IRF IRGP4055DPBF

PD - 97222
PDP TRENCH IGBT
Features
l Advanced Trench IGBT Technology
l Optimized for Sustain and Energy Recovery
circuits in PDP applications
TM)
l Low VCE(on) and Energy per Pulse (EPULSE
for improved panel efficiency
l High repetitive peak current capability
l Lead Free package
IRGP4055DPbF
Key Parameters
VCE min
VCE(ON) typ. @ 110A
IRP max @ TC= 25°C c
TJ max
C
300
1.70
V
V
270
150
A
°C
C
C
G
G
E
TO-247AC
n-channel
G
Gate
E
C
Collector
E
Emitter
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes
advanced trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area
which improve panel efficiency. Additional features are 150°C operating junction temperature and high
repetitive peak current capability. These features combine to make this IGBT a highly efficient, robust
and reliable device for PDP applications.
Absolute Maximum Ratings
Parameter
VGE
Max.
Units
±30
V
A
IC @ TC = 25°C
Gate-to-Emitter Voltage
Continuous Collector Current, VGE @ 15V
110
IC @ TC = 100°C
Continuous Collector, VGE @ 15V
60
IRP @ TC = 25°C
Repetitive Peak Current c
270
PD @TC = 25°C
Power Dissipation
255
Power Dissipation
102
PD @TC = 100°C
W
Linear Derating Factor
2.04
W/°C
TJ
Operating Junction and
-40 to + 150
°C
TSTG
Storage Temperature Range
300
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
10lbxin (1.1Nxm)
N
Thermal Resistance
RθJC (IGBT)
RθJC (Diode)
RθCS
RθJA
www.irf.com
Parameter
Thermal Resistance Junction-to-Case-(each IGBT) d
Thermal Resistance Junction-to-Case-(each Diode)
Thermal Resistance, Case-to-Sink (flat, greased surface)
Thermal Resistance, Junction-to-Ambient (typical socket mount)
Weight
Typ.
–––
1.45
0.20
–––
2.0 (0.07)
Max.
0.48
2.5
–––
70
–––
Units
°C/W
g (oz)
1
06/14/06
IRGP4055DPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
BVCES
∆ΒVCES/∆TJ
Parameter
Collector-to-Emitter Breakdown Voltage
Breakdown Voltage Temp. Coefficient
VCE(on)
Static Collector-to-Emitter Voltage
VGE(th)
∆VGE(th)/∆TJ
ICES
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Collector-to-Emitter Leakage Current
IGES
gfe
Qg
Qgc
td(on)
tr
td(off)
tf
td(on)
tr
td(off)
tf
Gate-to-Emitter Forward Leakage
Gate-to-Emitter Reverse Leakage
Forward Transconductance
Total Gate Charge
Gate-to-Collector Charge
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Min.
300
–––
–––
–––
–––
–––
2.6
–––
–––
–––
–––
–––
–––
–––
–––
—
—
—
—
—
—
—
—
Typ.
–––
0.23
1.10
1.70
2.35
1.95
–––
-11
2.0
100
–––
–––
38
132
42
44
39
245
152
42
40
362
Max.
–––
–––
1.30
2.10
–––
–––
5.0
–––
25
–––
100
-100
–––
–––
–––
57
55
308
198
—
—
—
—
tst
Shoot Through Blocking Time
100
309
–––
EPULSE
Energy per Pulse
–––
705
–––
–––
915
–––
–––
Ciss
Coss
Crss
LC
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Internal Collector Inductance
–––
–––
–––
–––
4280
200
125
5.0
–––
–––
–––
–––
LE
Internal Emitter Inductance
–––
13
–––
Conditions
Units
VGE = 0V, ICE = 1 mA
V
V/°C Reference to 25°C, ICE = 1mA
VGE = 15V, ICE = 35A
VGE = 15V, ICE = 110A
V
VGE = 15V, ICE = 200A
VGE = 15V, ICE = 110A, TJ = 150°C
VCE = VGE, ICE = 1mA
V
e
e
e
mV/°C
µA VCE = 300V, VGE = 0V
VCE = 300V, VGE = 0V, TJ = 150°C
nA VGE = 30V
VGE = -30V
VCE = 25V, ICE = 35A
S
nC VCE = 200V, IC = 35A, VGE = 15V
e
ns
IC = 35A, VCC = 180V
RG = 10Ω, L=250µH, LS= 150nH
TJ = 25°C
ns
IC = 35A, VCC = 180V
RG = 10Ω, L=250µH, LS= 150nH
TJ = 150°C
ns
µJ
pF
VCC = 240V, VGE = 15V, RG= 5.1Ω
L = 220nH, C= 0.40µF, VGE = 15V
VCC = 240V, RG= 5.1Ω, TJ = 25°C
L = 220nH, C= 0.40µF, VGE = 15V
VCC = 240V, RG= 5.1Ω, TJ = 100°C
VGE = 0V
VCE = 30V
ƒ = 1.0MHz,
nH
See Fig.13
Between lead,
6mm (0.25in.)
