PHILIPS TDA8798

INTEGRATED CIRCUITS
DATA SHEET
TDA8798
Dual 8-bit, 100 Msps A/D converter
with DPGA
Objective specification
Supersedes data of 1998 Apr 15
File under Integrated Circuits, IC02
1999 Sep 16
Philips Semiconductors
Objective specification
Dual 8-bit, 100 Msps A/D converter with
DPGA
TDA8798
FEATURES
APPLICATIONS
• Dual 8-bit Analog-to-Digital Converter (ADC)
• High-dynamic range acquisition front-ends
• Sampling rate up to 100 million samples per
second (Msps)
• Digital data storage read channels.
• Dual 34 dBV 6-bit Digitally Programmable Gain
Amplifier (DPGA) with optional power-off
GENERAL DESCRIPTION
The TDA8798 is a dual 8-bit ADC with DPGA.
The 100 Msps maximum sampling rate and 34 dBV DPGA
gain range optimizes the ADC for high dynamic range
applications.
• Optional external equalization filter with capacitive
coupling between DPGA and ADC
• Serial Interface (SI) for DPGA gain control using either
parallel load mode or count-up/count-down mode
• 3.3 V TTL/CMOS compatible I/O
• Differential or single-ended TTL/CMOS clock interface
• AC or DC coupling for DPGA inputs.
QUICK REFERENCE DATA
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VDDA
analog supply voltage
3.15
3.3
3.45
V
VDDD
digital supply voltage
3.0
3.3
3.6
V
VDDO
output stage supply voltage
IDDA
analog supply current
2.7
3.3
3.6
V
with DPGAEN LOW
−
106
−
mA
with DPGAEN HIGH
−
tbf
−
mA
IDDD
digital supply current
−
30
−
mA
IDDO
output stage supply current
−
3
−
mA
INL
DC integral non-linearity
DNL
DC differential non-linearity
Vn(o)(rms)
output referred noise (RMS value)
B(−3dB)(ADC)
ADC −3 dB analogue bandwidth
B(−3dB)(DPGA) DPGA −3 dB bandwidth
f(sample)(max)
maximum sampling rate
Ptot
total power dissipation
1999 Sep 16
from IC analog input to digital
output; ramp input;
fCLK = 100 MHz
with DPGA at G(min)
−
±3.0
tbf
LSB
without DPGA
−
±1.0
tbf
LSB
from IC analog input to digital
output; ramp input;
fCLK = 100 MHz
with DPGA at G(min)
−
±0.5
tbf
LSB
without DPGA
−
±0.5
tbf
LSB
DPGA at G(max); Zi = 50 Ω;
noise bandwidth = 15 MHz
−
tbf
2
mVrms
at Vi(dif)(FS)
−
120
−
MHz
at Vi(dif)(max)
30
tbf
−
MHz
100
−
−
Msps
with DPGAEN LOW
−
460
500
mW
with DPGAEN HIGH
−
tbf
tbf
mW
2
Philips Semiconductors
Objective specification
Dual 8-bit, 100 Msps A/D converter with
DPGA
TDA8798
ORDERING INFORMATION
PACKAGE
TYPE
NUMBER
NAME
TDA8798HL
LQFP64
DESCRIPTION
VERSION
plastic low profile quad flat package; 64 leads;
body 10 × 10 × 1.4 mm
SOT314-2
BLOCK DIAGRAM
handbook, full pagewidth
OPTIONAL
EXTERNAL
FILTER 2
to DPGA2
to DPGA2N
DPGA2
DPGAC2
3
to BUF2N
Voref2
BUF2N
DPGA2N
2
to BUF2
1
BUF2
63
VSSA4
TE
TEST
64
62
54
SR
55
OE
VDDA4
60
52
61 51
58
59
REGULATOR
analog VIN2N
input 2
VIN2
VDDA2
VSSA2
VSSD1
VDDD1
DPGAEN
VDDD2
VSSD2
VSSA1
VDDA1
analog
input 1
VIN1
VIN1N
6
41 to 48
A
7
DPGA2
BUFFER
D
5
4
ADC2
6
8
TDA8798
24
27
25
53
29
26
SERIAL
INTERFACE
28
56
30
57
CLK2N
digital
output 2
B0 to B7
Vref2
SEN2
SCLK
SMODE
SDATA
SEN1
9
13
6
12
ADC1
10
40 to 33
A
11
BUFFER
DPGA1
D
23
REGULATOR
14
15
16
18
17
19
20
21
22
31
50
32
49
MGM863
DPGAC1
DPGA1N
DPGA1
to DPGA1N
to DPGA1
VDDA3
BUF1
BUF1N
Voref1
OPTIONAL
EXTERNAL
FILTER 1
to BUF1N
to BUF1
3
VDDO1
VSSA3
Fig.1 Block diagram.
