C TJ = 25°C TJ = 150°C 8 6 4 T J = 150°C 50 2 0 0 2 4 6 8 10 12 14 VGE (V) Fig 5. Typical Transfer Characteristics www.irf.com 16 0 5 10 15 20 V GE (V) Fig 6. VCE(ON) vs. Gate Voltage 3 IRG6B330UDPbF 80 300 Repetitive Peak Current (A) IC, Collector Current (A) 70 60 50 40 30 20 200 100 ton= 2µs Duty cycle = 0.1 Half Sine Wave 10 0 0 0 25 50 75 100 125 25 150 T C, Case Temperature (°C) Fig 7. Maximum Collector Current vs. Case Temperature 75 100 125 150 Case Temperature (°C) Fig 8. Typical Repetitive Peak Current vs. Case Temperature 1000 1000 VCC = 240V L = 220nH C = variable L = 220nH C = 0.4µF 900 100°C 100°C Energy per Pulse (µJ) 900 Energy per Pulse (µJ) 50 800 700 25°C 600 800 700 25°C 600 500 500 400 400 170 180 190 200 210 220 230 240 180 IC, Peak Collector Current (A) 190 200 210 220 230 240 VCE, Collector-to-Emitter Voltage (V) Fig 9. Typical EPULSE vs. Collector Current 1400 Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage 1000 VCC = 240V L = 220nH t = 1µs half sine C= 0.4µF 100 µs 100 1000 IC (A) Energy per Pulse (µJ) 1200 C= 0.3µF 800 10 µs 1ms 10 600 C= 0.2µF 400 1 200 25 50 75 100 125 TJ, Temperature (ºC) Fig 11. EPULSE vs. Temperature 4 150 1 10 100 1000 VCE (V) Fig 12. Forward Bias Safe Operating Area www.irf.com IRG6B330UDPbF 25 VGE, Gate-to-Source Voltage (V) 10000 Capacitance (pF) Cies 1000 100 Coes Cres ID= 25A VDS= 240V 20 VDS= 200V VDS= 150V 15 10 5 0 10 0 100 200 0 300 20 40 60 80 100 120 QG Total Gate Charge (nC) VCE (V) Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.1 0.10 R1 R1 0.05 τJ 0.02 0.01 0.01 τJ τ1 R2 R2 τ2 τ1 R3 R3 τ3 τ2 τC τ Ri (°C/W) τi (sec) 0.146 0.000131 0.382 0.271 τ3 Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001707 0.014532 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( ZthJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.02 0.01 0.1 τJ R1 R1 τJ τ1 τ1 R2 R2 τ2 R3 R3 τC τ τ3 τ2 Ci= τi/Ri Ci i/Ri 0.01 R4 R4 τ3 τ4 τ4 Ri (°C/W) 0.07854 0.829201 1.002895 0.490875 τι (sec) 0.000637 0.000532 0.003412 0.055432 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 16. Maximum Effective Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 5 IRG6B330UDPbF 90 80 70 10 trr - (ns) IF, Instantaneous Forward Current (A) 100 1 Tj = 150°C Tj = 25°C IF = 8.0A, T J =125°C 60 50 40 IF = 8.0A, T J =25°C 30 0.1 0.0 0.5 1.0 1.5 2.0 20 2.5 100 VFM, Forward Voltage Drop (V) 1000 dif / dt - (A / µs) Fig. 18 - Typical Reverse Recovery vs. di F /dt Fig. 17 - Typical Forward Voltage Drop Characteristics 400 IF = 8.0A, T J =125°C Qrr - (ns) 300 200 Fig.20 - Switching Loss Circuit 100 A IF = 8.0A, T J =25°C RG 100 L 1000 dif / dt - (A / µs) VCC Fig. 19- Typical Stored Charge vs. di F /dt VCE C DRIVER 0 B RG Ipulse DUT Energy IC Current Fig 21a. tst and EPULSE Test Circuit Fig 21b. tst Test Waveforms PULSE A L 0 PULSE B 1K tST Fig 21c. EPULSE Test Waveforms 6 VCC DUT Fig. 22 - Gate Charge Circuit (turn-off) www.irf.com IRG6B330UDPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5) /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(& 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 '$7(&2'( <($5 :((. /,1(& TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkigbt.html Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.04/2010 www.irf.com 7