APT15GN120K(G) 1200V TYPICAL PERFORMANCE CURVES APT15GN120K APT15GN120KG* ® *G Denotes RoHS Compliant, Pb Free Terminal Finish. Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra low VCE(ON) and are ideal for low frequency applications that require absolute minimum conduction loss. Easy paralleling is a result of very tight parameter distribution and a slightly positive VCE(ON) temperature coefficient. Low gate charge simplifies gate drive design and minimizes losses. TO-220 • 1200V Field Stop • Trench Gate: Low VCE(on) • Easy Paralleling C G E Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT15GN120K(G) VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current @ TC = 25°C 45 I C2 Continuous Collector Current @ TC = 110°C 22 I CM SSOA PD TJ,TSTG TL Pulsed Collector Current 1 UNIT Volts Amps 45 Switching Safe Operating Area @ TJ = 150°C 45A @ 1200V Total Power Dissipation 195 Operating and Storage Junction Temperature Range Watts -55 to 150 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 0.5mA) VGE(TH) Gate Threshold Voltage VCE(ON) I CES Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 125°C) Gate-Emitter Leakage Current (VGE = ±20V) RGINT Intergrated Gate Resistor 5.0 5.8 6.5 1.4 1.7 2.1 Units Volts 2.0 2 Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) I GES MAX 1200 (VCE = VGE, I C = 600µA, Tj = 25°C) Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) TYP 100 2 120 N/A CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com µA TBD nA Ω 10-2005 V(BR)CES MIN Rev B Characteristic / Test Conditions 050-7599 Symbol APT15GN120K(G) DYNAMIC CHARACTERISTICS Symbol Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage Qg Total Gate Charge 3 Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge td(on) tr td(off) tf Eon2 Turn-on Switching Energy (Diode) tf A ns 410 µJ 730 950 Inductive Switching (125°C) 10 VCC = 800V 9 VGE = 15V 170 RG = 4.3Ω 7 185 475 I C = 15A Current Fall Time Turn-off Switching Energy nC 110 TJ = +25°C Turn-off Delay Time Turn-on Switching Energy (Diode) V 150 RG = 4.3Ω 7 Current Rise Time Turn-on Switching Energy pF 45 6 Eon2 UNIT 55 9 5 MAX 5 VCC = 800V 4 Eon1 Eoff 90 I C = 15A Turn-on Switching Energy tr 9.0 VGE = 15V VGE = 15V Eon1 td(off) Gate Charge 10 Current Fall Time Turn-on Delay Time 50 Inductive Switching (25°C) Turn-off Delay Time td(on) 65 f = 1 MHz 15V, L = 100µH,VCE = 1200V Current Rise Time Turn-off Switching Energy VGE = 0V, VCE = 25V TJ = 150°C, R G = 4.3Ω 7, VGE = Turn-on Delay Time Eoff 1200 I C = 15A Switching Safe Operating Area TYP Capacitance VCE = 600V Qge SSOA MIN 44 55 TJ = +125°C ns µJ 1310 66 1300 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic RθJC Junction to Case (IGBT) RθJC Junction to Case (DIODE) WT Package Weight MIN TYP MAX .64 1.18 5.9 UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 050-7599 Rev B 10-2005 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 RG is external gate resistance, not including RGint nor gate driver impedance. (MIC4452) APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES V GE = 15V 15V 50 IC, COLLECTOR CURRENT (A) APT15GN120K(G) 60 40 TJ = 125°C 30 TJ = 25°C 20 TJ = -55°C 10 IC, COLLECTOR CURRENT (A) 60 50 13V 40 12V 30 11V 10V 20 9V 10 8V 7V 0 0 0 1 2 3 4 5 6 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 0 2 4 6 8 10 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(TJ = 25°C) VGE, GATE-TO-EMITTER VOLTAGE (V) 30 20 10 0 3.5 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 3.0 IC = 30A 2.5 2.0 IC = 15A 1.5 IC = 7.5A 1.0 0.5 0 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 8 1.00 0.95 0.90 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature 8 VCE =960V 6 4 2 0 20 40 60 80 GATE CHARGE (nC) 100 FIGURE 4, Gate Charge 1.10 1.05 VCE = 600V 10 0 4 8 12 16 20 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics VCE = 