IRF IRHG9110

PD - 93819B
IRHG9110
100V, QUAD P-CHANNEL
RADIATION HARDENED
POWER MOSFET
THRU-HOLE (MO-036AB)
®
™
RAD-Hard HEXFET
MOSFET TECHNOLOGY
Product Summary
Part Number Radiation Level RDS(on)
IRHG9110
100K Rads (Si)
1.1Ω
IRHG93110
300K Rads (Si) 1.1Ω
ID
-0.75A
-0.75A
MO-036AB
TM
HEXFET®
International Rectifier’s RAD-Hard
MOSFET
Technology provides high performance power MOSFETs
for space applications. This technology has over a decade
of proven performance and reliability in satellite applications. These devices have been characterized for both
Total Dose and Single Event Effects (SEE). The combination of low RDS(on) and low gate charge reduces the power
losses in switching applications such as DC to DC converters and motor control. These devices retain all of the
well established advantages of MOSFETs such as voltage
control, fast switching, ease of paralleling and temperature stability of electrical parameters.
Features:
n
n
n
n
n
n
n
n
n
Single Event Effect (SEE) Hardened
Low RDS(on)
Low Total Gate Charge
Proton Tolerant
Simple Drive Requirements
Ease of Paralleling
Hermetically Sealed
Ceramic Package
Light Weight
Absolute Maximum Ratings (Per Die)
Pre-Irradiation
Parameter
ID @ VGS = 12V, TC = 25°C
ID @ VGS = 12V, TC = 100°C
IDM
PD @ TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
T STG
Continuous Drain Current
Continuous Drain Current
Pulsed Drain Current ➀
Max. Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy ➁
Avalanche Current ➀
Repetitive Avalanche Energy ➀
Peak Diode Recovery dv/dt
Operating Junction
Storage Temperature Range
Lead Temperature
Weight
Units
-0.75
-0.5
-3.0
1.4
0.011
±20
75
-0.75
0.14
2.4 ➂
-55 to 150
A
W
W/°C
V
mJ
A
mJ
V/ns
o
C
300 (0.63in./1.6mm from case for 10s)
1.3 (Typical)
g
For footnotes refer to the last page
www.irf.com
1
02/20/03
IRHG9110
Pre-Irradiation
Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified) (Per Die)
Parameter
Min
Drain-to-Source Breakdown Voltage
-100
—
—
V
—
-0.11
—
V/°C
—
—
-2.0
0.6
—
—
—
—
—
—
—
—
1.2
1.1
-4.0
—
-25
-250
Ω
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
10
-100
100
15
4.0
4.3
22
19
66
51
—
∆BVDSS /∆TJ Temperature Coefficient of Breakdown
Voltage
RDS(on)
Static Drain-to-Source On-State
Resistance
VGS(th)
Gate Threshold Voltage
g fs
Forward Transconductance
IDSS
Zero Gate Voltage Drain Current
IGSS
IGSS
Qg
Q gs
Q gd
td(on)
tr
td(off)
tf
LS + LD
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain (‘Miller’) Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Inductance
Typ Max Units
Test Conditions
VGS = 0V, ID = -1.0mA
Reference to 25°C, ID = -1.0mA
nC
VGS = -12V, ID = -0.75A➃
VGS = -12V, ID =- 0.5A
VDS = VGS, ID = -1.0mA
VDS > -15V, IDS = -0.5A ➃
VDS= -80V, VGS= 0V
VDS = -80V,
VGS = 0V, TJ =125°C
VGS = - 20V
VGS = 20V
VGS = -12V, ID = -0.75A,
VDS = -50V
ns
VDD = -50V, ID = -0.75A,
VGS = -12V, RG = 24Ω
V
S( )
Ω
BVDSS
µA
nA
nH Measured from Drain lead (6mm /0.25in.
from package) to Source lead (6mm /0.25in.
