INFINEON Q67060

BTS 462 T
Smart Power High-Side-Switch
Features
Product Summary
• Overload protection
Overvoltage protection
Vbb(AZ)
• Current limitation
Operating voltage
Vbb(on)
• Short circuit protection
On-state resistance
RON
100
mΩ
• Thermal shutdown with restart
Nominal load current
IL(ISO)
3.5
A
41
V
5...34 V
• Overvoltage protection
(including load dump)
• Fast demagnetization of inductive loads
• Reverse battery protection
with external resistor
• CMOS compatible input
• Loss of GND and loss of Vbb protection
• ESD - Protection
P-TO252-5-11
• Very low standby current
Application
• All types of resistive, inductive and capacitive loads
• µC compatible power switch for 12 V and 24 V DC applications
• Replaces electromechanical relays and discrete circuits
General Description
N channel vertical power FET with charge pump, ground referenced CMOS compatible input,
monolithically integrated in Smart SIPMOS technology.
Providing embedded protective functions.
Page 1
2004-01-27
BTS 462 T
Block Diagram
+ V bb
Voltage
Overvoltage
Current
Gate
source
protection
limit
protection
V Logic
Limit for
unclamped
ind. loads
Charge pump
Level shifter
Rectifier
OUT
Temperature
sensor
IN
Load
Logic
ESD
miniPROFET
GND

Load GND
Signal GND
Pin
Symbol
Function
1
GND
Logic ground
2
IN
3
Vbb
Positive power supply voltage
4
NC
not connected
5
OUT
Output to the load
TAB
Vbb
Positive power supply voltage
Input, activates the power switch in case of logic high signal
Pin configuration
Top view
Tab = VBB
1
2
GND IN
(3)
4
5
NC OUT
Page 2
2004-01-27
BTS 462 T
Maximum Ratings at Tj = 25°C, unless otherwise specified
Parameter
Symbol
Value
Supply voltage
Vbb
40
Supply voltage for full short circuit protection
Vbb(SC)
32
Unit
V
Tj = -40...+150 °C
Continuous input voltage
VIN
-10 ... +16
Load current (Short - circuit current, see page 5)
IL
self limited
Current through input pin (DC)
I IN
±5
mA
Operating temperature
Tj
-40 ...+150
°C
Storage temperature
T stg
-55 ... +150
Power dissipation 1)
Ptot
41.6
W
Inductive load switch-off energy dissipation 1)2)
EAS
4.4
J
A
single pulse, (see page 8)
Tj =150 °C, Vbb = 13.5 V, IL = 1 A
Load dump protection 2) VLoadDump3)= VA + VS
V
VLoaddump
RI=2Ω, td=400ms, VIN= low or high, VA=13,5V
RL = 13.5 Ω
75
kV
Electrostatic discharge voltage (Human Body Model) VESD
according to ANSI EOS/ESD - S5.1 - 1993
ESD STM5.1 - 1998
Input pin
±1
all other pins
±5
Thermal Characteristics
junction - case:
RthJC
-
-
3
K/W
Thermal resistance @ min. footprint
Rth(JA)
-
80
-
K/W
Thermal resistance @ 6 cm 2 cooling area 1)
Rth(JA)
-
45
60
1Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain
connection. PCB is vertical without blown air. (see page 16)
2not subject to production test, specified by design
3V Loaddump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 .
Supply voltages higher than V bb(AZ) require an external current limit for the GND pin, e.g. with a
150Ω resistor in GND connection. A resistor for the protection of the input is integrated.
Page 3
2004-01-27
BTS 462 T
Electrical Characteristics
Parameter and Conditions
Symbol
at Tj = -40...+150°C, Vbb = 13,5V, unless otherwise specified
Values
min.
typ.
Unit
max.