1999 Sep 16
CLK2
VSSO1
VDDO2
VSSO2
Vref1
digital
output 1
A0 to A7
CLK1
CLK1N
Philips Semiconductors
Objective specification
Dual 8-bit, 100 Msps A/D converter with
DPGA
handbook, full pagewidth
DPGA(1) 10 µH
L
Co(DPGA)
IOUT
TDA8798
100 nF
BUF(2)
C
Ro(DPGA)
Ri(ADC)
Ci(ADC)
Ri(ADC)
Ci(ADC)
R
1 kΩ
−IOUT
Ro(DPGA)
DPGAN(3)
Co(DPGA)
L
C
10 µH
100 nF
BUFN(4)
TDA8798
TDA8798
FCE267
External filtering may be used between DPGA and ADC to limit the noise bandwidth.
1 R ⁄ 2 + R o ( DPGA )
The external filter has a low-pass cut-off frequency of f l ( –3dB ) ≈ ------- × ------------------------------------------ .
2π
L
1
1
and a high-pass cut-off frequency of f h ( –3dB ) ≈ ------- × -----------------------------2π R i ( ADC ) × C
.
Other types of filter may be used if DC biasing is correct.
(1)
(2)
(3)
(4)
DPGA1/DPGA2
BUF1/BUF2
DPGA1N/DPGA2N
BUF1N/BUF2N
Fig.2 External filter.
PINNING
SYMBOL
PIN
DESCRIPTION
DPGA2N
1
DPGA2 inverting output
DPGA2
2
DPGA2 non-inverting output
DPGAC2
3
DPGA2 bandwidth limitation control
Vref2
4
ADC2 reference output
VDDA2
5
DPGA2 analog supply voltage
VIN2N
6
DPGA2 inverting input voltage
VIN2
7
DPGA2 non-inverting input voltage
VSSA2
8
DPGA2 analog ground
VSSA1
9
DPGA1 analog ground
VIN1
10
DPGA1 non-inverting input voltage
VIN1N
11
DPGA1 inverting input voltage
VDDA1
12
DPGA1 analog supply voltage
Vref1
13
ADC1 reference output
DPGAC1
14
DPGA1 bandwidth limitation control
DPGA1
15
DPGA1 non-inverting output
DPGA1N
16
DPGA1 inverting output
1999 Sep 16
4
Philips Semiconductors
Objective specification
Dual 8-bit, 100 Msps A/D converter with
DPGA
SYMBOL
BUF1
PIN
17
TDA8798
DESCRIPTION
buffer1 non-inverting input
BUF1N
18
buffer1 inverting input
Voref1
19
buffer1 common mode reference output
VDDA3
20
ADC1 analog supply voltage 3
VSSA3
21
ADC1 analog ground 3
CLK1N
22
ADC1 inverting clock input
CLK1
23
ADC1 non-inverting clock input
VSSD1
24
digital ground 1
VDDD1
25
digital supply voltage 1
SMODE
26
serial interface mode input
SEN2
27
serial interface enable 2 (active low)
SDATA
28
serial interface data input
SCLK
29
serial interface clock input
SEN1
30
serial interface enable 1 (active low)
VDDO1
31
output stage supply voltage 1
VSSO1
32
output stage ground 1
A7
33
channel 1 output bit 7 (MSB)
A6
34
channel 1 output bit 6
A5
35
channel 1 output bit 5
A4
36
channel 1 output bit 4
A3
37
channel 1 output bit 3
A2
38
channel 1 output bit 2
A1
39
