IRF IRGI4085PBF

PD - 97285
IRGI4085PbF
PDP TRENCH IGBT
Features
l Advanced Trench IGBT Technology
l Optimized for Sustain and Energy Recovery
circuits in PDP applications
TM)
l Low VCE(on) and Energy per Pulse (EPULSE
for improved panel efficiency
l High repetitive peak current capability
l Lead Free package
Key Parameters
VCE min
VCE(ON) typ. @ IC = 28A
IRP max @ TC= 25°C
TJ max
330
1.21
210
150
V
V
A
°C
C
E
C
G
G
TO-220AB
Full-Pak
E
n-channel
G
Gate
C
Collector
E
Emitter
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Absolute Maximum Ratings
Max.
Units
±30
V
IC @ TC = 25°C
Gate-to-Emitter Voltage
Continuous Collector Current, VGE @ 15V
28
A
IC @ TC = 100°C
Continuous Collector, VGE @ 15V
15
IRP @ TC = 25°C
Repetitive Peak Current c
210
PD @TC = 25°C
Power Dissipation
38
PD @TC = 100°C
Power Dissipation
15
Parameter
VGE
W
Linear Derating Factor
0.30
W/°C
TJ
Operating Junction and
-40 to + 150
°C
TSTG
Storage Temperature Range
300
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
10lbxin (1.1Nxm)
N
Thermal Resistance
Parameter
RθJC
www.irf.com
Junction-to-Case d
Typ.
Max.
Units
–––
3.29
°C/W
1
05/30/07
IRGI4085PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Conditions
Typ. Max. Units
BVCES
Collector-to-Emitter Breakdown Voltage
330
–––
–––
V
VGE = 0V, ICE = 1 mA
V(BR)ECS
Emitter-to-Collector Breakdown Voltagee
30
–––
–––
V
VGE = 0V, ICE = 1 A
∆ΒVCES/∆TJ
Breakdown Voltage Temp. Coefficient
–––
0.31
–––
–––
1.05
–––
–––
1.21
1.50
1.35
–––
–––
1.68
–––
VGE = 15V, ICE = 40A e
VGE = 15V, ICE = 70A e
–––
2.23
–––
VGE = 15V, ICE = 120A e
VCE(on)
Static Collector-to-Emitter Voltage
V/°C Reference to 25°C, ICE = 1mA
VGE = 15V, ICE = 15A e
VGE = 15V, ICE = 28A e
V
VGE = 15V, ICE = 70A, TJ = 150°C e
–––
1.90
–––
VGE(th)
Gate Threshold Voltage
2.6
–––
5.0
V
∆VGE(th)/∆TJ
ICES
Gate Threshold Voltage Coefficient
–––
-10
–––
mV/°C
Collector-to-Emitter Leakage Current
–––
2.0
25
µA
–––
5.0
–––
–––
100
–––
–––
–––
100
IGES
Gate-to-Emitter Forward Leakage
VCE = VGE, ICE = 500µA
VCE = 330V, VGE = 0V
VCE = 330V, VGE = 0V, TJ = 100°C
VCE = 330V, VGE = 0V, TJ = 150°C
nA
VGE = 30V
VGE = -30V
Gate-to-Emitter Reverse Leakage
–––
–––
-100
gfe
Forward Transconductance
–––
51
–––
S
Qg
Total Gate Charge
–––
84
–––
nC
Qgc
Gate-to-Collector Charge
–––
30
–––
td(on)
Turn-On delay time
–––
48
–––
tr
Rise time
–––
37
–––
td(off)
Turn-Off delay time
–––
180
–––
tf
Fall time
–––
102
–––
td(on)
Turn-On delay time
–––
45
–––
tr
Rise time
–––
38
–––
td(off)
Turn-Off delay time
–––
234
–––
tf
Fall time
–––
185
–––
tst
Shoot Through Blocking Time
100
–––
–––
EPULSE
Energy per Pulse
–––
854
–––
–––
977
–––
VCE = 25V, ICE = 25A
VCE = 200V, IC = 25A, VGE = 15Ve
IC = 25A, VCC = 196V
ns
RG = 10Ω, L=200µH, LS= 150nH
TJ = 25°C
IC = 25A, VCC = 196V
ns
RG = 10Ω, L=200µH, LS= 150nH
TJ = 150°C
ns
VCC = 240V, VGE = 15V, RG= 5.1Ω
L = 220nH, C= 0.40µF, VGE = 15V
µJ
VCC = 240V, RG= 5.1Ω, TJ = 25°C
L = 220nH, C= 0.40µF, VGE = 15V
VCC = 240V, RG= 5.1Ω, TJ = 100°C
VGE = 0V
Cies
Input Capacitance
–––
2287
–––
Coes
Output Capacitance
–––
141
–––
Cres
Reverse Transfer Capacitance
–––
73
–––
ƒ = 1.0MHz,
LC
Internal Collector Inductance
–––
5.0
–––
Between lead,
LE
Internal Emitter Inductance
–––
13
–––
pF
nH
VCE = 30V
See Fig.13
6mm (0.25in.)
from package
and center of die contact
Notes:
 Half sine wave with duty cycle = 0.10, ton=2µsec.