from package) with Source wires internally
bonded from Source Pin to Drain Pad
Ciss
Coss
Crss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
—
—
—
335
100
22
—
—
—
pF
VGS = 0V, VDS = 25V
f = 1.0MHz
Source-Drain Diode Ratings and Characteristics (Per Die)
Parameter
Min Typ Max Units
IS
ISM
VSD
trr
Q RR
Continuous Source Current (Body Diode)
Pulse Source Current (Body Diode) ➀
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
ton
Forward Turn-On Time
—
—
—
—
—
—
—
—
—
—
-0.75
-3.0
-2.5
90
257
Test Conditions
A
V
nS
nC
Tj = 25°C, IS = -0.75A, VGS = 0V ➃
Tj = 25°C, IF = -0.75A, di/dt ≥ -100A/µs
VDD ≤ -25V ➃
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
Thermal Resistance (Per Die)
Parameter
RthJC
RthJA
Junction-to-Case
Junction-to-Ambient
Min Typ Max
—
—
—
—
17
90
Units
°C/W
Test Conditions
Typical socket mount
For footnotes refer to the last page
2
www.irf.com
Radiation Characteristics
Pre-Irradiation
IRHG9110
International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability.
The hardness assurance program at International Rectifier is comprised of two radiation environments.
Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-39 package. Both
pre- and post-irradiation performance are tested and specified using the same drive circuitry and test
conditions in order to provide a direct comparison.
Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation ➄➅ (Per Die)
Parameter
BVDSS
VGS(th)
IGSS
IGSS
IDSS
RDS(on)
RDS(on)
VSD
100K Rads(Si)1
Drain-to-Source Breakdown Voltage
Gate Threshold Voltage
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Zero Gate Voltage Drain Current
Static Drain-to-Source ➃
On-State Resistance (TO-39)
Static Drain-to-Source ➃
On-State Resistance (MO-036AB)
Diode Forward Voltage ➃
Units
300K Rads (Si)2
Test Conditions
Min
Max
Min
Max
-100
- 2.0
—
—
—
—
—
- 4.0
-100
100
-25
1.06
-100
-2.0
—
—
—
—
—
-5.0
-100
100
-25
1.06
µA
Ω
VGS = 0V, ID = -1.0mA
VGS = VDS, ID = -1.0mA
VGS = -20V
VGS = 20 V
VDS =-80V, VGS =0V
VGS = -12V, ID =-0.5A
—
1.1
—
1.1
Ω
VGS = -12V, ID =-0.5A
—
-2.5
—
-2.5
V
VGS = 0V, IS = -0.75A
V
nA
1. Part number IRHG9110
2. Part number IRHG93110
International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for
Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.
Table 2. Single Event Effect Safe Operating Area (Per Die)
Ion
Cu
Br
I
LET
MeV/(mg/cm 2))
28.0
36.8
59.8
Energy
(MeV)
285
305
343
Range
(µm) @VGS=0V @VGS=5V
43.0
-100
-100
39.0
-100
-100
32.6
-60
—
VDS (V)
@VGS=10V
-100
-70
—
@V GS=15V
-70
-50
—
@VGS=20V
-60
-40
—
-120
-100
VDS
-80
Cu
Br
I
-60
-40
-20
0
0
5
10
15
20
VGS
Fig a. Single Event Effect, Safe Operating Area
For footnotes refer to the last page
www.irf.com
3
IRHG9110
100
Pre-Irradiation
100
VGS
-15V
-12V
-10V
-9.0V
-8.0V
-7.0V
-6.0V
BOTTOM -5.0V
10
-5.0V
1
0.1
20µs PULSE WIDTH
T = 25 C
°
J
0.01
0.1
1
10
10
-5.0V
1
0.1
3.0
10
TJ = 150 ° C
V DS = -50V
20µs PULSE WIDTH
11
13
15
-VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
4
R DS(on) , Drain-to-Source On Resistance
(Normalized)
-I D , Drain-to-Source Current (A)
TJ = 25 ° C
9
10
100
Fig 2. Typical Output Characteristics
100
7
°
J
1
-VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
