ADPOW APT15GN120KG

APT15GN120K(G)
1200V
TYPICAL PERFORMANCE CURVES
APT15GN120K
APT15GN120KG*
®
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra
low VCE(ON) and are ideal for low frequency applications that require absolute minimum
conduction loss. Easy paralleling is a result of very tight parameter distribution and a
slightly positive VCE(ON) temperature coefficient. Low gate charge simplifies gate drive
design and minimizes losses.
TO-220
• 1200V Field Stop
• Trench Gate: Low VCE(on)
• Easy Paralleling
C
G
E
Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT15GN120K(G)
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
45
I C2
Continuous Collector Current @ TC = 110°C
22
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
UNIT
Volts
Amps
45
Switching Safe Operating Area @ TJ = 150°C
45A @ 1200V
Total Power Dissipation
195
Operating and Storage Junction Temperature Range
Watts
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 0.5mA)
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 125°C)
Gate-Emitter Leakage Current (VGE = ±20V)
RGINT
Intergrated Gate Resistor
5.0
5.8
6.5
1.4
1.7
2.1
Units
Volts
2.0
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)
I GES
MAX
1200
(VCE = VGE, I C = 600µA, Tj = 25°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
TYP
100
2
120
N/A
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
µA
TBD
nA
Ω
10-2005
V(BR)CES
MIN
Rev B
Characteristic / Test Conditions
050-7599
Symbol
APT15GN120K(G)
DYNAMIC CHARACTERISTICS
Symbol
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Qg
Total Gate Charge
3
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
td(on)
tr
td(off)
tf
Eon2
Turn-on Switching Energy (Diode)
tf
A
ns
410
µJ
730
950
Inductive Switching (125°C)
10
VCC = 800V
9
VGE = 15V
170
RG = 4.3Ω 7
185
475
I C = 15A
Current Fall Time
Turn-off Switching Energy
nC
110
TJ = +25°C
Turn-off Delay Time
Turn-on Switching Energy (Diode)
V
150
RG = 4.3Ω 7
Current Rise Time
Turn-on Switching Energy
pF
45
6
Eon2
UNIT
55
9
5
MAX
5
VCC = 800V
4
Eon1
Eoff
90
I C = 15A
Turn-on Switching Energy
tr
9.0
VGE = 15V
VGE = 15V
Eon1
td(off)
Gate Charge
10
Current Fall Time
Turn-on Delay Time
50
Inductive Switching (25°C)
Turn-off Delay Time
td(on)
65
f = 1 MHz
15V, L = 100µH,VCE = 1200V
Current Rise Time
Turn-off Switching Energy
VGE = 0V, VCE = 25V
TJ = 150°C, R G = 4.3Ω 7, VGE =
Turn-on Delay Time
Eoff
1200
I C = 15A
Switching Safe Operating Area
TYP
Capacitance
VCE = 600V
Qge
SSOA
MIN
44
55
TJ = +125°C
ns
µJ
1310
66
1300
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
RθJC
Junction to Case (IGBT)
RθJC
Junction to Case (DIODE)
WT
Package Weight
MIN
TYP
MAX
.64
1.18
5.9
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
050-7599
Rev B
10-2005
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 RG is external gate resistance, not including RGint nor gate driver impedance. (MIC4452)
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
V
GE
= 15V
15V
50
IC, COLLECTOR CURRENT (A)
APT15GN120K(G)
60
40
TJ = 125°C
30
TJ = 25°C
20
TJ = -55°C
10
IC, COLLECTOR CURRENT (A)
60
50
13V
40
12V
30
11V
10V
20
9V
10
8V
7V
0
0
0
1
2
3
4
5
6
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
0
2
4
6
8
10
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
VGE, GATE-TO-EMITTER VOLTAGE (V)
30
20
10
0
3.5
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
3.0
IC = 30A
2.5
2.0
IC = 15A
1.5
IC = 7.5A
1.0
0.5
0
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
8
1.00
0.95
0.90
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
8
VCE =960V
6
4
2
0
20
40
60
80
GATE CHARGE (nC)
100
FIGURE 4, Gate Charge
1.10
1.05
VCE = 600V
10
0
4
8
12
16
20
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
VCE = 240V
12
3.0
2.5
IC = 30A
2.0
IC = 15A
1.5
IC = 7.5A
1.0