Load Switching Capabilities and Characteristics
On-state resistance
RON
mΩ
Tj = 25 °C, IL = 2 A, V bb = 9...40 V
-
70
100
Tj = 150 °C
-
140
200
3.5
4.4
-
A
µs
Nominal load current; Device on PCB 1)
I L(ISO)
TC = 85 °C, VON = 0.5 V
to 90% VOUT
t on
-
90
170
to 10% VOUT
t off
-
90
230
10 to 30% VOUT ,
dV/dt on
-
0.8
1.7
70 to 40% V OUT,
-dV/dt off
-
0.8
1.7
Operating voltage
Vbb(on)
5
-
34
Undervoltage shutdown of charge pump
Vbb(under)
Tj = -40...+85 °C
-
-
4
Tj = 150 °C
-
-
5.5
-
4
5.5
Turn-on time
RL = 47 Ω
Turn-off time
RL = 47 Ω
Slew rate on
V/µs
RL = 47 Ω
Slew rate off
RL = 47 Ω
Operating Parameters
Undervoltage restart of charge pump
Vbb(u cp)
Standby current
Ibb(off)
µA
Tj = -40...+85 °C, VIN = 0 V
-
-
10
Tj = 150 °C2) , VIN = 0 V
-
-
15
IL(off)
-
-
5
IGND
-
0.5
1.3
Leakage output current (included in Ibb(off))
V
VIN = 0 V
Operating current
mA
VIN = 5 V
1Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain
connection. PCB is vertical without blown air. (see page 16)
2higher current due temperature sensor
Page 4
2004-01-27
BTS 462 T
Electrical Characteristics
Parameter and Conditions
Symbol
at Tj = -40...+150°C, Vbb = 13,5V, unless otherwise specified
Values
min.
typ.
Unit
max.
Protection Functions1)
Initial peak short circuit current limit (pin 3 to 5)
A
I L(SCp)
Tj = -40 °C, Vbb = 20 V, tm = 150 µs
-
-
20
Tj = 25 °C
-
14
-
Tj = 150 °C
7
-
-
-
10
-
VON(CL)
41
47
-
Vbb(AZ)
41
-
-
Thermal overload trip temperature
T jt
150
-
-
°C
Thermal hysteresis
∆Tjt
-
10
-
K
Reverse battery 3)
-Vbb
-
-
32
V
Drain-source diode voltage (VOUT > Vbb)
-VON
-
600
-
Repetitive short circuit current limit
I L(SCr)
Tj = Tjt (see timing diagrams)
Output clamp (inductive load switch off)
V
at VOUT = Vbb - VON(CL),
Ibb = 4 mA
Overvoltage protection 2)
Ibb = 4 mA
Reverse Battery
mV
1Integrated protection functions are designed to prevent IC destruction under fault conditions
described in the data sheet. Fault conditions are considered as "outside" normal operating range.
Protection functions are not designed for continuous repetitive operation .
2 see also VON(CL) in circuit diagram on page 7
3Requires a 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has
to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the
voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation!
Input current has to be limited (see max. ratings page 3).
Page 5
2004-01-27
BTS 462 T
Parameter and Conditions
Symbol
at Tj = -40...+150°C, Vbb = 13,5V, unless otherwise specified
Values
Unit
min.
typ.
max.
VIN(T+)
-
-
2.2
VIN(T-)
0.8
-
-
Input threshold hysteresis
∆V IN(T)
-
0.3
-
Off state input current (see page 12)
I IN(off)
1
-
25
I IN(on)
3
-
25
1.5
3.5
5
Input
Input turn-on threshold voltage
V
(see page 12)
Input turn-off threshold voltage
(see page 12)
µA
VIN = 0.7 V
On state input current (see page 12)
VIN = 5 V
Input resistance (see page 7)
RI
Page 6
kΩ
2004-01-27
BTS 462 T
Terms
Inductive and overvoltage output clamp
Ibb
+ V bb
V
Z
Vbb
V
I IN
IL
IN
PROFET
ON
VON
OUT
OUT
V
GND
GND
IN
V
bb
R
IGND
VOUT
GND
V ON clamped to 47V typ.