from package
and center of die contact
Diode Characteristics @ TJ = 25°C (unless otherwise specified)
IF(AV)
IFSM
VF
Parameter
Average Forward Current
Non Repetitive Peak Surge Current
Forward Voltage
trr
Diode Reverse Recovery Time
Qrr
Diode Reverse Recovery Charge
Irr
Peak Reverse Recovery Current
Notes:
 Half sine wave with duty cycle = 0.25, ton=1µsec.
‚ Rθ is measured at TJ of approximately 90°C.
2
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
–––
1.0
0.83
–––
Max.
8.0
100
1.25
1.0
35
Conditions
Units
Tc = 155°C
A
TJ = 155°C, PW = 6.0ms half sine wave
A
IF = 8A
V
IF = 8A, TJ = 125°C
ns
IF = 1.0A, di/dt = -50A/µs, VR = 30V
27
40
30
–––
–––
–––
–––
–––
–––
TJ = 25°C IF = 8.0A, VR = 200V,
TJ = 125°C di/dt = 200A/µs
TJ = 25°C IF = 8.0A, VR = 200V,
TJ = 125°C di/dt = 200A/µs
TJ = 25°C IF = 8.0A, VR = 200V,
TJ = 125°C di/dt = 200A/µs
106
2.2
5.3
nC
A
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
www.irf.com
IRGP4055DPbF
200
200
Top
150
150
Bottom
ICE (A)
ICE (A)
Bottom
Top
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
100
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
100
50
50
0
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0.0
3.5
0.5
1.0
Fig 1. Typical Output Characteristics @ 25°C
2.5
3.0
3.5
200
Top
150
Top
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
150
Bottom
ICE (A)
Bottom
ICE (A)
2.0
Fig 2. Typical Output Characteristics @ 75°C
200
100
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
100
50
50
0
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0.0
3.5
0.5
1.0
1.5
2.0
2.5
3.0
3.5
V CE (V)
V CE (V)
Fig 3. Typical Output Characteristics @ 125°C
Fig 4. Typical Output Characteristics @ 150°C
20
300
IC = 35A
T J = 25°C
250
15
T J = 150°C
200
V CE (V)
IC, Collector-to-Emitter Current (A)
1.5
V CE (V)
V CE (V)
150
TJ = 25°C
TJ = 150°C
10
100
5
50
10µs PULSE WIDTH
0
0
0
5
10
VGE, Gate-to-Emitter Voltage (V)
Fig 5. Typical Transfer Characteristics
www.irf.com
15
5
10
15
20
V GE (V)
Fig 6. VCE(ON) vs. Gate Voltage
3
IRGP4055DPbF
120
300
ton= 1µs
Duty cycle = 0.25
Half Sine Wave
280
Limited By Package
240
Repetitive Peak Current (A)
100
IC, Collector Current (A)
260
80
60
40
220
200
180
160
140
120
100
80
60
20
40
20
0
0
0
25
50
75
100
125
25
150
100
125
150
Fig 8. Typical Repetitive Peak Current vs. Case
Temperature
Fig 7. Maximum Collector Current vs. Case Temperature
1000
1000
V CC = 240V
900
L = 220nH
C = 0.4µF
900
L = 220nH
C = variable
800
700
Energy per Pulse (µJ)
Energy per Pulse (µJ)
75
Case Temperature (°C)
TC , Case Temperature (°C)
100°C
600
25°C
500
400
800
700
100°C
600
500
25°C
400
300
300
200
160
170
180
190
200
210
220
230
150 160 170 180 190 200 210 220 230 240
Ic , Peak Collector Current (A)
V CE, Collector-to-Emitter Voltage (V)
Fig 9. Typical EPULSE vs. Collector Current
1200
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage
1000
OPERATION IN THIS AREA
LIMITED BY V CE(on)
V CC = 240V
L = 220nH
t = 1µs half sine
1000