240V 12 3.0 2.5 IC = 30A 2.0 IC = 15A 1.5 IC = 7.5A 1.0 0.5 0 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE -50 -25 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 10-2005 TJ = 125°C J Rev B TJ = 25°C 40 I = 15A C T = 25°C 14 050-7599 TJ = -55°C 50 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) 60 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST<0.5 % DUTY CYCLE 70 FIGURE 2, Output Characteristics (TJ = 125°C) 16 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 80 10 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) APT15GN120K(G) 200 12 VGE = 15V 8 6 4 VCE = 800V 2 T = 25°C, T =125°C J J RG = 4.3Ω L = 100 µH 0 160 140 VGE =15V,TJ=125°C 120 VGE =15V,TJ=25°C 100 80 60 40 VCE = 800V RG = 4.3Ω L = 100 µH 20 0 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 16 180 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 300 RG = 4.3Ω, L = 100µH, VCE = 800V 14 RG = 4.3Ω, L = 100µH, VCE = 800V 250 tf, FALL TIME (ns) tr, RISE TIME (ns) 12 10 8 TJ = 25 or 125°C,VGE = 15V 6 200 TJ = 125°C, VGE = 15V 150 100 TJ = 25°C, VGE = 15V 4 50 2 0 0 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 3500 V = 800V CE V = +15V GE R = 4.3Ω EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 3000 G 2500 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current TJ = 125°C 2000 1500 1000 500 TJ = 25°C 050-7599 SWITCHING ENERGY LOSSES (µJ) 3000 G TJ = 125°C 2500 2000 1500 1000 TJ = 25°C 500 0 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 5000 3500 = 800V V CE = +15V V GE T = 125°C 4500 J 4000 Eon2,30A Eoff,30A 3500 3000 2500 Eon2,15A 2000 1500 500 0 Eon2,7.5A Eoff,15A 1000 Eoff,7.5A 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) Rev B 10-2005 0 = 800V V CE = +15V V GE R = 4.3Ω = 800V V CE = +15V V GE R = 4.3Ω 3000 Eoff,30A G 2500 2000 Eon2,30A 1500 1000 Eon2,15A 500 0 Eoff,15A Eon2,7.5A 0 Eoff,7.5A 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES 500 P C, CAPACITANCE ( F) IC, COLLECTOR CURRENT (A) Cies 1,000 100 Coes 50 APT15GN120K(G) 50 2,000 45 40 35 30 25 20 15 Cres 10 5 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 0 200 400 600 800 1000 1200 1400 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area D = 0.9 0.60 0.50 0.7 0.40 0.5 Note: 0.30 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.70 0.3 0.20 t2 SINGLE PULSE 0.10 0 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 0.1 0.05 10-5 t1 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 0.258 0.0600 0.0312 0.389 Case temperature. (°C) FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL 50 F = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf T = 125°C J T = 75°C C D = 50 % V = 800V CE R = 4.3Ω 10 6 max fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC G 0 5 10 15 20 25 30 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 10-2005 Power (watts) 0.00192 Rev B 0.323 100 050-7599 Junction temp. (°C) RC MODEL FMAX, OPERATING FREQUENCY (kHz) 140 APT15GN120K(G) 10% APT15DQ120 Gate Voltage TJ = 125°C td(on) IC V CC V CE 90% tr 5% Collector Current 5% 10% Collector Voltage A Switching Energy D.U.T. Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit 90% Gate Voltage TJ = 125°C td(off) 90% tf Collector Voltage 10% 0 Collector Current Switching Energy Figure 23, Turn-off Switching Waveforms and Definitions TO-220 (K) Package Outline e3 100% Sn 1.39 (.055) 0.51 (.020) 12.192 (.480) 9.912 (.390) Drain 4.08 (.161) Dia. 3.54 (.139) 3.42 (.135) 2.54 (.100) 10.66 (.420) 9.66 (.380) 5.33 (.210) 4.83 (.190) 6.85 (.270) 5.85 (.230) 3.683 (.145) MAX. 050-7599 Rev B 10-2005 0.50 (.020) 0.41 (.016) 2.92 (.115) 2.04 (.080) 4.82 (.190) 3.56 (.140) 14.73 (.580) 12.70 (.500) 1.01 (.040) 3-Plcs. 0.83 (.033) 2.79 (.110) 2.29 (.090) 5.33 (.210) 4.83 (.190) Gate Collector Emitter 1.77 (.070) 3-Plcs. 1.15 (.045) Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.