PD - 97318A IRGI4090PbF PDP TRENCH IGBT Features l Advanced Trench IGBT Technology l Optimized for Sustain and Energy Recovery circuits in PDP applications TM) l Low VCE(on) and Energy per Pulse (EPULSE for improved panel efficiency l High repetitive peak current capability l Lead Free package Key Parameters VCE min VCE(ON) typ. @ IC = 11A IRP max @ TC= 25°C 300 1.20 140 V V A TJ max 150 °C C E C G G TO-220AB Full-Pak E n-channel G Gate C Collector E Emitter Description This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP applications. Absolute Maximum Ratings Max. Units VGE Gate-to-Emitter Voltage ±30 V A Parameter IC @ TC = 25°C Continuous Collector Current, VGE @ 15V 21 IC @ TC = 100°C Continuous Collector, VGE @ 15V 11 IRP @ TC = 25°C Repetitive Peak Current c 140 PD @TC = 25°C Power Dissipation 34 PD @TC = 100°C Power Dissipation 14 W Linear Derating Factor 0.27 W/°C TJ Operating Junction and -40 to + 150 °C TSTG Storage Temperature Range 300 Soldering Temperature for 10 seconds Mounting Torque, 6-32 or M3 Screw 10lbxin (1.1Nxm) N Thermal Resistance Parameter RθJC www.irf.com Junction-to-Case d Typ. Max. Units ––– 3.65 °C/W 1 06/13/08 IRGI4090PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions BVCES Collector-to-Emitter Breakdown Voltage 300 ––– ––– V VGE = 0V, ICE = 500µA V(BR)ECS Emitter-to-Collector Breakdown Voltagee 30 ––– ––– V VGE = 0V, ICE = 1.0A ∆ΒVCES/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.30 ––– VCE(on) Static Collector-to-Emitter Voltage ––– 1.20 ––– V/°C Reference to 25°C, ICE = 5.0µA VGE = 15V, ICE = 11A e ––– 1.67 1.94 VGE = 15V, ICE = 30A e 2.43 ––– ––– 3.35 ––– ––– 4.50 ––– VGE = 15V, ICE = 120A e ––– 4.75 ––– VGE = 15V, ICE = 90A, TJ = 150°C e Gate Threshold Voltage 2.6 ––– 5.0 ∆VGE(th)/∆TJ Gate Threshold Voltage Coefficient ––– -12 ––– ICES Collector-to-Emitter Leakage Current ––– 2.0 5.0 ––– 5.0 ––– ––– 100 ––– Gate-to-Emitter Forward Leakage ––– ––– 100 Gate-to-Emitter Reverse Leakage ––– ––– V VCE = 300V, VGE = 0V, TJ = 100°C VCE = 300V, VGE = 0V, TJ = 150°C nA VGE = 30V -100 VGE = -30V VCE = 25V, ICE = 11A Forward Transconductance ––– 11 ––– S Qg Total Gate Charge ––– 34 ––– nC Qgc Gate-to-Collector Charge ––– 9.6 ––– td(on) Turn-On delay time ––– 20 ––– tr Rise time ––– 14 ––– td(off) Turn-Off delay time ––– 99 ––– tf Fall time ––– 68 ––– td(on) Turn-On delay time ––– 19 ––– tr Rise time ––– 15 ––– td(off) Turn-Off delay time ––– 139 ––– tf Fall time ––– 129 ––– tst Shoot Through Blocking Time 100 ––– ––– ––– 549 ––– ––– 637 ––– Energy per Pulse VCE = VGE, ICE = 250µA mV/°C Reference to 25°C µA VCE = 300V, VGE = 0V gfe EPULSE VGE = 15V, ICE = 60A e VGE = 15V, ICE = 90A e VGE(th) IGES V VCE = 200V, IC = 11A, VGE = 15Ve IC = 11A, VCC = 240V ns RG = 10Ω, L=200µH, LS= 150nH TJ = 25°C IC = 11A, VCC = 240V ns RG = 10Ω, L=200µH, LS= 150nH TJ = 150°C ns VCC = 240V, VGE = 15V, RG= 5.1Ω µJ VCC = 240V, RG= 5.10Ω, TJ = 25°C L =220nH, C= 0.10µF, VGE = 15V L =220nH, C= 0.10µF, VGE = 15V VCC = 240V, RG= 5.10Ω, TJ = 100°C VGE = 0V Cies Input Capacitance ––– 1153 ––– Coes Output Capacitance ––– 59 ––– Cres Reverse Transfer Capacitance ––– 27 ––– ƒ = 1.0MHz, LC Internal Collector Inductance ––– 4.5 ––– Between lead, LE Internal Emitter Inductance ––– 7.5 ––– pF nH VCE = 30V See Fig.13 6mm (0.25in.) from package and center of die contact Notes: Half sine wave with duty cycle = 0.05, PW=2µsec. Rθ is measured at TJ of approximately 90°C. