IRF IRG6I320UPBF

PD - 97351A
PDP TRENCH IGBT
Features
l Advanced Trench IGBT Technology
l Optimized for Sustain and Energy Recovery
circuits in PDP applications
TM)
l Low VCE(on) and Energy per Pulse (E PULSE
for improved panel efficiency
l High repetitive peak current capability
l Lead Free package
IRG6I320UPbF
Key Parameters
VCE min
VCE(ON) typ. @ IC = 24A
IRP max @ TC= 25°C
TJ max
330
1.45
160
150
V
V
A
°C
C
E
C
G
G
TO-220AB
Full-Pak
E
n-channel
G
Gate
C
Collector
E
Emitter
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Absolute Maximum Ratings
Parameter
Max.
Units
VGE
Gate-to-Emitter Voltage
±30
V
A
IC @ TC = 25°C
Continuous Collector Current, VGE @ 15V
24
IC @ TC = 100°C
Continuous Collector, VGE @ 15V
12
160
c
IRP @ TC = 25°C
Repetitive Peak Current
PD @TC = 25°C
Power Dissipation
39
PD @TC = 100°C
Power Dissipation
16
W
Linear Derating Factor
0.31
W/°C
TJ
Operating Junction and
-40 to + 150
°C
TSTG
Storage Temperature Range
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
x
300
x
10lb in (1.1N m)
N
Thermal Resistance
Parameter
RθJC
www.irf.com
Junction-to-Case
d
Typ.
Max.
Units
–––
3.2
°C/W
1
03/25/09
IRG6I320UPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
BVCES
Collector-to-Emitter Breakdown Voltage
V(BR)ECS
Emitter-to-Collector Breakdown Voltage
Breakdown Voltage Temp. Coefficient
∆ΒVCES/∆TJ
VCE(on)
Conditions
Min. Typ. Max. Units
e
330
–––
–––
30
–––
–––
0.30
–––
–––
–––
1.20
–––
–––
1.45
1.95
1.65
–––
–––
2.20
–––
–––
2.6
2.26
–––
–––
5.0
Static Collector-to-Emitter Voltage
V
VGE = 0V, ICE = 500µA
V VGE = 0V, ICE = 1 A
V/°C Reference to 25°C, ICE = 1mA
VGE = 15V, ICE = 12A
VGE = 15V, ICE
e
= 24A e
= 48A e
= 60A e
V
VGE = 15V, ICE
VGE = 15V, ICE
V
VCE = VGE, ICE = 250µA
VGE = 15V, ICE = 48A, TJ = 150°C
VGE(th)
Gate Threshold Voltage
∆VGE(th)/∆TJ
ICES
Gate Threshold Voltage Coefficient
–––
-10
––– mV/°C
Collector-to-Emitter Leakage Current
–––
–––
1.0
5.0
10
–––
20
100
Gate-to-Emitter Forward Leakage
–––
–––
75
–––
–––
100
Gate-to-Emitter Reverse Leakage
–––
–––
-100
Forward Transconductance
Total Gate Charge
–––
–––
28
46
–––
–––
Gate-to-Collector Charge
–––
7.7
–––
Turn-On delay time
Rise time
–––
–––
24
20
–––
–––
Turn-Off delay time
–––
89
–––
RG = 10Ω, L=210µH, LS= 150nH
TJ = 25°C
Fall time
Turn-On delay time
–––
–––
70
23
–––
–––
IC = 12A, VCC = 196V
Rise time
–––
52
–––
Turn-Off delay time
Fall time
–––
–––
130
140
–––
–––
Shoot Through Blocking Time
100
–––
–––
–––
240
–––
–––
280
–––
38
–––
4.5
–––
IGES
gfe
Qg
Qgc
td(on)
tr
td(off)
tf
td(on)
tr
td(off)
tf
tst
EPULSE
Energy per Pulse
Human Body Model
ESD
Machine Model
Cies
Input Capacitance
–––
Coes
Output Capacitance
Reverse Transfer Capacitance
–––
–––
Internal Collector Inductance
–––
Cres
LC
VCE = 330V, VGE = 0V
µA
Internal Emitter Inductance
–––
VCE = 330V, VGE = 0V, TJ = 100°C
VCE = 330V, VGE = 0V, TJ = 125°C
VCE = 330V, VGE = 0V, TJ = 150°C
nA
VGE = 30V
VGE = -30V
S
nC
VCE = 25V, ICE = 12A
e
VCE = 200V, IC = 12A, VGE = 15V
IC = 12A, VCC = 196V
ns
ns
RG = 10Ω, L=200µH, LS= 150nH
TJ = 150°C
ns
VCC = 240V, VGE = 15V, RG= 5.1Ω
L = 220nH, C= 0.10µF, VGE = 15V
µJ
VCC = 240V, RG= 5.1Ω, TJ = 25°C
L = 220nH, C= 0.10µF, VGE = 15V
VCC = 240V, RG= 5.1Ω, TJ = 100°C
Class 2
(Per JEDEC standard JESD22-A114)
Class B
(Per EIA/JEDEC standard EIA/JESD22-A115)
VGE = 0V
1160 –––
61
–––
pF VCE = 30V
ƒ = 1.0MHz,
7.5
–––
See Fig.13
Between lead,
nH
LE
e
6mm (0.25in.)
from package
and center of die contact
Notes:
 Half sine wave with duty cycle <= 0.05, ton=2µsec.
