APT25GP120BDQ1(G)_A.pdf

APT25GP120BDQ1(G)
1200V
TYPICAL PERFORMANCE CURVES
APT25GP120BDQ1
APT25GP120BDQ1G*
®
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
POWER MOS 7 IGBT
®
TO
-2
47
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch
Through Technology this IGBT is ideal for many high frequency, high voltage switching
applications and has been optimized for high frequency switchmode power supplies.
• Low Conduction Loss
• 100 kHz operation @ 800V, 11A
• Low Gate Charge
• 50 kHz operation @ 800V, 19A
• Ultrafast Tail Current shutoff
• RBSOA Rated
G
C
E
C
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT25GP120BDQ1(G)
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
69
I C2
Continuous Collector Current @ TC = 110°C
33
I CM
RBSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
UNIT
Volts
Amps
90
@ TC = 150°C
Reverse Bias Safe Operating Area @ TJ = 150°C
90A @ 960V
Total Power Dissipation
Watts
417
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 350µA)
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
MAX
4.5
6
3.3
3.9
Units
1200
(VCE = VGE, I C = 1mA, Tj = 25°C)
3
Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 125°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
TYP
3.0
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)
Volts
350
2
Gate-Emitter Leakage Current (VGE = ±20V)
3000
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
µA
nA
6-2005
V(BR)CES
MIN
Rev A
Characteristic / Test Conditions
050-7457
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT25GP120BDQ1(G)
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
3
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
RBSOA
td(on)
tr
td(off)
tf
Eon1
40
Gate Charge
7.5
VGE = 15V
110
500
440
Inductive Switching (125°C)
12
VCC = 600V
14
VGE = 15V
110
RG = 5Ω
90
500
I C = 25A
Eon1
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
44
55
µJ
1090
6
Current Fall Time
ns
39
TJ = +25°C
Turn-off Delay Time
nC
70
RG = 5Ω
Current Rise Time
V
A
14
I C = 25A
Turn-on Delay Time
pF
90
12
5
UNIT
50
VCC = 600V
4
MAX
15
Inductive Switching (25°C)
Current Fall Time
Turn-off Switching Energy
tf
f = 1 MHz
TJ = 150°C, R G = 5Ω, VGE =
Turn-off Delay Time
Eoff
td(off)
200
VGE = 15V
Turn-on Switching Energy (Diode)
tr
VGE = 0V, VCE = 25V
15V, L = 100µH,VCE = 960V
Current Rise Time
Eon2
td(on)
2090
I C = 25A
Turn-on Delay Time
TYP
Capacitance
VCE = 600V
Reverse Bias Safe Operating Area
Turn-on Switching Energy
MIN
TJ = +125°C
ns
µJ
1575
6
1185
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
RθJC
Junction to Case (IGBT)
RθJC
Junction to Case (DIODE)
WT
Package Weight
MIN
TYP
MAX
.30
1.18
5.9
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
050-7457
Rev A
6-2005
4 Eon1 is the clam ped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
60
60
50
50
IC, COLLECTOR CURRENT (A)
TJ = 25°C
20
TJ = 125°C
10
0
TJ = -55°C
40
TJ = 25°C
20
TJ = 125°C
2 3 4
5 6
7 8
9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
IC = 50A
4.5
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
4.0
IC = 25A
3.5
3.0
IC = 12.5A
2.5
2.0
1.5
1.0
0.5
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.02
0.98
0.94
0.90
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
J
VCE =240V
12
VCE =600V
10
8
VCE = 480V
6
4
2
0
20
40
60
80
100
GATE CHARGE (nC)
120
FIGURE 4, Gate Charge
1.10
1.06
I = 25A
C
T = 25°C
14
0
1
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
5.0
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
VGE, GATE-TO-EMITTER VOLTAGE (V)
60
FIGURE 2, Output Characteristics (TJ = 125°C)
16
5.0
4.5
IC = 50A
4.0
3.5
IC = 25A
3.0
IC = 12.5A
2.5
2.0
1.5
1.0
0.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-25
0
25
50
75
100
