IRF IRGI4090PBF

PD - 97318A
IRGI4090PbF
PDP TRENCH IGBT
Features
l Advanced Trench IGBT Technology
l Optimized for Sustain and Energy Recovery
circuits in PDP applications
TM)
l Low VCE(on) and Energy per Pulse (EPULSE
for improved panel efficiency
l High repetitive peak current capability
l Lead Free package
Key Parameters
VCE min
VCE(ON) typ. @ IC = 11A
IRP max @ TC= 25°C
300
1.20
140
V
V
A
TJ max
150
°C
C
E
C
G
G
TO-220AB
Full-Pak
E
n-channel
G
Gate
C
Collector
E
Emitter
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Absolute Maximum Ratings
Max.
Units
VGE
Gate-to-Emitter Voltage
±30
V
A
Parameter
IC @ TC = 25°C
Continuous Collector Current, VGE @ 15V
21
IC @ TC = 100°C
Continuous Collector, VGE @ 15V
11
IRP @ TC = 25°C
Repetitive Peak Current c
140
PD @TC = 25°C
Power Dissipation
34
PD @TC = 100°C
Power Dissipation
14
W
Linear Derating Factor
0.27
W/°C
TJ
Operating Junction and
-40 to + 150
°C
TSTG
Storage Temperature Range
300
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
10lbxin (1.1Nxm)
N
Thermal Resistance
Parameter
RθJC
www.irf.com
Junction-to-Case d
Typ.
Max.
Units
–––
3.65
°C/W
1
06/13/08
IRGI4090PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Typ. Max. Units
Conditions
BVCES
Collector-to-Emitter Breakdown Voltage
300
–––
–––
V
VGE = 0V, ICE = 500µA
V(BR)ECS
Emitter-to-Collector Breakdown Voltagee
30
–––
–––
V
VGE = 0V, ICE = 1.0A
∆ΒVCES/∆TJ
Breakdown Voltage Temp. Coefficient
–––
0.30
–––
VCE(on)
Static Collector-to-Emitter Voltage
–––
1.20
–––
V/°C Reference to 25°C, ICE = 5.0µA
VGE = 15V, ICE = 11A e
–––
1.67
1.94
VGE = 15V, ICE = 30A e
2.43
–––
–––
3.35
–––
–––
4.50
–––
VGE = 15V, ICE = 120A e
–––
4.75
–––
VGE = 15V, ICE = 90A, TJ = 150°C e
Gate Threshold Voltage
2.6
–––
5.0
∆VGE(th)/∆TJ
Gate Threshold Voltage Coefficient
–––
-12
–––
ICES
Collector-to-Emitter Leakage Current
–––
2.0
5.0
–––
5.0
–––
–––
100
–––
Gate-to-Emitter Forward Leakage
–––
–––
100
Gate-to-Emitter Reverse Leakage
–––
–––
V
VCE = 300V, VGE = 0V, TJ = 100°C
VCE = 300V, VGE = 0V, TJ = 150°C
nA
VGE = 30V
-100
VGE = -30V
VCE = 25V, ICE = 11A
Forward Transconductance
–––
11
–––
S
Qg
Total Gate Charge
–––
34
–––
nC
Qgc
Gate-to-Collector Charge
–––
9.6
–––
td(on)
Turn-On delay time
–––
20
–––
tr
Rise time
–––
14
–––
td(off)
Turn-Off delay time
–––
99
–––
tf
Fall time
–––
68
–––
td(on)
Turn-On delay time
–––
19
–––
tr
Rise time
–––
15
–––
td(off)
Turn-Off delay time
–––
139
–––
tf
Fall time
–––
129
–––
tst
Shoot Through Blocking Time
100
–––
–––
–––
549
–––
–––
637
–––
Energy per Pulse
VCE = VGE, ICE = 250µA
mV/°C Reference to 25°C
µA VCE = 300V, VGE = 0V
gfe
EPULSE
VGE = 15V, ICE = 60A e
VGE = 15V, ICE = 90A e
VGE(th)
IGES
V
VCE = 200V, IC = 11A, VGE = 15Ve
IC = 11A, VCC = 240V
ns
RG = 10Ω, L=200µH, LS= 150nH
TJ = 25°C
IC = 11A, VCC = 240V
ns
RG = 10Ω, L=200µH, LS= 150nH
TJ = 150°C
ns
VCC = 240V, VGE = 15V, RG= 5.1Ω
µJ
VCC = 240V, RG= 5.10Ω, TJ = 25°C
L =220nH, C= 0.10µF, VGE = 15V
L =220nH, C= 0.10µF, VGE = 15V
VCC = 240V, RG= 5.10Ω, TJ = 100°C
VGE = 0V
Cies
Input Capacitance
–––
1153
–––
Coes
Output Capacitance
–––
59
–––
Cres
Reverse Transfer Capacitance
–––
27
–––
ƒ = 1.0MHz,
LC
Internal Collector Inductance
–––
4.5
–––
Between lead,
LE
Internal Emitter Inductance
–––
7.5
–––
pF
nH
VCE = 30V
See Fig.13
6mm (0.25in.)
from package
and center of die contact
Notes:
 Half sine wave with duty cycle = 0.05, PW=2µsec.
