PD - 97386 PDP TRENCH IGBT Features l Advanced Trench IGBT Technology l Optimized for Sustain and Energy Recovery circuits in PDP applications TM) l Low VCE(on) and Energy per Pulse (E PULSE for improved panel efficiency l High repetitive peak current capability l Lead Free package IRG6IC30UPbF Key Parameters VCE min VCE(ON) typ. @ IC = 25A IRP max @ TC= 25°C TJ max 600 1.50 250 150 c V V A °C C E C G G TO-220AB Full-Pak E n-channel G Gate C Collector E Emitter Description This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP applications. Absolute Maximum Ratings Parameter VGE IC @ TC = 25°C IC @ TC = 100°C IRP @ TC = 25°C PD @TC = 25°C PD @TC = 100°C TJ TSTG Gate-to-Emitter Voltage Continuous Collector Current, VGE @ 15V Continuous Collector, VGE @ 15V Repetitive Peak Current Power Dissipation Power Dissipation Units ±30 25 V A 12 250 c Linear Derating Factor Operating Junction and Storage Temperature Range Soldering Temperature for 10 seconds Mounting Torque, 6-32 or M3 Screw Max. 37 15 W 0.30 -40 to + 150 W/°C °C x 300 x 10lb in (1.1N m) N Thermal Resistance Parameter RθJC RθJA www.irf.com d Junction-to-Case Junction-to-Ambient d Typ. Max. Units ––– ––– 3.1 65 °C/W 1 03/31/09 IRG6IC30UPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter BVCES Collector-to-Emitter Breakdown Voltage V(BR)ECS Emitter-to-Collector Breakdown Voltage Breakdown Voltage Temp. Coefficient ∆ΒVCES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ ICES IGES gfe Qg Qgc td(on) Static Collector-to-Emitter Voltage e 600 ––– ––– 15 ––– ––– 0.49 ––– ––– ––– 1.29 ––– ––– 1.50 1.73 1.92 ––– ––– ––– 2.16 2.88 ––– ––– Collector-to-Emitter Leakage Current ––– 2.0 ––– ––– 10 40 ––– 150 ––– Gate-to-Emitter Forward Leakage Gate-to-Emitter Reverse Leakage ––– ––– ––– ––– 100 -100 nA Forward Transconductance ––– 32 ––– S Total Gate Charge Gate-to-Collector Charge ––– ––– 79 30 ––– ––– nC ––– Fall time ––– 120 ––– Turn-On delay time Rise time ––– ––– 18 17 ––– ––– Turn-Off delay time ––– 190 ––– tst Fall time Shoot Through Blocking Time ––– 100 240 ––– ––– ––– EPULSE Energy per Pulse ––– 1020 ––– ––– 1150 ––– Human Body Model Machine Model Cres LC VCE = 600V, VGE = 0V, TJ = 150°C VGE = 30V VGE = -30V VCE = 25V, ICE = 25A VCE = 400V, IC = 25A, VGE = 15V e IC = 25A, VCC = 400V ns RG = 10Ω, L=200µH TJ = 25°C IC = 25A, VCC = 400V ns RG = 10Ω, L=200µH TJ = 150°C ns VCC = 240V, VGE = 15V, RG= 5.1Ω L = 220nH, C= 0.40µF, VGE = 15V µJ VCC = 240V, RG= 5.1Ω, TJ = 25°C L = 220nH, C= 0.40µF, VGE = 15V VCC = 240V, RG= 5.1Ω, TJ = 100°C Class 2 (Per JEDEC standard JESD22-A114) Class B (Per EIA/JEDEC standard EIA/JESD22-A115) VGE = 0V 2390 ––– 85 ––– pF VCE = 30V Input Capacitance Output Capacitance Reverse Transfer Capacitance ––– ––– ––– 58 ––– ƒ = 1.0MHz, Internal Collector Inductance ––– 4.5 ––– Between lead, Internal Emitter Inductance ––– 7.5 ––– nH LE e VGE = 15V, ICE = 25A, TJ = 150°C 5.0 V VCE = VGE, ICE = 500µA ––– mV/°C VCE = 600V, VGE = 0V 20 V ––– CE = 600V, VGE = 0V, T J = 100°C µA VCE = 600V, VGE = 0V, TJ = 125°C 100 ––– ––– Cies Coes VGE = 15V, ICE ––– 20 ESD VGE = 15V, ICE VGE = 15V, ICE ––– -8.9 16 160 tf V 1.51 ––– tr td(off) e e = 40A e = 70A e = 120A e VGE = 15V, ICE = 25A 2.6 ––– ––– ––– td(on) V VGE = 0V, ICE = 1.0A V/°C Reference to 25°C, ICE = 1mA VGE = 15V, ICE = 12A ––– Rise time Turn-Off delay time td(off) tf V VGE = 0V, ICE = 1.0mA Gate Threshold Voltage Gate Threshold Voltage Coefficient Turn-On delay time tr Conditions Min. Typ. Max. Units See Fig.13 6mm (0.25in.) from package and center of die contact Notes: Half sine wave with duty cycle <= 0.02, ton=1.0µsec. Rθ is measured at TJ of approximately 90°C. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRG6IC30UPbF 500 500 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 400 ICE (A) 350 300 250 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 450 400 350 ICE (A) 450 200 300 250 200 150 150 100 100 50 50 0 0 0 2 4 6 8 10 0 2 4 VCE (V) 10 Fig 2. Typical Output Characteristics @ 75°C 500 500 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 400 350 300 250 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 450 400 350 ICE (A) 450 ICE (A) 8 VCE (V) Fig 1. Typical Output Characteristics @ 25°C 200 300 250 200 150 150 100 100 50 50 0 0 0 2 4 6 8 10 12 14 0 2 4 VCE (V) 6 8 10 12 14 VCE (V) Fig 3. Typical Output Characteristics @ 125°C Fig 4. Typical Output Characteristics @ 150°C 500 20 450 VCE, Voltage Collector-to-Emitter (V) ICE, Collector-to-Emitter Current (A) 6 T J = 25°C 400 T J = 150°C 350 300 250 200 150 100 50 0 IC = 25A 18 16 T J = 25°C T J = 150°C 14 12 10 8 6 4 2 0 0 5 10 15 VGE, Gate-to-Emitter Voltage (V) Fig 5. Typical Transfer Characteristics www.irf.com 20 0 5 10 15 20 VGE, Voltage Gate-to-Emitter (V) Fig 6. VCE(ON) vs. Gate Voltage 3 IRG6IC30UPbF 30 250 Repetitive Peak Current (A) 25 IC (A) 20 15 10 5 150 100 ton= 1.0µs Duty cycle <= 0.02 Half Sine Wave 50 0 0 0 25 50 75 100 125 25 150 50 75 100 125 150 Case Temperature (°C) T C (°C) Fig 7. Maximum Collector Current vs. Case Temperature Fig 8. Typical Repetitive Peak Current vs. Case Temperature 1200 1200 V CC = 240V L = 220nH C = variable 1000 100°C 900 800 25°C 700 L = 220nH C = 0.4µF 1100 Energy per Pulse (µJ) 1100 Energy per Pulse (µJ) 200 600 1000 100°C 900 25°C 800 700 500 400 600 170 180 190 200 210 220 230 195 200 205 210 215 220 225 230 235 240 IC, Peak Collector Current (A) VCE, Collector-to-Emitter Voltage (V) Fig 9. Typical EPULSE vs. Collector Current Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage 1600 1000 V CC = 240V L = 220nH t = 1µs half sine C= 0.4µF 1200 100 1000 100µsec IC (A) Energy per Pulse (µJ) 1400 C= 0.3µF 800 1msec 10 C= 0.2µF Tc = 25°C Tj = 175°C Single Pulse 600 400 1 25 50 75 100 125 TJ, Temperature (ºC) Fig 11. EPULSE vs. Temperature 4 10µsec 150 1 10 100 1000 VCE (V) Fig 12. Forrward Bias Safe Operating Area www.irf.com IRG6IC30UPbF 100000 VGE, Gate-to-Emitter Voltage (V) C oes = Cce + C gc 10000 Capacitance (pF) 16 VGS = 0V, f = 1 MHZ C ies = C ge + C gd, C ce SHORTED C res = C gc Cies 1000 100 Coes IC = 25A 14 VCES = 120V VCES = 300V 12 10 Cres 10 VCES = 400V 8 6 4 2 0 0 100 200 300 400 500 0 20 VCE, Collector-toEmitter-Voltage(V) 40 60 80 100 Q G, Total Gate Charge (nC) Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage Thermal Response ( Z thJC ) 10 1 D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 τJ 0.01 0.001 0.0001 1E-006 0.0001 τJ τ1 R2 R2 R3 R3 τC τ τ2 τ1 τ2 τ3 τ3 τ4 τi (sec) Ri (°C/W) R4 R4 τ4 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 R1 R1 0.21623 0.000302 0.41114 0.002861 1.31259 0.179036 1.41309 2.673 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRG6IC30UPbF A RG C DRIVER PULSE A L VCC B PULSE B Ipulse RG DUT tST Fig 16b. tst Test Waveforms Fig 16a. tst and EPULSE Test Circuit VCE Energy L IC Current DUT 0 VCC 1K Fig 16c. EPULSE Test Waveforms 6 Fig. 17 - Gate Charge Circuit (turn-off) www.irf.com IRG6IC30UPbF TO-220AB Full-Pak Package Outline Dimensions are shown in millimeters (inches) TO-220AB Full-Pak Part Marking Information (;$03/( 7+,6,6$1,5),* :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(. 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 ,5),* . '$7(&2'( <($5 :((. /,1(. TO-220AB Full-Pak package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ The specifications set forth in this data sheet are the sole and exclusive specifications applicable to the identified product, and no specifications or features are implied whether by industry custom, sampling or otherwise. We qualify our products in accordance with our internal practices and procedures, which by their nature do not include qualification to all possible or even all widely used applications. Without Data and specifications subject to change without notice. limitation, we have not qualified our product for medical use or This product has been designed for the Industrial market. applications involving hi-reliability applications. Customers are Qualification Standards can be found on IR’s Web site. encouraged to and responsible for qualifying product to their own use and their own application environments, especially where particular features are critical to operational performance or safety. Please contact your IR representative if you have specific design or use requirements or for further information. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.03/09 www.irf.com 7