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRGI4090PbF 280 320 Top 280 VGE = 18V VGE = 15V 240 VGE = 12V VGE = 10V Bottom VGE = 18V VGE = 15V VGE = 12V VGE = 10V 200 VGE = 8.0V VGE = 6.0V Bottom ICE (A) ICE (A) 200 Top 240 160 VGE = 8.0V VGE = 6.0V 160 120 120 80 80 40 40 0 0 0 5 10 15 20 25 0 30 5 10 20 25 30 VCE (V) VCE (V) Fig 1. Typical Output Characteristics @ 25°C Fig 2. Typical Output Characteristics @ 75°C 240 280 Top Top VGE = 18V VGE = 15V 240 Bottom VGE = 18V VGE = 15V 200 VGE = 12V VGE = 10V 200 VGE = 8.0V VGE = 6.0V VGE = 12V VGE = 10V 160 160 ICE (A) ICE (A) 15 120 Bottom VGE = 8.0V VGE = 6.0V 120 80 80 40 40 0 0 0 5 10 15 20 25 0 30 5 10 15 20 25 30 VCE (V) VCE (V) Fig 3. Typical Output Characteristics @ 125°C Fig 4. Typical Output Characteristics @ 150°C 20 240 IC = 11A 200 160 T J = 150°C VCE (V) ICE (A) 15 T J = 25°C 120 T J = 25°C T J 150°C 10 80 5 40 0 0 0 5 10 15 VGE (V) Fig 5. Typical Transfer Characteristics www.irf.com 20 0 5 10 15 20 VGE (V) Fig 6. VCE(ON) vs. Gate Voltage 3 IRGI4090PbF 25 160 PW= 2µs Duty cycle <= 0.05 Half Sine Wave 140 Repetitive Peak Current (A) 20 IC (A) 15 10 5 120 100 80 60 40 20 0 20 40 60 80 100 120 140 0 160 25 50 T C (°C) 125 150 Fig 8. Typical Repetitive Peak Current vs. Case Temperature 8000 8000 V CC = 240V V CC = 240V 7000 7000 Energy per Pulse (µJ) L = 220nH C = variable 6000 Energy per Pulse (µJ) 100 Case Temperature (°C) Fig 7. Maximum Collector Current vs. Case Temperature 5000 4000 100°C 3000 25°C 2000 L = 220nH C = 0.40µF 6000 5000 100°C 4000 25°C 3000 2000 1000 0 1000 120 125 130 135 140 145 150 155 160 165 170 180 Ic , Peak Collector Current (A) 190 200 210 220 230 240 VCE, Collector-to-Emitter Voltage (V) Fig 9. Typical EPULSE vs. Collector Current 9400 Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage 1000 V CC = 240V 8400 L = 220nH t = 1µs half sine 7400 C= 0.4µF 6400 100 5400 10µsec IC (A) Energy per Pulse (µJ) 75 4400 C= 0.2µF 3400 100µsec 10 1msec 2400 1400 TC = 25°C TJ = 150°C C= 0.1µF Single Pulse 400 1 25 50 75 100 125 TJ, Temperature (ºC) Fig 11. EPULSE vs. Temperature 4 150 1 10 100 1000 VCE (V) Fig 12. Forrward Bias Safe Operating Area www.irf.com IRGI4090PbF 10000 16 VGE , Gate-to-Emitter Voltage (V) VGS = 0V, f = 1 MHZ Cies = Cge + Cgd, C ce SHORTED Cres = Cgc Capacitance (pF) Coes = Cce + Cgc Cies 1000 100 Coes Cres IC = 11A 14 V CES = 240V 12 V CES = 150V 10 V CES = 60V 8 6 4 2 0 10 0 50 100 150 200 0 10 VCE, Collector-toEmitter-Voltage(V) 20 30 40 Q G , Total Gate Charge (nC) Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage 10 Thermal Response ( Z thJC ) D = 0.50 1 0.20 0.10 0.05 0.1 0.01 τJ 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE ) R1 R1 τJ τ1 R2 R2 τ2 τ1 R3 R3 R4 R4 τC τ τ2 τ3 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri Ri (°C/W) τi (sec) 0.24132 0.000104 0.68173 0.001551 1.10405 0.071769 1.62289 1.9251 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRGI4090PbF A RG C DRIVER PULSE A L VCC B PULSE B Ipulse RG DUT tST Fig 16b. tst Test Waveforms Fig 16a. tst and EPULSE Test Circuit VCE Energy L IC Current VCC DUT 0 1K Fig 16c. EPULSE Test Waveforms 6 Fig. 17 - Gate Charge Circuit (turn-off) www.irf.com IRGI4090PbF TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) TO-220 Full-Pak Part Marking Information (;$03/( 7+,6,6$1,5),* :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(. 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5),* . $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(. TO-220AB Full-Pak package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ The specifications set forth in this data sheet are the sole and exclusive specifications applicable to the identified product, and no specifications or features are implied whether by industry custom, sampling or otherwise. We qualify our products in accordance with our internal practices and procedures, which by their nature do not include qualification to all possible or even all widely used applications. Without limitation, we have not qualified our product for medical use or applications involving hi-reliability applications. Customers are encouraged to and responsible for qualifying product to their own use and their own application environments, especially where particular features are critical to operational performance or safety. Please contact your IR representative if you have specific design or use requirements or for further information. Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.06/08 www.irf.com 7