‚ Rθ is measured at TJ of approximately 90°C.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRGI4085PbF
600
600
Top
500
Bottom
500
400
ICE (A)
ICE (A)
400
Top
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
300
Bottom
300
200
200
100
100
0
0
0
5
10
15
20
25
30
0
5
10
VCE (V)
20
25
30
Fig 2. Typical Output Characteristics @ 75°C
400
400
Top
300
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
Top
300
Bottom
ICE (A)
Bottom
ICE (A)
15
VCE (V)
Fig 1. Typical Output Characteristics @ 25°C
200
100
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
200
100
0
0
0
5
10
15
20
25
30
0
5
10
VCE (V)
15
20
25
30
VCE (V)
Fig 3. Typical Output Characteristics @ 125°C
Fig 4. Typical Output Characteristics @ 150°C
15
500
IC = 25A
400
10
300
T J = 25°C
VCE (V)
IC, Collector-to-Emitter Current (A)
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
T J = 150°C
200
T J = 25°C
T J = 150°C
5
100
0
0
4
6
8
10
12
14
VGE, Gate-to-Emitter Voltage (V)
Fig 5. Typical Transfer Characteristics
www.irf.com
16
5
10
15
20
VGE (V)
Fig 6. VCE(ON) vs. Gate Voltage
3
IRGI4085PbF
30
220
ton= 2µs
Duty cycle <= 0.10
Half Sine Wave
200
Repetitive Peak Current (A)
IC, Collector Current (A)
25
20
15
10
5
180
160
140
120
100
80
60
40
20
0
0
0
25
50
75
100
125
150
25
75
100
125
150
Case Temperature (°C)
T C, Case Temperature (°C)
Fig 7. Maximum Collector Current vs. Case Temperature
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
1000
1000
V CC = 240V
V CC = 240V
L = 220nH
C = variable
L = 220nH
C = variable
900
100°C
Energy per Pulse (µJ)
900
Energy per Pulse (µJ)
50
800
700
25°C
600
500
100°C
800
700
25°C
600
500
400
400
170
180
190
200
210
220
230
240
170
IC, Peak Collector Current (A)
180
190
200
210
220
230
240
IC, Peak Collector Current (A)
Fig 9. Typical EPULSE vs. Collector Current
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage
1000
1400
V CC = 240V
L = 220nH
t = 1µs half sine
C= 0.4µF
100
10µsec
1000
1msec
800
C= 0.3µF
600
C= 0.2µF
IC (A)
Energy per Pulse (µJ)
1200
1
Tc = 25°C
Tj = 150°C
Single Pulse
400
0.1
200
25
50
75
100
125
TJ, Temperature (ºC)
Fig 11. EPULSE vs. Temperature
4
100µsec
10
150
1
10
100
1000
VCE (V)
Fig 12. Forrward Bias Safe Operating Area
www.irf.com
IRGI4085PbF
100000
VGE, Gate-to-Emitter Voltage (V)
Coes = Cce + Cgc
10000
Capacitance (pF)
16
VGS = 0V,
f = 1 MHZ
C ies = C ge + C gd , C ce SHORTED
Cres = C gc
Cies
1000
Coes
100
IC = 25A
14
V CES = 240V
12
V CES = 150V
V CES = 60V
10
8
6
4
2
Cres
0
10
0
50
100
150
0
200
20
40
60
80
100
Q G, Total Gate Charge (nC)
VCE, Collector-toEmitter-Voltage(V)
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
Thermal Response ( Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
0.1
0.02
τJ
0.01
0.01
0.001
1E-006
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
0.0001
0.001
R1
R1
τJ
τ1
R2
R2
τ2
τ1
R3
R3
R4
R4
τC
τ
τ2
τ3
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
Ri (°C/W)
τi (sec)
0.14521
0.000104
0.39603
0.002547
1.23063
0.171095
1.51959
2.615
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRGI4085PbF
A
RG
C
DRIVER
PULSE A
L
VCC
B
RG
PULSE B
Ipulse
DUT
tST
Fig 16b. tst Test Waveforms
Fig 16a. tst and EPULSE Test Circuit
VCE
Energy
L
IC Current
DUT
0
VCC
1K
Fig 16c. EPULSE Test Waveforms
6
Fig. 17 - Gate Charge Circuit (turn-off)
www.irf.com
IRGI4085PbF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
(;$03/( 7+,6,6$1,5),*
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(.
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
,5),*
.
'$7(&2'(
<($5 :((.
/,1(.
TO-220AB Full-Pak package is not recommended for Surface Mount Application.
The specifications set forth in this data sheet are the sole and
exclusive specifications applicable to the identified product,
and no specifications or features are implied whether by
industry custom, sampling or otherwise. We qualify our
products in accordance with our internal practices and
procedures, which by their nature do not include qualification to
all possible or even all widely used applications. Without
limitation, we have not qualified our product for medical use or
applications involving hi-reliability applications. Customers are
encouraged to and responsible for qualifying product to their
own use and their own application environments, especially
where particular features are critical to operational performance
or safety. Please contact your IR representative if you have
specific design or use requirements or for further information.
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.05/07
www.irf.com
7