0.5
0
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
-50
-25
0
25
50
75
100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
60
50
40
30
20
10
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
10-2005
TJ = 125°C
J
Rev B
TJ = 25°C
40
I = 15A
C
T = 25°C
14
050-7599
TJ = -55°C
50
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
60
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
70
FIGURE 2, Output Characteristics (TJ = 125°C)
16
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
80
10
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
APT15GN120K(G)
200
12
VGE = 15V
8
6
4
VCE = 800V
2 T = 25°C, T =125°C
J
J
RG = 4.3Ω
L = 100 µH
0
160
140
VGE =15V,TJ=125°C
120
VGE =15V,TJ=25°C
100
80
60
40
VCE = 800V
RG = 4.3Ω
L = 100 µH
20
0
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
16
180
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
300
RG = 4.3Ω, L = 100µH, VCE = 800V
14
RG = 4.3Ω, L = 100µH, VCE = 800V
250
tf, FALL TIME (ns)
tr, RISE TIME (ns)
12
10
8
TJ = 25 or 125°C,VGE = 15V
6
200
TJ = 125°C, VGE = 15V
150
100
TJ = 25°C, VGE = 15V
4
50
2
0
0
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
3500
V
= 800V
CE
V
= +15V
GE
R = 4.3Ω
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
3000
G
2500
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
TJ = 125°C
2000
1500
1000
500
TJ = 25°C
050-7599
SWITCHING ENERGY LOSSES (µJ)
3000
G
TJ = 125°C
2500
2000
1500
1000
TJ = 25°C
500
0
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
5000
3500
= 800V
V
CE
= +15V
V
GE
T = 125°C
4500
J
4000
Eon2,30A
Eoff,30A
3500
3000
2500
Eon2,15A
2000
1500
500
0
Eon2,7.5A
Eoff,15A
1000
Eoff,7.5A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
Rev B
10-2005
0
= 800V
V
CE
= +15V
V
GE
R = 4.3Ω
= 800V
V
CE
= +15V
V
GE
R = 4.3Ω
3000
Eoff,30A
G
2500
2000
Eon2,30A
1500
1000
Eon2,15A
500
0
Eoff,15A
Eon2,7.5A
0
Eoff,7.5A
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
500
P
C, CAPACITANCE ( F)
IC, COLLECTOR CURRENT (A)
Cies
1,000
100
Coes
50
APT15GN120K(G)
50
2,000
45
40
35
30
25
20
15
Cres
10
5
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
0
200 400 600 800 1000 1200 1400
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
D = 0.9
0.60
0.50
0.7
0.40
0.5
Note:
0.30
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.70
0.3
0.20
t2
SINGLE PULSE
0.10
0
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.1
0.05
10-5
t1
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.258
0.0600
0.0312
0.389
Case temperature. (°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
50
F
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 800V
CE
R = 4.3Ω
10
6
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
G
0
5
10
15
20
25
30
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
10-2005
Power
(watts)
0.00192
Rev B
0.323
100
050-7599
Junction
temp. (°C)
RC MODEL
FMAX, OPERATING FREQUENCY (kHz)
140
APT15GN120K(G)
10%
APT15DQ120
Gate Voltage
TJ = 125°C
td(on)
IC
V CC
V CE
90%
tr
5%
Collector Current
5%
10%
Collector Voltage
A
Switching Energy
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
90%
Gate Voltage
TJ = 125°C
td(off)
90%
tf
Collector Voltage
10%
0
Collector Current
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
TO-220 (K) Package Outline
e3 100% Sn
1.39 (.055)
0.51 (.020)
12.192 (.480)
9.912 (.390)
Drain
4.08 (.161) Dia.
3.54 (.139)
3.42 (.135)
2.54 (.100)
10.66 (.420)
9.66 (.380)
5.33 (.210)
4.83 (.190)
6.85 (.270)
5.85 (.230)
3.683 (.145)
MAX.
050-7599
Rev B
10-2005
0.50 (.020)
0.41 (.016)
2.92 (.115)
2.04 (.080)
4.82 (.190)
3.56 (.140)
14.73 (.580)
12.70 (.500)
1.01 (.040) 3-Plcs.
0.83 (.033)
2.79 (.110)
2.29 (.090)
5.33 (.210)
4.83 (.190)
Gate
Collector
Emitter
1.77 (.070) 3-Plcs.
1.15 (.045)
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.