IRF IRG6IC30UPBF

PD - 97386
PDP TRENCH IGBT
Features
l Advanced Trench IGBT Technology
l Optimized for Sustain and Energy Recovery
circuits in PDP applications
TM)
l Low VCE(on) and Energy per Pulse (E PULSE
for improved panel efficiency
l High repetitive peak current capability
l Lead Free package
IRG6IC30UPbF
Key Parameters
VCE min
VCE(ON) typ. @ IC = 25A
IRP max @ TC= 25°C
TJ max
600
1.50
250
150
c
V
V
A
°C
C
E
C
G
G
TO-220AB
Full-Pak
E
n-channel
G
Gate
C
Collector
E
Emitter
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Absolute Maximum Ratings
Parameter
VGE
IC @ TC = 25°C
IC @ TC = 100°C
IRP @ TC = 25°C
PD @TC = 25°C
PD @TC = 100°C
TJ
TSTG
Gate-to-Emitter Voltage
Continuous Collector Current, VGE @ 15V
Continuous Collector, VGE @ 15V
Repetitive Peak Current
Power Dissipation
Power Dissipation
Units
±30
25
V
A
12
250
c
Linear Derating Factor
Operating Junction and
Storage Temperature Range
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
Max.
37
15
W
0.30
-40 to + 150
W/°C
°C
x
300
x
10lb in (1.1N m)
N
Thermal Resistance
Parameter
RθJC
RθJA
www.irf.com
d
Junction-to-Case
Junction-to-Ambient
d
Typ.
Max.
Units
–––
–––
3.1
65
°C/W
1
03/31/09
IRG6IC30UPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
BVCES
Collector-to-Emitter Breakdown Voltage
V(BR)ECS
Emitter-to-Collector Breakdown Voltage
Breakdown Voltage Temp. Coefficient
∆ΒVCES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
ICES
IGES
gfe
Qg
Qgc
td(on)
Static Collector-to-Emitter Voltage
e
600
–––
–––
15
–––
–––
0.49
–––
–––
–––
1.29
–––
–––
1.50
1.73
1.92
–––
–––
–––
2.16
2.88
–––
–––
Collector-to-Emitter Leakage Current
–––
2.0
–––
–––
10
40
–––
150
–––
Gate-to-Emitter Forward Leakage
Gate-to-Emitter Reverse Leakage
–––
–––
–––
–––
100
-100
nA
Forward Transconductance
–––
32
–––
S
Total Gate Charge
Gate-to-Collector Charge
–––
–––
79
30
–––
–––
nC
–––
Fall time
–––
120
–––
Turn-On delay time
Rise time
–––
–––
18
17
–––
–––
Turn-Off delay time
–––
190
–––
tst
Fall time
Shoot Through Blocking Time
–––
100
240
–––
–––
–––
EPULSE
Energy per Pulse
–––
1020
–––
–––
1150
–––
Human Body Model
Machine Model
Cres
LC
VCE = 600V, VGE = 0V, TJ = 150°C
VGE = 30V
VGE = -30V
VCE = 25V, ICE = 25A
VCE = 400V, IC = 25A, VGE = 15V
e
IC = 25A, VCC = 400V
ns
RG = 10Ω, L=200µH
TJ = 25°C
IC = 25A, VCC = 400V
ns
RG = 10Ω, L=200µH
TJ = 150°C
ns
VCC = 240V, VGE = 15V, RG= 5.1Ω
L = 220nH, C= 0.40µF, VGE = 15V
µJ
VCC = 240V, RG= 5.1Ω, TJ = 25°C
L = 220nH, C= 0.40µF, VGE = 15V
VCC = 240V, RG= 5.1Ω, TJ = 100°C
Class 2
(Per JEDEC standard JESD22-A114)
Class B
(Per EIA/JEDEC standard EIA/JESD22-A115)
VGE = 0V
2390 –––
85
–––
pF VCE = 30V
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
–––
–––
–––
58
–––
ƒ = 1.0MHz,
Internal Collector Inductance
–––
4.5
–––
Between lead,
Internal Emitter Inductance
–––
7.5
–––
nH
LE
e
VGE = 15V, ICE = 25A, TJ = 150°C
5.0
V VCE = VGE, ICE = 500µA
––– mV/°C
VCE = 600V, VGE = 0V
20
V
–––
CE = 600V, VGE = 0V, T J = 100°C
µA
VCE = 600V, VGE = 0V, TJ = 125°C
100
–––
–––
Cies
Coes
VGE = 15V, ICE
–––
20
ESD
VGE = 15V, ICE
VGE = 15V, ICE
–––
-8.9
16
160
tf
V
1.51
–––
tr
td(off)
e
e
= 40A e
= 70A e
= 120A e
VGE = 15V, ICE = 25A
2.6
–––
–––
–––
td(on)
V VGE = 0V, ICE = 1.0A
V/°C Reference to 25°C, ICE = 1mA
VGE = 15V, ICE = 12A
–––
Rise time
Turn-Off delay time
td(off)
tf
V
VGE = 0V, ICE = 1.0mA
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Turn-On delay time
tr
Conditions
Min. Typ. Max. Units
See Fig.13
6mm (0.25in.)
from package
and center of die contact
Notes:
 Half sine wave with duty cycle <= 0.02, ton=1.0µsec.
