PD - 97222 PDP TRENCH IGBT Features l Advanced Trench IGBT Technology l Optimized for Sustain and Energy Recovery circuits in PDP applications TM) l Low VCE(on) and Energy per Pulse (EPULSE for improved panel efficiency l High repetitive peak current capability l Lead Free package IRGP4055DPbF Key Parameters VCE min VCE(ON) typ. @ 110A IRP max @ TC= 25°C c TJ max C 300 1.70 V V 270 150 A °C C C G G E TO-247AC n-channel G Gate E C Collector E Emitter Description This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP applications. Absolute Maximum Ratings Parameter VGE Max. Units ±30 V A IC @ TC = 25°C Gate-to-Emitter Voltage Continuous Collector Current, VGE @ 15V 110 IC @ TC = 100°C Continuous Collector, VGE @ 15V 60 IRP @ TC = 25°C Repetitive Peak Current c 270 PD @TC = 25°C Power Dissipation 255 Power Dissipation 102 PD @TC = 100°C W Linear Derating Factor 2.04 W/°C TJ Operating Junction and -40 to + 150 °C TSTG Storage Temperature Range 300 Soldering Temperature for 10 seconds Mounting Torque, 6-32 or M3 Screw 10lbxin (1.1Nxm) N Thermal Resistance RθJC (IGBT) RθJC (Diode) RθCS RθJA www.irf.com Parameter Thermal Resistance Junction-to-Case-(each IGBT) d Thermal Resistance Junction-to-Case-(each Diode) Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount) Weight Typ. ––– 1.45 0.20 ––– 2.0 (0.07) Max. 0.48 2.5 ––– 70 ––– Units °C/W g (oz) 1 06/14/06 IRGP4055DPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) BVCES ∆ΒVCES/∆TJ Parameter Collector-to-Emitter Breakdown Voltage Breakdown Voltage Temp. Coefficient VCE(on) Static Collector-to-Emitter Voltage VGE(th) ∆VGE(th)/∆TJ ICES Gate Threshold Voltage Gate Threshold Voltage Coefficient Collector-to-Emitter Leakage Current IGES gfe Qg Qgc td(on) tr td(off) tf td(on) tr td(off) tf Gate-to-Emitter Forward Leakage Gate-to-Emitter Reverse Leakage Forward Transconductance Total Gate Charge Gate-to-Collector Charge Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On delay time Rise time Turn-Off delay time Fall time Min. 300 ––– ––– ––– ––– ––– 2.6 ––– ––– ––– ––– ––– ––– ––– ––– — — — — — — — — Typ. ––– 0.23 1.10 1.70 2.35 1.95 ––– -11 2.0 100 ––– ––– 38 132 42 44 39 245 152 42 40 362 Max. ––– ––– 1.30 2.10 ––– ––– 5.0 ––– 25 ––– 100 -100 ––– ––– ––– 57 55 308 198 — — — — tst Shoot Through Blocking Time 100 309 ––– EPULSE Energy per Pulse ––– 705 ––– ––– 915 ––– ––– Ciss Coss Crss LC Input Capacitance Output Capacitance Reverse Transfer Capacitance Internal Collector Inductance ––– ––– ––– ––– 4280 200 125 5.0 ––– ––– ––– ––– LE Internal Emitter Inductance ––– 13 ––– Conditions Units VGE = 0V, ICE = 1 mA V V/°C Reference to 25°C, ICE = 1mA VGE = 15V, ICE = 35A VGE = 15V, ICE = 110A V VGE = 15V, ICE = 200A VGE = 15V, ICE = 110A, TJ = 150°C VCE = VGE, ICE = 1mA V e e e mV/°C µA VCE = 300V, VGE = 0V VCE = 300V, VGE = 0V, TJ = 150°C nA VGE = 30V VGE = -30V VCE = 25V, ICE = 35A S nC VCE = 200V, IC = 35A, VGE = 15V e ns IC = 35A, VCC = 180V RG = 10Ω, L=250µH, LS= 150nH TJ = 25°C ns IC = 35A, VCC = 180V RG = 10Ω, L=250µH, LS= 150nH TJ = 150°C ns µJ pF VCC = 240V, VGE = 15V, RG= 5.1Ω L = 220nH, C= 0.40µF, VGE = 15V VCC = 240V, RG= 5.1Ω, TJ = 25°C L = 220nH, C= 0.40µF, VGE = 15V VCC = 240V, RG= 5.1Ω, TJ = 100°C VGE = 0V VCE = 30V ƒ = 1.0MHz, nH See Fig.13 Between lead, 6mm (0.25in.) from package and center of die contact Diode Characteristics @ TJ = 25°C (unless otherwise specified) IF(AV) IFSM VF Parameter Average Forward Current Non Repetitive Peak Surge Current Forward Voltage trr Diode Reverse Recovery Time Qrr Diode Reverse Recovery Charge Irr Peak Reverse Recovery Current Notes: Half sine wave with duty cycle = 0.25, ton=1µsec. Rθ is measured at TJ of approximately 90°C. 2 Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– 1.0 0.83 ––– Max. 8.0 100 1.25 1.0 35 Conditions Units Tc = 155°C A TJ = 155°C, PW = 6.0ms half sine wave A IF = 8A V IF = 8A, TJ = 125°C ns IF = 1.0A, di/dt = -50A/µs, VR = 30V 27 40 30 ––– ––– ––– ––– ––– ––– TJ = 25°C IF = 8.0A, VR = 200V, TJ = 125°C di/dt = 200A/µs TJ = 25°C IF = 8.0A, VR = 200V, TJ = 125°C di/dt = 200A/µs TJ = 25°C IF = 8.0A, VR = 200V, TJ = 125°C di/dt = 200A/µs 106 2.2 5.3 nC A Pulse width ≤ 400µs; duty cycle ≤ 2%. www.irf.com IRGP4055DPbF 200 200 Top 150 150 Bottom ICE (A) ICE (A) Bottom Top V = 18V GE V = 15V GE V = 12V GE V = 10V GE V = 8.0V GE V = 6.0V GE 100 V = 18V GE V = 15V GE V = 12V GE V = 10V GE V = 8.0V GE V = 6.0V GE 100 50 50 0 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 3.5 0.5 1.0 Fig 1. Typical Output Characteristics @ 25°C 2.5 3.0 3.5 200 Top 150 Top V = 18V GE V = 15V GE V = 12V GE V = 10V GE V = 8.0V GE V = 6.0V GE 150 Bottom ICE (A) Bottom ICE (A) 2.0 Fig 2. Typical Output Characteristics @ 75°C 200 100 V = 18V GE V = 15V GE V = 12V GE V = 10V GE V = 8.0V GE V = 6.0V GE 100 50 50 0 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 3.5 0.5 1.0 1.5 2.0 2.5 3.0 3.5 V CE (V) V CE (V) Fig 3. Typical Output Characteristics @ 125°C Fig 4. Typical Output Characteristics @ 150°C 20 300 IC = 35A T J = 25°C 250 15 T J = 150°C 200 V CE (V) IC, Collector-to-Emitter Current (A) 1.5 V CE (V) V CE (V) 150 TJ = 25°C TJ = 150°C 10 100 5 50 10µs PULSE WIDTH 0 0 0 5 10 VGE, Gate-to-Emitter Voltage (V) Fig 5. Typical Transfer Characteristics www.irf.com 15 5 10 15 20 V GE (V) Fig 6. VCE(ON) vs. Gate Voltage 3 IRGP4055DPbF 120 300 ton= 1µs Duty cycle = 0.25 Half Sine Wave 280 Limited By Package 240 Repetitive Peak Current (A) 100 IC, Collector Current (A) 260 80 60 40 220 200 180 160 140 120 100 80 60 20 40 20 0 0 0 25 50 75 100 125 25 150 100 125 150 Fig 8. Typical Repetitive Peak Current vs. Case Temperature Fig 7. Maximum Collector Current vs. Case Temperature 1000 1000 V CC = 240V 900 L = 220nH C = 0.4µF 900 L = 220nH C = variable 800 700 Energy per Pulse (µJ) Energy per Pulse (µJ) 75 Case Temperature (°C) TC , Case Temperature (°C) 100°C 600 25°C 500 400 800 700 100°C 600 500 25°C 400 300 300 200 160 170 180 190 200 210 220 230 150 160 170 180 190 200 210 220 230 240 Ic , Peak Collector Current (A) V CE, Collector-to-Emitter Voltage (V) Fig 9. Typical EPULSE vs. Collector Current 1200 Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage 1000 OPERATION IN THIS AREA LIMITED BY V CE(on) V CC = 240V L = 220nH t = 1µs half sine 1000 C= 0.4µF 100 1µsec 800 10µsec IC (A) Energy Pulse (µJ) 50 C= 0.3µF 600 100µsec 10 C= 0.2µF 400 200 1 25 50 75 100 125 TJ, Temperature (ºC) Fig 11. EPULSE vs. Temperature 4 150 1 10 100 1000 VCE (V) Fig 12. Forrward Bias Safe Operating Area www.irf.com IRGP4055DPbF 100000 16 VGS = 0V, f = 1 MHZ C ies = C ge + C gd, C ce SHORTED C oes = C ce + C gc 10000 Capacitance (pF) V GE, Gate-to-Emitter Voltage (V) C res = C gc Cies 1000 Coes Cres 100 14 IC = 30A IC = 35A 12 10 8 6 4 2 0 10 0 50 100 150 200 0 25 V CE, Collector-toEmitter-Voltage(V) 50 75 100 125 150 Q G, Total Gate Charge (nC) Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.10 0.05 0.1 0.02 0.01 0.01 0.001 SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Impedance Z thJC (°C/W) 10 1 D = 0.50 D = 0.20 D = 0.10 D = 0.05 D = 0.02 D = 0.01 PDM t1 0.1 t2 Single Pulse (Thermal Resistance) 0.01 0.00001 Notes: 1. Duty factor D = t1/ t2 . 2. Peak Tj = Pdm x ZthJC + Tc 0.0001 0.001 0.01 0.1 1 . 10 t1, Rectangular Pulse Duration (Seconds) Fig 16. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Diode) www.irf.com 5 IRGP4055DPbF 100 If = 8A, Tj = 125˚C trr ( ns ) IF , Instantaneous Forward Current (A) 100 10 Tj = 125°C Tj = 25°C If = 8A, Tj = 25˚C 1 10 100 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 VFM , Forward Voltage Drop (V) 1000 di F /dt (A/µs ) Fig 18. Typical Reverse Recovery vs. diF /dt Fig. 17 - Typical Forward Voltage Drop Characteristics 1000 Qrr ( nC ) If = 8A, Tj = 125˚C 100 If = 8A, Tj = 25˚C Fig.20 - Switching Loss Circuit A RG C DRIVER L 10 100 1000 di F /dt (A/µs ) VCC Fig. 19- Typical Stored Charge vs. di F /dt VCE B RG Ipulse DUT Energy IC Current Fig 21a. tst and EPULSE Test Circuit Fig 21b. tst Test Waveforms PULSE A L DUT 0 PULSE B VCC 1K tST Fig 21c. EPULSE Test Waveforms 6 Fig. 22 - Gate Charge Circuit (turn-off) www.irf.com IRGP4055DPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 ,5)3( + '$7(&2'( <($5 :((. /,1(+ TO-247AC package is not recommended for Surface Mount Application. The specifications set forth in this data sheet are the sole and exclusive specifications applicable to the identified product, and no specifications or features are implied whether by industry custom, sampling or otherwise. We qualify our products in accordance with our internal practices and procedures, which by their nature do not include qualification to all possible or even all widely used applications. Without limitation, we have not qualified our product for medical use or applications involving hi-reliability applications. Customers are encouraged to and responsible for qualifying product to their own use and their own application environments, especially where particular features are critical to operational performance or safety. Please contact your IR representative if you have specific design or use requirements or for further information. Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.06/06 www.irf.com 7