125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
100
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
80
TJ = 125°C
10
0
1
2
3
4
5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
TJ = 25°C
20
0
0
1
2
3
4
5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
100
30
90
80
70
60
50
40
30
20
10
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
6-2005
30
40
Rev A
40
APT25GP120BDQ1(G)
050-7457
IC, COLLECTOR CURRENT (A)
TYPICAL PERFORMANCE CURVES
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
14
VGE = 15V
12
10
8
6
4
VCE = 600V
T = 25°C, TJ =125°C
2 RJ = 5Ω
G
L = 100µH
0
35
25
tf, FALL TIME (ns)
tr, RISE TIME (ns)
20
15
10
TJ = 25 or 125°C,VGE = 15V
VGE =15V,TJ=25°C
40
20 VCE = 600V
RG = 5Ω
L = 100 µH
RG = 5Ω, L = 100µH, VCE = 600V
60
40
5
0
0
G
TJ = 125°C,VGE =15V
2500
2000
1500
1000
500
TJ = 25°C, VGE = 15V
10 15 20 25 30 35 40 45 50 55
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
2500
V
= 600V
CE
V
= +15V
GE
R = 5Ω
3000
TJ = 125°C, VGE = 15V
80
20
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
60
100
3500
TJ = 25°C,VGE =15V
0
V
= 600V
CE
V
= +15V
GE
R = 5Ω
G
2000
TJ = 125°C, VGE = 15V
1500
1000
500
TJ = 25°C, VGE = 15V
0
10 15 20 25 30 35 40 45 50 55
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
10 15 20 25 30 35 40 45 50 55
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
4500
3500
V
= 600V
CE
V
= +15V
GE
T = 125°C
4000
Eon2,50A
J
3500
3000
Eoff,50A
2500
Eon2,25A
2000
1500
Eoff,25A
Eon2,12.5A
1000
500
0
Eoff,12.5A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
VGE =15V,TJ=125°C
80
120
RG = 5Ω, L = 100µH, VCE = 600V
10 15 20 25 30 35 40 45 50 55
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
6-2005
100
10 15 20 25 30 35 40 45 50 55
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
30
Rev A
120
0
10 15 20 25 30 35 40 45 50 55
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
050-7457
APT25GP120BDQ1(G)
140
16
V
= 600V
CE
V
= +15V
GE
R = 5Ω
3000
Eon2,50A
G
2500
2000
Eoff,25A
1000
Eon2,12.5A
500
0
Eon2,25A
Eoff,50A
1500
Eoff,12.5A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
IC, COLLECTOR CURRENT (A)
5,000
P
C, CAPACITANCE ( F)
Cies
1,000
500
Coes
100
50
APT25GP120BDQ1(G)
100
10,000
Cres
90
80
70
60
50
40
30
20
10
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
0 100 200 300 400 500 600 700 800 900 1000
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.30
D = 0.9
0.25
0.7
0.20
0.5
0.15
Note:
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.35
0.3
0.10
t1
t2
0.05
0
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0.1
0.05
10-5
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.173
0.171
Case temperature(°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
10
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 800V
CE
R = 5Ω
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
G
5
10
15 20 25 30 35 40 45 50
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
6-2005
0.00833
F
50
Rev A
0.128
Power
(watts)
100
050-7457
RC MODEL
Junction
temp (°C)
FMAX, OPERATING FREQUENCY (kHz)
182
APT25GP120BDQ1(G)
Gate Voltage
10%
APT15DQ120
T J = 125 °C
t d(on)
V CE
IC
V CC
tr
Collector Current
90%
5%
A
5%
10%
Collector Voltage
Switching Energy
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
VTEST
*DRIVER SAME TYPE AS D.U.T.
90%
Gate Voltage
T J = 125 °C
td(off)
A
V CE
tf
Collector Voltage
100uH
90%
Collector Current
Switching Energy
Rev A
6-2005
Figure 23, Turn-off Switching Waveforms and Definitions
050-7457
V CLAMP
0
10%
IC
B
A
DRIVER*
Figure 24, EON1 Test Circuit
D.U.T.
TYPICAL PERFORMANCE CURVES
APT25GP120BDQ1(G)
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS
Symbol
IF(AV)
IF(RMS)
IFSM
All Ratings: TC = 25°C unless otherwise specified.