‚ Rθ is measured at TJ of approximately 90°C.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRG6I320UPbF
200
180
160
160
ICE (A)
100
VGE = 12V
VGE = 10V
140
VGE = 8.0V
VGE = 6.0V
120
VGE = 18V
VGE = 15V
180
VGE = 12V
VGE = 10V
140
ICE (A)
200
VGE = 18V
VGE = 15V
80
VGE = 8.0V
VGE = 6.0V
120
100
80
60
60
40
40
20
20
0
0
0
1
2
3
4
5
6
7
8
9
0
10
1
2
3
Fig 1. Typical Output Characteristics @ 25°C
160
160
100
9
10
80
VGE = 8.0V
VGE = 6.0V
120
100
80
60
60
40
40
20
20
0
0
0
1
2
3
4
5
6
7
8
9
10
0
1
2
3
VCE (V)
4
5
6
7
8
9
10
VCE (V)
Fig 3. Typical Output Characteristics @ 125°C
Fig 4. Typical Output Characteristics @ 150°C
25
VCE, Voltage Collector-to-Emitter (V)
160
ICE, Collector-to-Emitter Current (A)
8
VGE = 12V
VGE = 10V
140
VGE = 8.0V
VGE = 6.0V
120
7
VGE = 18V
VGE = 15V
180
ICE (A)
ICE (A)
200
VGE = 12V
VGE = 10V
140
6
Fig 2. Typical Output Characteristics @ 75°C
VGE = 18V
VGE = 15V
180
5
VCE (V)
VCE (V)
200
4
T J = 25°C
140
T J = 150°C
120
100
80
60
40
20
IC = 12A
20
15
T J = 25°C
T J = 150°C
10
5
0
0
2
4
6
8
10
12
VGE , Gate-to-Emitter Voltage (V)
Fig 5. Typical Transfer Characteristics
www.irf.com
14
0
5
10
15
20
VGE , Voltage Gate-to-Emitter (V)
Fig 6. VCE(ON) vs. Gate Voltage
3
IRG6I320UPbF
25
160
PW= 2µs
Duty cycle <= 0.05
Half Sine Wave
140
Repetitive Peak Current (A)
IC, Collector Current (A)
20
15
10
5
120
100
80
60
40
20
0
25
50
75
100
125
0
150
25
50
T C, Case Temperature (°C)
Fig 7. Maximum Collector Current vs. Case Temperature
L = 220nH
C = variable
150
L = 220nH
C = 0.4µF
2500
100°C
Energy per Pulse (µJ)
2500
Energy per Pulse (µJ)
125
3000
V CC = 240V
2000
1500
25°C
1000
2000
100°C
1500
25°C
1000
500
0
500
100
120
140
160
180
200
220
180
IC, Peak Collector Current (A)
190
200
210
220
230
240
VCE, Collector-to-Emitter Voltage (V)
Fig 9. Typical EPULSE vs. Collector Current
4000
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage
1000
V CC = 240V
3500
L = 220nH
t = 1µs half sine
3000
C= 0.4µF
100
10µsec
2500
100µsec
IC (A)
Energy per Pulse (µJ)
100
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
3000
2000
10
1msec
1500
1000
C= 0.2µF
500
C= 0.1µF
1
Tc = 25°C
Tj = 150°C
Single Pulse
0
0.1
25
50
75
100
125
TJ, Temperature (ºC)
Fig 11. EPULSE vs. Temperature
4
75
Case Temperature (°C)
150
1
10
100
1000
VCE (V)
Fig 12. Forrward Bias Safe Operating Area
www.irf.com
IRG6I320UPbF
10000
16
VGE , Gate-to-Emitter Voltage (V)
VGS = 0V,
f = 1 MHZ
Cies = C ge + Cgd, C ce SHORTED
Cres = Cgc
Capacitance (pF)
Coes = Cce + Cgc
Cies
1000
100
Coes
Cres
IC = 12A
14
V CES = 240V
12
V CES = 150V
10
V CES = 60V
8
6
4
2
0
10
0
50
100
150
0
200
10
VCE, Collector-toEmitter-Voltage(V)
20
30
40
50
Q G , Total Gate Charge (nC)
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
Thermal Response ( Z thJC ) °C/W
10
D = 0.50
1
0.20
0.10
0.05
0.1
0.02
0.01
τJ
R1
R1
τJ
τ1
R3
R3
τC
τ
τ1
τ2
τ2
τ3
τ3
τ4
τ4
0.0001
τi (sec)
0.1937
0.000114
0.5877
0.001905
1.0534
0.096764
1.3665
2.1458
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
Ri (°C/W)
R4
R4
Ci= τi/Ri
Ci i/Ri
0.01
0.001
1E-006
R2
R2
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRG6I320UPbF
A
RG
C
DRIVER
PULSE A
L
VCC
B
PULSE B
Ipulse
RG
DUT
tST
Fig 16b. tst Test Waveforms
Fig 16a. tst and EPULSE Test Circuit
VCE
Energy
L
IC Current
DUT
0
VCC
1K
Fig 16c. EPULSE Test Waveforms
6
Fig. 17 - Gate Charge Circuit (turn-off)
www.irf.com
IRG6I320UPbF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
(;$03/( 7+,6,6$1,5),*
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(.
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
,5),*
.
'$7(&2'(
<($5 :((.
/,1(.
TO-220AB Full-Pak package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
The specifications set forth in this data sheet are the sole and
exclusive specifications applicable to the identified product,
and no specifications or features are implied whether by
industry custom, sampling or otherwise. We qualify our
products in accordance with our internal practices and
procedures, which by their nature do not include qualification to
all possible or even all widely used applications. Without
Data and specifications subject to change without notice.
limitation, we have not qualified our product for medical use or
This product has been designed for the Industrial market.
applications involving hi-reliability applications. Customers are
Qualification Standards can be found on IR’s Web site.
encouraged to and responsible for qualifying product to their
own use and their own application environments, especially
where particular features are critical to operational performance
or safety. Please contact your IR representative if you have
specific design or use requirements or for further information.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.03/09
www.irf.com
7