1
20µs PULSE WIDTH
T = 150 C
0.01
0.1
100
-VDS , Drain-to-Source Voltage (V)
5
VGS
-15V
-12V
-10V
-9.0V
-8.0V
-7.0V
-6.0V
BOTTOM -5.0V
TOP
-I D, Drain-to-Source Current (A)
-I D , Drain-to-Source Current (A)
TOP
ID = -0.75A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = -12V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( ° C)
Fig 4. Normalized On-Resistance
Vs. Temperature
www.irf.com
Pre-Irradiation
VGS =
Ciss =
Crss =
Coss =
500
20
0V,
f = 1MHz
Cgs + Cgd , Cds SHORTED
Cgd
Cds + Cgd
-VGS , Gate-to-Source Voltage (V)
600
C, Capacitance (pF)
IRHG9110
400
Ciss
300
200
Coss
100
Crss
10
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
0
100
0
-VDS , Drain-to-Source Voltage (V)
2
4
6
8
10
12
14
QG , Total Gate Charge (nC)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
100
10
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
10
-II D , Drain Current (A)
-ISD , Reverse Drain Current (A)
VDS =-80V
VDS =-50V
VDS =-20V
16
0
1
ID = -0.75A
TJ = 150 ° C
TJ = 25 ° C
1
1ms
1
10ms
V GS = 0 V
0.1
0.0
1.0
2.0
3.0
4.0
-VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
www.irf.com
5.0
0.1
TC = 25 °C
TJ = 150 °C
Single Pulse
1
10
100
1000
-VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
5
IRHG9110
Pre-Irradiation
0.8
RD
V DS
VGS
-I D , Drain Current (A)
0.6
D.U.T.
RG
-
+
0.5
V DD
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
0.3
Fig 10a. Switching Time Test Circuit
0.2
td(on)
tr
t d(off)
tf
VGS
10%
0.0
25
50
75
100
TC , Case Temperature
125
150
( °C)
90%
VDS
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10b. Switching Time Waveforms
100
Thermal Response (Z thJA )
D = 0.50
0.20
10
0.10
0.05
0.02
P DM
0.01
1
t1
SINGLE PULSE
(THERMAL RESPONSE)
0.1
0.0001
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = P DM x Z thJA + TA
0.001
0.01
0.1
1
10
100
1000
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
6
www.irf.com
Pre-Irradiation
IRHG9110
L
VDS
tp
VD D
A
IA S
D R IV E R
0 .0 1 Ω
15V
Fig 12a. Unclamped Inductive Test Circuit
IAS
EAS , Single Pulse Avalanche Energy (mJ)
D .U .T.
RG
V0GS
-2
V
200
ID
-0.34A
-0.47A
BOTTOM -0.75A
TOP
160
120
80
40
0
25
50
75
100
125
150
Starting TJ , Junction Temperature ( ° C)
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
tp
V (BR)DSS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
50KΩ
QG
-12V
12V
.2µF
.3µF
-12V
QGS
QGD
D.U.T.
+VDS
VGS
VG
-3mA
Charge
Fig 13a. Basic Gate Charge Waveform
www.irf.com
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
7
IRHG9110
Pre-Irradiation
Footnotes:
➀ Repetitive Rating; Pulse width limited by
maximum junction temperature.
➁ VDD = - 25V, starting TJ = 25°C, L= 267mH,
Peak IL = - 0.75A, VGS = -12V
➂ ISD ≤ - 0.75A, di/dt ≤ - 132A/µs,
VDD ≤ -100V, TJ ≤ 150°C
➃ Pulse width ≤ 300 µs; Duty Cycle ≤ 2%
➄ Total Dose Irradiation with VGS Bias.
-12 volt VGS applied and VDS = 0 during
irradiation per MIL-STD-750, method 1019, condition A
➅ Total Dose Irradiation with VDS Bias.
-80 volt VDS applied and VGS = 0 during
irradiation per MlL-STD-750, method 1019, condition A
Case Outline and Dimensions — MO-036AB
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 02/03
8
www.irf.com