C= 0.4µF
100
1µsec
800
10µsec
IC (A)
Energy Pulse (µJ)
50
C= 0.3µF
600
100µsec
10
C= 0.2µF
400
200
1
25
50
75
100
125
TJ, Temperature (ºC)
Fig 11. EPULSE vs. Temperature
4
150
1
10
100
1000
VCE (V)
Fig 12. Forrward Bias Safe Operating Area
www.irf.com
IRGP4055DPbF
100000
16
VGS = 0V,
f = 1 MHZ
C ies = C ge + C gd, C ce SHORTED
C oes = C ce + C gc
10000
Capacitance (pF)
V GE, Gate-to-Emitter Voltage (V)
C res = C gc
Cies
1000
Coes
Cres
100
14
IC = 30A
IC = 35A
12
10
8
6
4
2
0
10
0
50
100
150
200
0
25
V CE, Collector-toEmitter-Voltage(V)
50
75
100
125
150
Q G, Total Gate Charge (nC)
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.10
0.05
0.1
0.02
0.01
0.01
0.001
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Impedance Z thJC (°C/W)
10
1
D = 0.50
D = 0.20
D = 0.10
D = 0.05
D = 0.02
D = 0.01
PDM
t1
0.1
t2
Single Pulse
(Thermal Resistance)
0.01
0.00001
Notes:
1. Duty factor D = t1/ t2
.
2. Peak Tj = Pdm x ZthJC + Tc
0.0001
0.001
0.01
0.1
1
.
10
t1, Rectangular Pulse Duration (Seconds)
Fig 16. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Diode)
www.irf.com
5
IRGP4055DPbF
100
If = 8A, Tj = 125˚C
trr ( ns )
IF , Instantaneous Forward Current (A)
100
10
Tj = 125°C
Tj = 25°C
If = 8A, Tj = 25˚C
1
10
100
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
VFM , Forward Voltage Drop (V)
1000
di F /dt (A/µs )
Fig 18. Typical Reverse Recovery vs. diF /dt
Fig. 17 - Typical Forward Voltage Drop Characteristics
1000
Qrr ( nC )
If = 8A, Tj = 125˚C
100
If = 8A, Tj = 25˚C
Fig.20 - Switching Loss Circuit
A
RG
C
DRIVER
L
10
100
1000
di F /dt (A/µs )
VCC
Fig. 19- Typical Stored Charge vs. di F /dt
VCE
B
RG
Ipulse
DUT
Energy
IC Current
Fig 21a. tst and EPULSE Test Circuit
Fig 21b. tst Test Waveforms
PULSE A
L
DUT
0
PULSE B
VCC
1K
tST
Fig 21c. EPULSE Test Waveforms
6
Fig. 22 - Gate Charge Circuit (turn-off)
www.irf.com
IRGP4055DPbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
,5)3(
+
'$7(&2'(
<($5 :((.
/,1(+
TO-247AC package is not recommended for Surface Mount Application.
The specifications set forth in this data sheet are the sole and
exclusive specifications applicable to the identified product,
and no specifications or features are implied whether by
industry custom, sampling or otherwise. We qualify our
products in accordance with our internal practices and
procedures, which by their nature do not include qualification to
all possible or even all widely used applications. Without
limitation, we have not qualified our product for medical use or
applications involving hi-reliability applications. Customers are
encouraged to and responsible for qualifying product to their
own use and their own application environments, especially
where particular features are critical to operational performance
or safety. Please contact your IR representative if you have
specific design or use requirements or for further information.
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.06/06
www.irf.com
7