PD - 97351A PDP TRENCH IGBT Features l Advanced Trench IGBT Technology l Optimized for Sustain and Energy Recovery circuits in PDP applications TM) l Low VCE(on) and Energy per Pulse (E PULSE for improved panel efficiency l High repetitive peak current capability l Lead Free package IRG6I320UPbF Key Parameters VCE min VCE(ON) typ. @ IC = 24A IRP max @ TC= 25°C TJ max 330 1.45 160 150 V V A °C C E C G G TO-220AB Full-Pak E n-channel G Gate C Collector E Emitter Description This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP applications. Absolute Maximum Ratings Parameter Max. Units VGE Gate-to-Emitter Voltage ±30 V A IC @ TC = 25°C Continuous Collector Current, VGE @ 15V 24 IC @ TC = 100°C Continuous Collector, VGE @ 15V 12 160 c IRP @ TC = 25°C Repetitive Peak Current PD @TC = 25°C Power Dissipation 39 PD @TC = 100°C Power Dissipation 16 W Linear Derating Factor 0.31 W/°C TJ Operating Junction and -40 to + 150 °C TSTG Storage Temperature Range Soldering Temperature for 10 seconds Mounting Torque, 6-32 or M3 Screw x 300 x 10lb in (1.1N m) N Thermal Resistance Parameter RθJC www.irf.com Junction-to-Case d Typ. Max. Units ––– 3.2 °C/W 1 03/25/09 IRG6I320UPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter BVCES Collector-to-Emitter Breakdown Voltage V(BR)ECS Emitter-to-Collector Breakdown Voltage Breakdown Voltage Temp. Coefficient ∆ΒVCES/∆TJ VCE(on) Conditions Min. Typ. Max. Units e 330 ––– ––– 30 ––– ––– 0.30 ––– ––– ––– 1.20 ––– ––– 1.45 1.95 1.65 ––– ––– 2.20 ––– ––– 2.6 2.26 ––– ––– 5.0 Static Collector-to-Emitter Voltage V VGE = 0V, ICE = 500µA V VGE = 0V, ICE = 1 A V/°C Reference to 25°C, ICE = 1mA VGE = 15V, ICE = 12A VGE = 15V, ICE e = 24A e = 48A e = 60A e V VGE = 15V, ICE VGE = 15V, ICE V VCE = VGE, ICE = 250µA VGE = 15V, ICE = 48A, TJ = 150°C VGE(th) Gate Threshold Voltage ∆VGE(th)/∆TJ ICES Gate Threshold Voltage Coefficient ––– -10 ––– mV/°C Collector-to-Emitter Leakage Current ––– ––– 1.0 5.0 10 ––– 20 100 Gate-to-Emitter Forward Leakage ––– ––– 75 ––– ––– 100 Gate-to-Emitter Reverse Leakage ––– ––– -100 Forward Transconductance Total Gate Charge ––– ––– 28 46 ––– ––– Gate-to-Collector Charge ––– 7.7 ––– Turn-On delay time Rise time ––– ––– 24 20 ––– ––– Turn-Off delay time ––– 89 ––– RG = 10Ω, L=210µH, LS= 150nH TJ = 25°C Fall time Turn-On delay time ––– ––– 70 23 ––– ––– IC = 12A, VCC = 196V Rise time ––– 52 ––– Turn-Off delay time Fall time ––– ––– 130 140 ––– ––– Shoot Through Blocking Time 100 ––– ––– ––– 240 ––– ––– 280 ––– 38 ––– 4.5 ––– IGES gfe Qg Qgc td(on) tr td(off) tf td(on) tr td(off) tf tst EPULSE Energy per Pulse Human Body Model ESD Machine Model Cies Input Capacitance ––– Coes Output Capacitance Reverse Transfer Capacitance ––– ––– Internal Collector Inductance ––– Cres LC VCE = 330V, VGE = 0V µA Internal Emitter Inductance ––– VCE = 330V, VGE = 0V, TJ = 100°C VCE = 330V, VGE = 0V, TJ = 125°C VCE = 330V, VGE = 0V, TJ = 150°C nA VGE = 30V VGE = -30V S nC VCE = 25V, ICE = 12A e VCE = 200V, IC = 12A, VGE = 15V IC = 12A, VCC = 196V ns ns RG = 10Ω, L=200µH, LS= 150nH TJ = 150°C ns VCC = 240V, VGE = 15V, RG= 5.1Ω L = 220nH, C= 0.10µF, VGE = 15V µJ VCC = 240V, RG= 5.1Ω, TJ = 25°C L = 220nH, C= 0.10µF, VGE = 15V VCC = 240V, RG= 5.1Ω, TJ = 100°C Class 2 (Per JEDEC standard JESD22-A114) Class B (Per EIA/JEDEC standard EIA/JESD22-A115) VGE = 0V 1160 ––– 61 ––– pF VCE = 30V ƒ = 1.0MHz, 7.5 ––– See Fig.13 Between lead, nH LE e 6mm (0.25in.) from package and center of die contact Notes: Half sine wave with duty cycle <= 0.05, ton=2µsec. Rθ is measured at TJ of approximately 90°C. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRG6I320UPbF 200 180 160 160 ICE (A) 100 VGE = 12V VGE = 10V 140 VGE = 8.0V VGE = 6.0V 120 VGE = 18V VGE = 15V 180 VGE = 12V VGE = 10V 140 ICE (A) 200 VGE = 18V VGE = 15V 80 VGE = 8.0V VGE = 6.0V 120 100 80 60 60 40 40 20 20 0 0 0 1 2 3 4 5 6 7 8 9 0 10 1 2 3 Fig 1. Typical Output Characteristics @ 25°C 160 160 100 9 10 80 VGE = 8.0V VGE = 6.0V 120 100 80 60 60 40 40 20 20 0 0 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 VCE (V) 4 5 6 7 8 9 10 VCE (V) Fig 3. Typical Output Characteristics @ 125°C Fig 4. Typical Output Characteristics @ 150°C 25 VCE, Voltage Collector-to-Emitter (V) 160 ICE, Collector-to-Emitter Current (A) 8 VGE = 12V VGE = 10V 140 VGE = 8.0V VGE = 6.0V 120 7 VGE = 18V VGE = 15V 180 ICE (A) ICE (A) 200 VGE = 12V VGE = 10V 140 6 Fig 2. Typical Output Characteristics @ 75°C VGE = 18V VGE = 15V 180 5 VCE (V) VCE (V) 200 4 T J = 25°C 140 T J = 150°C 120 100 80 60 40 20 IC = 12A 20 15 T J = 25°C T J = 150°C 10 5 0 0 2 4 6 8 10 12 VGE , Gate-to-Emitter Voltage (V) Fig 5. Typical Transfer Characteristics www.irf.com 14 0 5 10 15 20 VGE , Voltage Gate-to-Emitter (V) Fig 6. VCE(ON) vs. Gate Voltage 3 IRG6I320UPbF 25 160 PW= 2µs Duty cycle <= 0.05 Half Sine Wave 140 Repetitive Peak Current (A) IC, Collector Current (A) 20 15 10 5 120 100 80 60 40 20 0 25 50 75 100 125 0 150 25 50 T C, Case Temperature (°C) Fig 7. Maximum Collector Current vs. Case Temperature L = 220nH C = variable 150 L = 220nH C = 0.4µF 2500 100°C Energy per Pulse (µJ) 2500 Energy per Pulse (µJ) 125 3000 V CC = 240V 2000 1500 25°C 1000 2000 100°C 1500 25°C 1000 500 0 500 100 120 140 160 180 200 220 180 IC, Peak Collector Current (A) 190 200 210 220 230 240 VCE, Collector-to-Emitter Voltage (V) Fig 9. Typical EPULSE vs. Collector Current 4000 Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage 1000 V CC = 240V 3500 L = 220nH t = 1µs half sine 3000 C= 0.4µF 100 10µsec 2500 100µsec IC (A) Energy per Pulse (µJ) 100 Fig 8. Typical Repetitive Peak Current vs. Case Temperature 3000 2000 10 1msec 1500 1000 C= 0.2µF 500 C= 0.1µF 1 Tc = 25°C Tj = 150°C Single Pulse 0 0.1 25 50 75 100 125 TJ, Temperature (ºC) Fig 11. EPULSE vs. Temperature 4 75 Case Temperature (°C) 150 1 10 100 1000 VCE (V) Fig 12. Forrward Bias Safe Operating Area www.irf.com IRG6I320UPbF 10000 16 VGE , Gate-to-Emitter Voltage (V) VGS = 0V, f = 1 MHZ Cies = C ge + Cgd, C ce SHORTED Cres = Cgc Capacitance (pF) Coes = Cce + Cgc Cies 1000 100 Coes Cres IC = 12A 14 V CES = 240V 12 V CES = 150V 10 V CES = 60V 8 6 4 2 0 10 0 50 100 150 0 200 10 VCE, Collector-toEmitter-Voltage(V) 20 30 40 50 Q G , Total Gate Charge (nC) Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage Thermal Response ( Z thJC ) °C/W 10 D = 0.50 1 0.20 0.10 0.05 0.1 0.02 0.01 τJ R1 R1 τJ τ1 R3 R3 τC τ τ1 τ2 τ2 τ3 τ3 τ4 τ4 0.0001 τi (sec) 0.1937 0.000114 0.5877 0.001905 1.0534 0.096764 1.3665 2.1458 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 Ri (°C/W) R4 R4 Ci= τi/Ri Ci i/Ri 0.01 0.001 1E-006 R2 R2 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRG6I320UPbF A RG C DRIVER PULSE A L VCC B PULSE B Ipulse RG DUT tST Fig 16b. tst Test Waveforms Fig 16a. tst and EPULSE Test Circuit VCE Energy L IC Current DUT 0 VCC 1K Fig 16c. EPULSE Test Waveforms 6 Fig. 17 - Gate Charge Circuit (turn-off) www.irf.com IRG6I320UPbF TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) TO-220 Full-Pak Part Marking Information (;$03/( 7+,6,6$1,5),* :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(. 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 ,5),* . '$7(&2'( <($5 :((. /,1(. TO-220AB Full-Pak package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ The specifications set forth in this data sheet are the sole and exclusive specifications applicable to the identified product, and no specifications or features are implied whether by industry custom, sampling or otherwise. We qualify our products in accordance with our internal practices and procedures, which by their nature do not include qualification to all possible or even all widely used applications. Without Data and specifications subject to change without notice. limitation, we have not qualified our product for medical use or This product has been designed for the Industrial market. applications involving hi-reliability applications. Customers are Qualification Standards can be found on IR’s Web site. encouraged to and responsible for qualifying product to their own use and their own application environments, especially where particular features are critical to operational performance or safety. Please contact your IR representative if you have specific design or use requirements or for further information. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.03/09 www.irf.com 7