Input circuit (ESD protection)
R
IN
Overvoltage protection of logic part
+ V bb
I
V
ESD- ZD I
I
IN
I
Z2
RI
L o gic
GND
V
Z1
The use of ESD zener diodes as voltage clamp
at DC conditions is not recommended
GND
R GN D
S ignal GND
VZ1 =6.1V typ., VZ2 =Vbb(AZ) =47V typ.,
Reverse battery protection
RI=3.5 kΩ typ., RGND=150Ω
- V bb
Logic
IN
RI
OUT
Power
Inverse
Diode
GND
RL
R GND
Signal GND
Power GND
RGND=150Ω, RI=3.5kΩ typ.,
Temperature protection is not active during
inverse current
Page 7
2004-01-27
BTS 462 T
Vbb disconnect with charged inductive
GND disconnect
load
Vbb
Vbb
IN
high
OUT
PROFET
IN
bb
V
OUT
GND
GND
V
PROFET
V
GND
IN
V
bb
GND disconnect with GND pull up
Inductive Load switch-off energy
dissipation
Vbb
IN
PROFET
OUT
E bb
E AS
GND
E Load
Vbb
V
bb
V
IN
V
GND
IN
PROFET
OUT
L
=
GND
ZL
{
R
EL
ER
L
Energy stored in load inductance: EL = ½ * L * IL2
While demagnetizing load inductance,
the enérgy dissipated in PROFET is
EAS = Ebb + EL - ER = VON(CL) * iL(t) dt,
with an approximate solution for RL > 0Ω:
E AS =
Page 8
IL * R L
IL * L
)
* ( V b b + | V O U T ( C L )| ) * ln (1 +
| V O U T ( C L )|
2 * RL
2004-01-27
BTS 462 T
Typ. transient thermal impedance
Typ. transient thermal impedance
ZthJA=f(tp) @ 6cm 2 heatsink area
Z thJA=f(tp) @ min. footprint
Parameter: D=tp/T
Parameter: D=tp/T
10
2
K/W
10 2
D=0.5
K/W
D=0.5
D=0.2
10 1
D=0.2
10 1
D=0.05
10 0
D=0.02
D=0.1
D=0.05
Z thJA
ZthJA
D=0.1
D=0.02
10 0
D=0.01
D=0.01
10 -1
10 -1
D=0
10 -2 -7 -6 -5 -4 -3 -2 -1 0
1
2
10 10 10 10 10 10 10 10 10 10
s
10
D=0
10 -2 -7 -6 -5 -4 -3 -2 -1 0
1
2
10 10 10 10 10 10 10 10 10 10
4
tp
10
tp
Typ. on-state resistance
Typ. on-state resistance
RON = f(Tj) ; Vbb = 13,5V ; Vin = high
RON = f(V bb); IL = 0.5A ; V in = high
200
160
mΩ
mΩ
150
RON
120
RON
s
100
150°C
125
80
100
60
75
25°C
40
50
-40°C
20
25
0
-40 -20
0
20
40
60
80 100 120
°C 160
Tj
Page 9
0
0
5
10
15
20
25
30
V
Vbb
40
2004-01-27
4
BTS 462 T
Typ. turn on time
Typ. turn off time
ton = f(Tj ); RL = 47Ω
toff = f(Tj); RL = 47Ω
160
160
32V
µs
µs
9V
9V
120
13.5V
toff
t on
120
100
100
32V
80
80
60
60
40
40
20
20
0
-40 -20
0
20
40
60
80 100 120
0
-40 -20
°C 160
0
20
40
60
80 100 120
Tj
Tj
Typ. slew rate on
Typ. slew rate off
dV/dton = f(T j) ; RL = 47 Ω
dV/dtoff = f(Tj); R L = 47 Ω
2
2
V/µs
V/µs
1.6
-dV
dtoff
1.6
dV
dton
°C 160
1.4
1.4
1.2
1.2
1
1
0.8
0.6
0.6
13.5V
0.4
9V
13.5V
0.4
9V
0.2
0
-40 -20
32V
0.8
32V
0.2
0
20
40
60
80 100 120
0
-40 -20
°C 160
Tj
0
20
40
60
80 100 120
°C 160
Tj
Page 10
2004-01-27
BTS 462 T
Typ. standby current
Typ. leakage current
Ibb(off) = f(Tj ) ; Vbb = 32V ; VIN = low
I L(off) = f(Tj) ; Vbb = 32V ; VIN = low
2
6
µA
µA
I L(off)
I bb(off)
1.6
4
1.4
1.2
1
3
0.8
2
0.6
0.4
1
0.2
0
-40 -20
0
20
40
60
80 100 120
0
-40 -20
°C 160
0
20
40
60
80 100 120
Tj
°C 160
Tj
Typ. initial peak short circuit current limit
Typ. initial short circuit shutdown time
IL(SCp) = f(Tj) ; Vbb = 20V
toff(SC) = f(Tj,start) ; Vbb = 20V
18
3
A
ms
toff(SC)
IL(SCp)
14
12
2
10
1.5
8
6
1
4
0.5
2
0
-40 -20
0
20
40
60
80 100 120
0
-40 -20
°C 160
Tj
0
20
40
60
