PD - 97285 IRGI4085PbF PDP TRENCH IGBT Features l Advanced Trench IGBT Technology l Optimized for Sustain and Energy Recovery circuits in PDP applications TM) l Low VCE(on) and Energy per Pulse (EPULSE for improved panel efficiency l High repetitive peak current capability l Lead Free package Key Parameters VCE min VCE(ON) typ. @ IC = 28A IRP max @ TC= 25°C TJ max 330 1.21 210 150 V V A °C C E C G G TO-220AB Full-Pak E n-channel G Gate C Collector E Emitter Description This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP applications. Absolute Maximum Ratings Max. Units ±30 V IC @ TC = 25°C Gate-to-Emitter Voltage Continuous Collector Current, VGE @ 15V 28 A IC @ TC = 100°C Continuous Collector, VGE @ 15V 15 IRP @ TC = 25°C Repetitive Peak Current c 210 PD @TC = 25°C Power Dissipation 38 PD @TC = 100°C Power Dissipation 15 Parameter VGE W Linear Derating Factor 0.30 W/°C TJ Operating Junction and -40 to + 150 °C TSTG Storage Temperature Range 300 Soldering Temperature for 10 seconds Mounting Torque, 6-32 or M3 Screw 10lbxin (1.1Nxm) N Thermal Resistance Parameter RθJC www.irf.com Junction-to-Case d Typ. Max. Units ––– 3.29 °C/W 1 05/30/07 IRGI4085PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Conditions Typ. Max. Units BVCES Collector-to-Emitter Breakdown Voltage 330 ––– ––– V VGE = 0V, ICE = 1 mA V(BR)ECS Emitter-to-Collector Breakdown Voltagee 30 ––– ––– V VGE = 0V, ICE = 1 A ∆ΒVCES/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.31 ––– ––– 1.05 ––– ––– 1.21 1.50 1.35 ––– ––– 1.68 ––– VGE = 15V, ICE = 40A e VGE = 15V, ICE = 70A e ––– 2.23 ––– VGE = 15V, ICE = 120A e VCE(on) Static Collector-to-Emitter Voltage V/°C Reference to 25°C, ICE = 1mA VGE = 15V, ICE = 15A e VGE = 15V, ICE = 28A e V VGE = 15V, ICE = 70A, TJ = 150°C e ––– 1.90 ––– VGE(th) Gate Threshold Voltage 2.6 ––– 5.0 V ∆VGE(th)/∆TJ ICES Gate Threshold Voltage Coefficient ––– -10 ––– mV/°C Collector-to-Emitter Leakage Current ––– 2.0 25 µA ––– 5.0 ––– ––– 100 ––– ––– ––– 100 IGES Gate-to-Emitter Forward Leakage VCE = VGE, ICE = 500µA VCE = 330V, VGE = 0V VCE = 330V, VGE = 0V, TJ = 100°C VCE = 330V, VGE = 0V, TJ = 150°C nA VGE = 30V VGE = -30V Gate-to-Emitter Reverse Leakage ––– ––– -100 gfe Forward Transconductance ––– 51 ––– S Qg Total Gate Charge ––– 84 ––– nC Qgc Gate-to-Collector Charge ––– 30 ––– td(on) Turn-On delay time ––– 48 ––– tr Rise time ––– 37 ––– td(off) Turn-Off delay time ––– 180 ––– tf Fall time ––– 102 ––– td(on) Turn-On delay time ––– 45 ––– tr Rise time ––– 38 ––– td(off) Turn-Off delay time ––– 234 ––– tf Fall time ––– 185 ––– tst Shoot Through Blocking Time 100 ––– ––– EPULSE Energy per Pulse ––– 854 ––– ––– 977 ––– VCE = 25V, ICE = 25A VCE = 200V, IC = 25A, VGE = 15Ve IC = 25A, VCC = 196V ns RG = 10Ω, L=200µH, LS= 150nH TJ = 25°C IC = 25A, VCC = 196V ns RG = 10Ω, L=200µH, LS= 150nH TJ = 150°C ns VCC = 240V, VGE = 15V, RG= 5.1Ω L = 220nH, C= 0.40µF, VGE = 15V µJ VCC = 240V, RG= 5.1Ω, TJ = 25°C L = 220nH, C= 0.40µF, VGE = 15V VCC = 240V, RG= 5.1Ω, TJ = 100°C VGE = 0V Cies Input Capacitance ––– 2287 ––– Coes Output Capacitance ––– 141 ––– Cres Reverse Transfer Capacitance ––– 73 ––– ƒ = 1.0MHz, LC Internal Collector Inductance ––– 5.0 ––– Between lead, LE Internal Emitter Inductance ––– 13 ––– pF nH VCE = 30V See Fig.13 6mm (0.25in.) from package and center of die contact Notes: Half sine wave with duty cycle = 0.10, ton=2µsec. Rθ is measured at TJ of approximately 90°C. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRGI4085PbF 600 600 Top 500 Bottom 500 400 ICE (A) ICE (A) 400 Top V = 18V GE V = 15V GE V = 12V GE V = 10V GE V = 8.0V GE V = 6.0V GE 300 Bottom 300 200 200 100 100 0 0 0 5 10 15 20 25 30 0 5 10 VCE (V) 20 25 30 Fig 2. Typical Output Characteristics @ 75°C 400 400 Top 300 V = 18V GE V = 15V GE V = 12V GE V = 10V GE V = 8.0V GE V = 6.0V GE Top 300 Bottom ICE (A) Bottom ICE (A) 15 VCE (V) Fig 1. Typical Output Characteristics @ 25°C 200 100 V = 18V GE V = 15V GE V = 12V GE V = 10V GE V = 8.0V GE V = 6.0V GE 200 100 0 0 0 5 10 15 20 25 30 0 5 10 VCE (V) 15 20 25 30 VCE (V) Fig 3. Typical Output Characteristics @ 125°C Fig 4. Typical Output Characteristics @ 150°C 15 500 IC = 25A 400 10 300 T J = 25°C VCE (V) IC, Collector-to-Emitter Current (A) V = 18V GE V = 15V GE V = 12V GE V = 10V GE V = 8.0V GE V = 6.0V GE T J = 150°C 200 T J = 25°C T J = 150°C 5 100 0 0 4 6 8 10 12 14 VGE, Gate-to-Emitter Voltage (V) Fig 5. Typical Transfer Characteristics www.irf.com 16 5 10 15 20 VGE (V) Fig 6. VCE(ON) vs. Gate Voltage 3 IRGI4085PbF 30 220 ton= 2µs Duty cycle <= 0.10 Half Sine Wave 200 Repetitive Peak Current (A) IC, Collector Current (A) 25 20 15 10 5 180 160 140 120 100 80 60 40 20 0 0 0 25 50 75 100 125 150 25 75 100 125 150 Case Temperature (°C) T C, Case Temperature (°C) Fig 7. Maximum Collector Current vs. Case Temperature Fig 8. Typical Repetitive Peak Current vs. Case Temperature 1000 1000 V CC = 240V V CC = 240V L = 220nH C = variable L = 220nH C = variable 900 100°C Energy per Pulse (µJ) 900 Energy per Pulse (µJ) 50 800 700 25°C 600 500 100°C 800 700 25°C 600 500 400 400 170 180 190 200 210 220 230 240 170 IC, Peak Collector Current (A) 180 190 200 210 220 230 240 IC, Peak Collector Current (A) Fig 9. Typical EPULSE vs. Collector Current Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage 1000 1400 V CC = 240V L = 220nH t = 1µs half sine C= 0.4µF 100 10µsec 1000 1msec 800 C= 0.3µF 600 C= 0.2µF IC (A) Energy per Pulse (µJ) 1200 1 Tc = 25°C Tj = 150°C Single Pulse 400 0.1 200 25 50 75 100 125 TJ, Temperature (ºC) Fig 11. EPULSE vs. Temperature 4 100µsec 10 150 1 10 100 1000 VCE (V) Fig 12. Forrward Bias Safe Operating Area www.irf.com IRGI4085PbF 100000 VGE, Gate-to-Emitter Voltage (V) Coes = Cce + Cgc 10000 Capacitance (pF) 16 VGS = 0V, f = 1 MHZ C ies = C ge + C gd , C ce SHORTED Cres = C gc Cies 1000 Coes 100 IC = 25A 14 V CES = 240V 12 V CES = 150V V CES = 60V 10 8 6 4 2 Cres 0 10 0 50 100 150 0 200 20 40 60 80 100 Q G, Total Gate Charge (nC) VCE, Collector-toEmitter-Voltage(V) Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage Thermal Response ( Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 0.02 τJ 0.01 0.01 0.001 1E-006 SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 0.0001 0.001 R1 R1 τJ τ1 R2 R2 τ2 τ1 R3 R3 R4 R4 τC τ τ2 τ3 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri Ri (°C/W) τi (sec) 0.14521 0.000104 0.39603 0.002547 1.23063 0.171095 1.51959 2.615 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRGI4085PbF A RG C DRIVER PULSE A L VCC B RG PULSE B Ipulse DUT tST Fig 16b. tst Test Waveforms Fig 16a. tst and EPULSE Test Circuit VCE Energy L IC Current DUT 0 VCC 1K Fig 16c. EPULSE Test Waveforms 6 Fig. 17 - Gate Charge Circuit (turn-off) www.irf.com IRGI4085PbF TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) TO-220 Full-Pak Part Marking Information (;$03/( 7+,6,6$1,5),* :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(. 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 ,5),* . '$7(&2'( <($5 :((. /,1(. TO-220AB Full-Pak package is not recommended for Surface Mount Application. The specifications set forth in this data sheet are the sole and exclusive specifications applicable to the identified product, and no specifications or features are implied whether by industry custom, sampling or otherwise. We qualify our products in accordance with our internal practices and procedures, which by their nature do not include qualification to all possible or even all widely used applications. Without limitation, we have not qualified our product for medical use or applications involving hi-reliability applications. Customers are encouraged to and responsible for qualifying product to their own use and their own application environments, especially where particular features are critical to operational performance or safety. Please contact your IR representative if you have specific design or use requirements or for further information. Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.05/07 www.irf.com 7