‚ Rθ is measured at TJ of approximately 90°C.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRG6IC30UPbF
500
500
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
400
ICE (A)
350
300
250
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
450
400
350
ICE (A)
450
200
300
250
200
150
150
100
100
50
50
0
0
0
2
4
6
8
10
0
2
4
VCE (V)
10
Fig 2. Typical Output Characteristics @ 75°C
500
500
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
400
350
300
250
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
450
400
350
ICE (A)
450
ICE (A)
8
VCE (V)
Fig 1. Typical Output Characteristics @ 25°C
200
300
250
200
150
150
100
100
50
50
0
0
0
2
4
6
8
10
12
14
0
2
4
VCE (V)
6
8
10
12
14
VCE (V)
Fig 3. Typical Output Characteristics @ 125°C
Fig 4. Typical Output Characteristics @ 150°C
500
20
450
VCE, Voltage Collector-to-Emitter (V)
ICE, Collector-to-Emitter Current (A)
6
T J = 25°C
400
T J = 150°C
350
300
250
200
150
100
50
0
IC = 25A
18
16
T J = 25°C
T J = 150°C
14
12
10
8
6
4
2
0
0
5
10
15
VGE, Gate-to-Emitter Voltage (V)
Fig 5. Typical Transfer Characteristics
www.irf.com
20
0
5
10
15
20
VGE, Voltage Gate-to-Emitter (V)
Fig 6. VCE(ON) vs. Gate Voltage
3
IRG6IC30UPbF
30
250
Repetitive Peak Current (A)
25
IC (A)
20
15
10
5
150
100
ton= 1.0µs
Duty cycle <= 0.02
Half Sine Wave
50
0
0
0
25
50
75
100
125
25
150
50
75
100
125
150
Case Temperature (°C)
T C (°C)
Fig 7. Maximum Collector Current vs. Case Temperature
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
1200
1200
V CC = 240V
L = 220nH
C = variable
1000
100°C
900
800
25°C
700
L = 220nH
C = 0.4µF
1100
Energy per Pulse (µJ)
1100
Energy per Pulse (µJ)
200
600
1000
100°C
900
25°C
800
700
500
400
600
170
180
190
200
210
220
230
195 200 205 210 215 220 225 230 235 240
IC, Peak Collector Current (A)
VCE, Collector-to-Emitter Voltage (V)
Fig 9. Typical EPULSE vs. Collector Current
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage
1600
1000
V CC = 240V
L = 220nH
t = 1µs half sine
C= 0.4µF
1200
100
1000
100µsec
IC (A)
Energy per Pulse (µJ)
1400
C= 0.3µF
800
1msec
10
C= 0.2µF
Tc = 25°C
Tj = 175°C
Single Pulse
600
400
1
25
50
75
100
125
TJ, Temperature (ºC)
Fig 11. EPULSE vs. Temperature
4
10µsec
150
1
10
100
1000
VCE (V)
Fig 12. Forrward Bias Safe Operating Area
www.irf.com
IRG6IC30UPbF
100000
VGE, Gate-to-Emitter Voltage (V)
C oes = Cce + C gc
10000
Capacitance (pF)
16
VGS = 0V,
f = 1 MHZ
C ies = C ge + C gd, C ce SHORTED
C res = C gc
Cies
1000
100
Coes
IC = 25A
14
VCES = 120V
VCES = 300V
12
10
Cres
10
VCES = 400V
8
6
4
2
0
0
100
200
300
400
500
0
20
VCE, Collector-toEmitter-Voltage(V)
40
60
80
100
Q G, Total Gate Charge (nC)
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
Thermal Response ( Z thJC )
10
1
D = 0.50
0.1
0.20
0.10
0.05
0.02
0.01
τJ
0.01
0.001
0.0001
1E-006
0.0001
τJ
τ1
R2
R2
R3
R3
τC
τ
τ2
τ1
τ2
τ3
τ3
τ4
τi (sec)
Ri (°C/W)
R4
R4
τ4
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
R1
R1
0.21623
0.000302
0.41114
0.002861
1.31259
0.179036
1.41309
2.673
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRG6IC30UPbF
A
RG
C
DRIVER
PULSE A
L
VCC
B
PULSE B
Ipulse
RG
DUT
tST
Fig 16b. tst Test Waveforms
Fig 16a. tst and EPULSE Test Circuit
VCE
Energy
L
IC Current
DUT
0
VCC
1K
Fig 16c. EPULSE Test Waveforms
6
Fig. 17 - Gate Charge Circuit (turn-off)
www.irf.com
IRG6IC30UPbF
TO-220AB Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Full-Pak Part Marking Information
(;$03/( 7+,6,6$1,5),*
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(.
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
,5),*
.
'$7(&2'(
<($5 :((.
/,1(.
TO-220AB Full-Pak package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
The specifications set forth in this data sheet are the sole and
exclusive specifications applicable to the identified product,
and no specifications or features are implied whether by
industry custom, sampling or otherwise. We qualify our
products in accordance with our internal practices and
procedures, which by their nature do not include qualification to
all possible or even all widely used applications. Without
Data and specifications subject to change without notice.
limitation, we have not qualified our product for medical use or
This product has been designed for the Industrial market.
applications involving hi-reliability applications. Customers are
Qualification Standards can be found on IR’s Web site.
encouraged to and responsible for qualifying product to their
own use and their own application environments, especially
where particular features are critical to operational performance
or safety. Please contact your IR representative if you have
specific design or use requirements or for further information.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.03/09
www.irf.com
7