80 100 120
°C 160
Tj
Page 11
2004-01-27
BTS 462 T
Typ. input current
Typ. input current
IIN(on/off) = f(Tj); Vbb = 13,5V; VIN = low/high
I IN = f(VIN); V bb = 13.5V
VINlow ≤ 0,7V; VINhigh = 5V
200
14
µA
µA
160
10
150°C
IIN
IIN
140
on
-40...25°C
120
8
100
6
80
off
60
4
40
2
0
-40 -20
20
0
20
40
60
80 100 120
0
0
°C 160
2
4
8
V
VIN
Tj
Typ. input threshold voltage
Typ. input threshold voltage
VIN(th) = f(Tj ) ; Vbb = 13,5V
VIN(th) = f(V bb) ; Tj = 25°C
2
2
V
V
1.4
off
1.2
1.6
V IN(th)
V IN(th)
on
on
1.6
1.4
1.2
1
1
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
0
-40 -20
0
20
40
60
80 100 120
0
5
°C 160
off
10
15
20
25
35
V
Vbb
Tj
Page 12
2004-01-27
BTS 462 T
Maximum allowable load inductance
Maximum allowable inductive switch-off
for a single switch off
energy, single pulse
L = f(IL); Tjstart =150°C, Vbb=13.5V, RL=0Ω
EAS = f(I L); T jstart = 150°C, Vbb = 13,5V
5000
5000
mJ
4000
4000
3500
3500
EAS
L
mH
3000
3000
2500
2500
2000
2000
1500
1500
1000
1000
500
500
0
0
0.5
1
1.5
2
2.5
3
3.5
4
A
IL
0
0
5
Page 13
0.5
1
1.5
2
2.5
3
3.5
4
A
IL
5
2004-01-27
BTS 462 T
Timing diagrams
Figure 2b: Switching a lamp,
Figure 1a: Vbb turn on:
IN
IN
OUT
V
bb
I
V
OUT
L
t
t
Figure 2a: Switching a resistive load,
turn-on/off time and slew rate definition
Figure 2c: Switching an inductive load
IN
IN
V
V OUT
OUT
90%
t on
d V /d to n
10%
d V /d to f f
t
o ff
I
IL
L
t
t
Page 14
2004-01-27
BTS 462 T
Figure 3a: Turn on into short circuit,
shut down by overtemperature, restart by cooling
Figure 5: Undervoltage restart of charge pump
IN
Vo n
t
I
L
I
L(SCp)
V b b( u c p )
I
L(SCr)
Vbb( under )
tm
t off(SC)
Vbb
t
Heating up of the chip may require several milliseconds, depending
on external conditions.
Figure 4: Overtemperature:
Reset if Tj < T jt
IN
V
OUT
T
J
t
Page 15
2004-01-27
BTS 462 T
Package and ordering code
all dimensions in mm
Package:
Ordering code:
P-TO252-5-11
Q67060-S7402
6.5 +0.15
-0.05
A
1)
2.3 +0.05
-0.10
0.9 +0.20
-0.01
0...0.15
0.5 +0.08
-0.04
5 x 0.6 ±0.1
1.14
4.56
0.5 +0.08
-0.04
0.51 MIN.
0.15 MAX.
per side
B
(5)
0.8 ±0.15
(4.24) 1 ±0.1
9.98 ±0.5
6.22 -0.2
5.7 MAX.
0.1 B
0.25
M
A B
Printed circuit board (FR4, 1.5mm thick, one
layer 70µm, 6cm2 active heatsink area ) as
1) Includes mold flashes on each side.
All metal surfaces tin plated, except area of cut.
a reference for max. power dissipation Ptot
Published by
Infineon Technologies AG,
St.-Martin-Strasse 53,
D-81669 München
© Infineon Technologies AG 2001
All Rights Reserved.
nominal load current IL(nom) and thermal
resistance R thja
Attention please!
The information herein is given to describe certain components and shall not be considered as a guarantee
of characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement,
regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your
nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide
(see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the
types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device
or system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
Page 16
2004-01-27