‚ Rθ is measured at TJ of approximately 90°C.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRGI4090PbF
280
320
Top
280
VGE = 18V
VGE = 15V
240
VGE = 12V
VGE = 10V
Bottom
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
200
VGE = 8.0V
VGE = 6.0V
Bottom
ICE (A)
ICE (A)
200
Top
240
160
VGE = 8.0V
VGE = 6.0V
160
120
120
80
80
40
40
0
0
0
5
10
15
20
25
0
30
5
10
20
25
30
VCE (V)
VCE (V)
Fig 1. Typical Output Characteristics @ 25°C
Fig 2. Typical Output Characteristics @ 75°C
240
280
Top
Top
VGE = 18V
VGE = 15V
240
Bottom
VGE = 18V
VGE = 15V
200
VGE = 12V
VGE = 10V
200
VGE = 8.0V
VGE = 6.0V
VGE = 12V
VGE = 10V
160
160
ICE (A)
ICE (A)
15
120
Bottom
VGE = 8.0V
VGE = 6.0V
120
80
80
40
40
0
0
0
5
10
15
20
25
0
30
5
10
15
20
25
30
VCE (V)
VCE (V)
Fig 3. Typical Output Characteristics @ 125°C
Fig 4. Typical Output Characteristics @ 150°C
20
240
IC = 11A
200
160
T J = 150°C
VCE (V)
ICE (A)
15
T J = 25°C
120
T J = 25°C
T J 150°C
10
80
5
40
0
0
0
5
10
15
VGE (V)
Fig 5. Typical Transfer Characteristics
www.irf.com
20
0
5
10
15
20
VGE (V)
Fig 6. VCE(ON) vs. Gate Voltage
3
IRGI4090PbF
25
160
PW= 2µs
Duty cycle <= 0.05
Half Sine Wave
140
Repetitive Peak Current (A)
20
IC (A)
15
10
5
120
100
80
60
40
20
0
20
40
60
80
100
120
140
0
160
25
50
T C (°C)
125
150
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
8000
8000
V CC = 240V
V CC = 240V
7000
7000
Energy per Pulse (µJ)
L = 220nH
C = variable
6000
Energy per Pulse (µJ)
100
Case Temperature (°C)
Fig 7. Maximum Collector Current vs. Case Temperature
5000
4000
100°C
3000
25°C
2000
L = 220nH
C = 0.40µF
6000
5000
100°C
4000
25°C
3000
2000
1000
0
1000
120 125 130 135 140 145 150 155 160 165 170
180
Ic , Peak Collector Current (A)
190
200
210
220
230
240
VCE, Collector-to-Emitter Voltage (V)
Fig 9. Typical EPULSE vs. Collector Current
9400
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage
1000
V CC = 240V
8400
L = 220nH
t = 1µs half sine
7400
C= 0.4µF
6400
100
5400
10µsec
IC (A)
Energy per Pulse (µJ)
75
4400
C= 0.2µF
3400
100µsec
10
1msec
2400
1400
TC = 25°C
TJ = 150°C
C= 0.1µF
Single Pulse
400
1
25
50
75
100
125
TJ, Temperature (ºC)
Fig 11. EPULSE vs. Temperature
4
150
1
10
100
1000
VCE (V)
Fig 12. Forrward Bias Safe Operating Area
www.irf.com
IRGI4090PbF
10000
16
VGE , Gate-to-Emitter Voltage (V)
VGS = 0V,
f = 1 MHZ
Cies = Cge + Cgd, C ce SHORTED
Cres = Cgc
Capacitance (pF)
Coes = Cce + Cgc
Cies
1000
100
Coes
Cres
IC = 11A
14
V CES = 240V
12
V CES = 150V
10
V CES = 60V
8
6
4
2
0
10
0
50
100
150
200
0
10
VCE, Collector-toEmitter-Voltage(V)
20
30
40
Q G , Total Gate Charge (nC)
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
10
Thermal Response ( Z thJC )
D = 0.50
1
0.20
0.10
0.05
0.1
0.01
τJ
0.02
0.01
SINGLE PULSE
( THERMAL RESPONSE )
R1
R1
τJ
τ1
R2
R2
τ2
τ1
R3
R3
R4
R4
τC
τ
τ2
τ3
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
Ri (°C/W)
τi (sec)
0.24132
0.000104
0.68173
0.001551
1.10405
0.071769
1.62289
1.9251
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRGI4090PbF
A
RG
C
DRIVER
PULSE A
L
VCC
B
PULSE B
Ipulse
RG
DUT
tST
Fig 16b. tst Test Waveforms
Fig 16a. tst and EPULSE Test Circuit
VCE
Energy
L
IC Current
VCC
DUT
0
1K
Fig 16c. EPULSE Test Waveforms
6
Fig. 17 - Gate Charge Circuit (turn-off)
www.irf.com
IRGI4090PbF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
(;$03/( 7+,6,6$1,5),*
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(.
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5),*
.
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(.
TO-220AB Full-Pak package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
The specifications set forth in this data sheet are the sole and
exclusive specifications applicable to the identified product,
and no specifications or features are implied whether by
industry custom, sampling or otherwise. We qualify our
products in accordance with our internal practices and
procedures, which by their nature do not include qualification to
all possible or even all widely used applications. Without
limitation, we have not qualified our product for medical use or
applications involving hi-reliability applications. Customers are
encouraged to and responsible for qualifying product to their
own use and their own application environments, especially
where particular features are critical to operational performance
or safety. Please contact your IR representative if you have
specific design or use requirements or for further information.
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.06/08
www.irf.com
7