PD -96218A PDP TRENCH IGBT IRG6S320UPbF Features l Advanced Trench IGBT Technology l Optimized for Sustain and Energy Recovery circuits in PDP applications TM) l Low VCE(on) and Energy per Pulse (E PULSE for improved panel efficiency l High repetitive peak current capability l Lead Free package Key Parameters VCE min VCE(ON) typ. @ IC = 24A IRP max @ TC= 25°C TJ max 330 1.45 160 150 C V V A °C C E G G D2Pak E IRG6S320UPbF n-channel G Gate C Collector E Emitter Description This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP applications. Absolute Maximum Ratings Parameter VGE IC @ TC = 25°C IC @ TC = 100°C IRP @ TC = 25°C PD @TC = 25°C PD @TC = 100°C TJ TSTG Gate-to-Emitter Voltage Continuous Collector Current, VGE @ 15V Continuous Collector, VGE @ 15V Repetitive Peak Current Power Dissipation Power Dissipation Max. Units ±30 50 V 25 160 A 114 45 W 0.91 -40 to + 150 W/°C f c Linear Derating Factor Operating Junction and Storage Temperature Range Soldering Temperature for 10 seconds °C 300 Thermal Resistance Parameter RθJC www.irf.com Junction-to-Case d Typ. Max. Units ––– 1.1 °C/W 1 09/11/09 IRG6S320UPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter BVCES Collector-to-Emitter Breakdown Voltage V(BR)ECS Emitter-to-Collector Breakdown Voltage Breakdown Voltage Temp. Coefficient ∆ΒVCES/∆TJ VCE(on) e 330 ––– ––– 30 ––– ––– 0.30 ––– ––– ––– ––– 1.20 1.45 ––– 1.65 1.95 ––– ––– ––– 2.20 2.26 ––– ––– Static Collector-to-Emitter Voltage VGE(th) Gate Threshold Voltage 2.6 ––– 5.0 ∆VGE(th)/∆TJ ICES Gate Threshold Voltage Coefficient Collector-to-Emitter Leakage Current ––– ––– -10 1.0 ––– 5.0 ––– 20 75 IGES gfe Qg Qgc td(on) tr td(off) tf td(on) e e = 48A e = 60A e VGE = 15V, ICE = 24A V VGE = 15V, ICE VGE = 15V, ICE VGE = 15V, ICE = 48A, TJ = 150°C V VCE = VGE, ICE = 250µA ––– ––– ––– ––– ––– 28 -100 ––– S Total Gate Charge ––– 46 ––– nC Gate-to-Collector Charge Turn-On delay time ––– ––– 7.7 24 ––– ––– Rise time Turn-Off delay time ––– ––– 20 89 ––– ––– ––– 70 ––– 23 52 ––– ––– Turn-Off delay time ––– 130 ––– tst Fall time Shoot Through Blocking Time ––– 100 140 ––– ––– ––– EPULSE Energy per Pulse ––– 240 ––– ––– 280 ––– Human Body Model ESD Machine Model VGE = -30V VCE = 25V, ICE = 12A VCE = 200V, IC = 12A, VGE = 15V e IC = 12A, VCC = 196V ns RG = 10Ω, L=210µH, LS= 150nH TJ = 25°C IC = 12A, VCC = 196V ns RG = 10Ω, L=200µH, LS= 150nH TJ = 150°C ns VCC = 240V, VGE = 15V, RG= 5.1Ω L = 220nH, C= 0.10µF, VGE = 15V µJ VCC = 240V, RG= 5.1Ω, TJ = 25°C L = 220nH, C= 0.10µF, VGE = 15V VCC = 240V, RG= 5.1Ω, TJ = 100°C Class 2 (Per JEDEC standard JESD22-A114) Class B (Per EIA/JEDEC standard EIA/JESD22-A115) VGE = 0V 1160 ––– 61 ––– pF VCE = 30V Input Capacitance ––– Cres Output Capacitance Reverse Transfer Capacitance ––– ––– 38 ––– ƒ = 1.0MHz, LC Internal Collector Inductance ––– 5.0 ––– Between lead, LE Internal Emitter Inductance ––– 13 ––– nH Notes: Half sine wave with duty cycle <= 0.05, ton=2µsec. Rθ is measured at TJ of approximately 90°C. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 e Gate-to-Emitter Reverse Leakage Forward Transconductance ––– ––– Cies Coes VGE = 0V, ICE = 500µA V VGE = 0V, ICE = 1 A V/°C Reference to 25°C, ICE = 1mA VGE = 15V, ICE = 12A Gate-to-Emitter Forward Leakage Turn-On delay time Rise time td(off) tf V ––– mV/°C VCE = 330V, VGE = 0V 10 VCE = 330V, VGE = 0V, TJ = 100°C ––– µA VCE = 330V, VGE = 0V, TJ = 125°C 100 VCE = 330V, VGE = 0V, TJ = 150°C ––– 100 nA VGE = 30V Fall time tr Conditions Min. Typ. Max. Units See Fig.13 6mm (0.25in.) from package and center of die contact Packaging limitation for this device is 42A. www.irf.com IRG6S320UPbF 200 180 160 160 ICE (A) 100 VGE = 12V VGE = 10V 140 VGE = 8.0V VGE = 6.0V 120 VGE = 18V VGE = 15V 180 VGE = 12V VGE = 10V 140 ICE (A) 200 VGE = 18V VGE = 15V 80 VGE = 8.0V VGE = 6.0V 120 100 80 60 60 40 40 20 20 0 0 0 1 2 3 4 5 6 7 8 9 0 10 1 2 3 Fig 1. Typical Output Characteristics @ 25°C 160 160 100 9 10 80 VGE = 8.0V VGE = 6.0V 120 100 80 60 60 40 40 20 20 0 0 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 VCE (V) 4 5 6 7 8 9 10 VCE (V) Fig 3. Typical Output Characteristics @ 125°C Fig 4. Typical Output Characteristics @ 150°C 25 VCE, Voltage Collector-to-Emitter (V) 160 ICE, Collector-to-Emitter Current (A) 8 VGE = 12V VGE = 10V 140 VGE = 8.0V VGE = 6.0V 120 7 VGE = 18V VGE = 15V 180 ICE (A) ICE (A) 200 VGE = 12V VGE = 10V 140 6 Fig 2. Typical Output Characteristics @ 75°C VGE = 18V VGE = 15V 180 5 VCE (V) VCE (V) 200 4 T J = 25°C 140 T J = 150°C 120 100 80 60 40 20 IC = 12A 20 15 T J = 25°C T J = 150°C 10 5 0 0 2 4 6 8 10 12 VGE , Gate-to-Emitter Voltage (V) Fig 5. Typical Transfer Characteristics www.irf.com 14 0 5 10 15 20 VGE , Voltage Gate-to-Emitter (V) Fig 6. VCE(ON) vs. Gate Voltage 3 IRG6S320UPbF 55 160 50 Repetitive Peak Current (A) 45 IC, Collector Current (A) PW= 2µs Duty cycle <= 0.05 Half Sine Wave 140 40 35 30 25 20 15 10 120 100 80 60 40 20 5 0 25 50 75 100 125 0 150 25 50 T C, Case Temperature (°C) 150 3000 V CC = 240V L = 220nH C = variable L = 220nH C = 0.4µF 2500 100°C Energy per Pulse (µJ) 2500 Energy per Pulse (µJ) 125 Fig 8. Typical Repetitive Peak Current vs. Case Temperature 3000 2000 1500 25°C 1000 2000 100°C 1500 25°C 1000 500 0 500 100 120 140 160 180 200 220 180 IC, Peak Collector Current (A) 190 200 210 220 230 240 VCC, Collector-to-Supply Voltage (V) Fig 9. Typical EPULSE vs. Collector Current Fig 10. Typical EPULSE vs. Collector-to-Supply Voltage 4000 1000 V CC = 240V 3500 L = 220nH t = 1µs half sine 3000 C= 0.4µF 100 10µsec 2500 100µsec IC (A) Energy per Pulse (µJ) 100 Case Temperature (°C) Fig 7. Maximum Collector Current vs. Case Temperature 2000 10 1msec 1500 1000 C= 0.2µF 500 C= 0.1µF 1 Tc = 25°C Tj = 150°C Single Pulse 0 0.1 25 50 75 100 125 TJ, Temperature (ºC) Fig 11. EPULSE vs. Temperature 4 75 150 1 10 100 1000 VCE (V) Fig 12. Forrward Bias Safe Operating Area www.irf.com IRG6S320UPbF 10000 16 VGE , Gate-to-Emitter Voltage (V) VGS = 0V, f = 1 MHZ Cies = C ge + Cgd, C ce SHORTED Cres = Cgc Capacitance (pF) Coes = Cce + Cgc Cies 1000 100 Coes Cres IC = 12A 14 V CES = 240V 12 V CES = 150V 10 V CES = 60V 8 6 4 2 0 10 0 50 100 150 0 200 10 VCE, Collector-toEmitter-Voltage(V) 20 30 40 50 Q G , Total Gate Charge (nC) Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage Thermal Response ( Z thJC ) °C/W 10 1 0.1 0.01 0.001 0.0001 1E-006 D = 0.50 0.20 0.10 0.05 0.02 0.01 τJ SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 0.0001 R1 R1 τJ τ1 R2 R2 R3 R3 Ri (°C/W) R4 R4 τC τ τ1 τ2 τ3 τ2 τ3 Ci= τi/Ri Ci i/Ri 0.001 τ4 τ4 τi (sec) 0.04220 0.000027 0.30593 0.000129 0.50336 0.001257 0.25017 0.007858 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRG6S320UPbF A RG C DRIVER PULSE A L VCC B RG PULSE B Ipulse DUT tST Fig 16b. tst Test Waveforms Fig 16a. tst and EPULSE Test Circuit VCE Energy L IC Current DUT 0 VCC 1K Fig 16c. EPULSE Test Waveforms 6 Fig. 17 - Gate Charge Circuit (turn-off) www.irf.com IRG6S320UPbF D2Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches) D2Pak (TO-263AB) Part Marking Information 7+,6,6$1,5)6:,7+ /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(/ ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 )6 '$7(&2'( <($5 :((. /,1(/ $66(0%/< /27&2'( 25 ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 )6 '$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ <($5 :((. $ $66(0%/<6,7(&2'( Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 7 IRG6S320UPbF D2Pak (TO-263AB) Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 60.00 (2.362) MIN. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.09/2009 8 www.irf.com