APT25GP120BDQ1(G)
Characteristic / Test Conditions
Maximum Average Forward Current (TC = 127°C, Duty Cycle = 0.5)
15
RMS Forward Current (Square wave, 50% duty)
29
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
UNIT
Amps
110
STATIC ELECTRICAL CHARACTERISTICS
Symbol
VF
Characteristic / Test Conditions
MIN
Forward Voltage
TYP
MAX
IF = 25A
3.24
IF = 50A
4.03
IF = 25A, TJ = 125°C
2.91
UNIT
Volts
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
MIN
TYP
MAX
UNIT
trr
Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C
F
F
R
J
-
21
trr
Reverse Recovery Time
-
240
Qrr
Reverse Recovery Charge
-
260
-
3
-
290
ns
-
960
nC
-
6
-
130
ns
-
1340
nC
-
19
Amps
IRRM
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IF = 15A, diF/dt = -200A/µs
VR = 800V, TC = 125°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
VR = 800V, TC = 25°C
Maximum Reverse Recovery Current
trr
IRRM
IF = 15A, diF/dt = -200A/µs
IF = 15A, diF/dt = -1000A/µs
VR = 800V, TC = 125°C
Maximum Reverse Recovery Current
ns
nC
-
-
Amps
Amps
D = 0.9
1.00
0.7
0.80
0.60
0.5
0.40
0.3
Note:
PDM
t1
t2
0.20
0.1
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.05
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 25a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
RC MODEL
Junction
temp. (°C)
0.676
0.00147
0.504
0.0440
Power
(watts)
Case temperature. (°C)
FIGURE 25b, TRANSIENT THERMAL IMPEDANCE MODEL
6-2005
10-5
Rev A
0
SINGLE PULSE
050-7457
ZθJC, THERMAL IMPEDANCE (°C/W)
1.20
trr, REVERSE RECOVERY TIME
(ns)
TJ = 175°C
50
TJ = 125°C
40
TJ = 25°C
30
TJ = -55°C
20
10
1
2
3
4
5
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 26. Forward Current vs. Forward Voltage
0
Qrr, REVERSE RECOVERY CHARGE
(nC)
2500
T = 125°C
J
V = 800V
R
30A
2000
1500
15A
1000
7.5A
500
0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 28. Reverse Recovery Charge vs. Current Rate of Change
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
1.2
trr
1.0
trr
0.8
Qrr
CJ, JUNCTION CAPACITANCE
(pF)
7.5A
150
100
25
T = 125°C
J
V = 800V
30A
R
20
15
15A
10
7.5A
5
0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 29. Reverse Recovery Current vs. Current Rate of ChangeTum tes35
Duty cycle = 0.5
T = 175°C
J
30
20
15
5
0
80
6-2005
15A
200
10
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 30. Dynamic Parameters vs. Junction Temperature
Rev A
250
25
0.2
050-7457
30A
300
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 27. Reverse Recovery Time vs. Current Rate of Change
IRRM
0.4
70
60
50
40
30
20
10
0
R
0
Qrr
0.6
0.0
T = 125°C
J
V = 800V
350
50
IRRM, REVERSE RECOVERY CURRENT
(A)
0
APT25GP120BDQ1(G)
400
IF(AV) (A)
IF, FORWARD CURRENT
(A)
60
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 32. Junction Capacitance vs. Reverse Voltage
0
25
50
75
100
125
150
175
Case Temperature (°C)
Figure 31. Maximum Average Forward Current vs. CaseTemperature
TYPICAL PERFORMANCE CURVES
APT25GP120BDQ1(G)
Vr
diF /dt Adjust
+18V
APT10078BLL
0V
D.U.T.
30µH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 33. Diode Test Circui
t
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
3
0.25 IRRM
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 34, Diode Reverse Recovery Waveform and Definitions
TO-247 Package Outline
e1 SAC: Tin, Silver, Copper
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
Collector
(Cathode)
20.80 (.819)
21.46 (.845)
3.55 (.138)
3.81 (.150)
4.50 (.177) Max.
1.01 (.040)
1.40 (.055)
Gate
Collector
(Cathode)
Emitter
(Anode)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
6-2005
1.65 (.065)
2.13 (.084)
Rev A
2.21 (.087)
2.59 (.102)
19.81 (.780)
20.32 (.800)
050-7457
0.40 (.016)
0.79 (.031)
2.87 (.113)
3.12 (.123)