channel 1 output bit 1
A0
40
channel 1 output bit 0 (LSB)
B0
41
channel 2 output bit 0 (LSB)
B1
42
channel 2 output bit 1
B2
43
channel 2 output bit 2
B3
44
channel 2 output bit 3
B4
45
channel 2 output bit 4
B5
46
channel 2 output bit 5
B6
47
channel 2 output bit 6
B7
48
channel 2 output bit 7 (MSB)
VSSO2
49
output stage ground 2
VDDO2
50
output stage supply voltage 2
OE
51
digital output enable (active LOW)
SR
52
digital output bit slew-rate control
DPGAEN
53
DPGA enable (active LOW)
TEST
54
test input (to be grounded)
TE
55
track-and-hold enable (active LOW)
VDDD2
56
digital supply voltage 2
VSSD2
57
digital ground 2
1999 Sep 16
5
Philips Semiconductors
Objective specification
Dual 8-bit, 100 Msps A/D converter with
DPGA
PIN
ADC2 inverting clock input
60
ADC2 analog ground 4
VDDA4
61
ADC2 analog supply voltage 4
55 TE
57 VSSD2
64 BUF2
handbook, full pagewidth
56 VDDD2
buffer2 non-inverting input
58 CLK2
64
59 CLK2N
BUF2
60 VSSA4
buffer2 inverting input
61 VDDA4
buffer2 common mode reference output
63
62 Voref2
62
BUF2N
63 BUF2N
Voref2
1
48 B7
DPGA2 2
47 B6
DPGAC2 3
46 B5
Vref2 4
45 B4
VDDA2 5
44 B3
VIN2N 6
43 B2
VIN2 7
42 B1
DPGA2N
VSSA2 8
41 B0
TDA8798HL
6
VSSO1 32
33 A7
VDDO1 31
DPGA1N 16
SEN1 30
34 A6
SCLK 29
DPGA1 15
SDATA 28
35 A5
SEN2 27
DPGAC1 14
SMODE 26
36 A4
VDDD1 25
Vref1 13
VSSD1 24
37 A3
CLK1 23
VDDA1 12
CLK1N 22
38 A2
VSSA3 21
VIN1N 11
VDDA3 20
39 A1
Voref1 19
VIN1 10
BUF1N 18
40 A0
BUF1 17
VSSA1 9
Fig.3 Pin configuration.
1999 Sep 16
49 VSSO2
59
VSSA4
50 VDDO2
CLK2N
51 OE
ADC2 non-inverting clock input
52 SR
58
53 DPGAEN
CLK2
DESCRIPTION
54 TEST
SYMBOL
TDA8798
MGM864
Philips Semiconductors
Objective specification
Dual 8-bit, 100 Msps A/D converter with
DPGA
TDA8798
FUNCTIONAL DESCRIPTION
Serial Interface (SI)
The TDA8798 comprises two independent fully differential
signal chains each having a DPGA and a high-speed ADC.
A serial interface allows the gain of each DPGA to be
controlled independently. To improve signal conditions, an
AC-coupled external filter can be connected between a
DPGA and ADC. The TDA8798 can be used as a dual 8-bit
ADC without DPGA functionality, using less power.
The SI allows the gain of each DPGA to be controlled
independently using either a parallel load mode or a
count-up/count-down mode. The gain control mode is
selected by the state of SMODE. The operation of DPGA
gain control is shown in Timing diagram, (see Fig.4).
Parallel load mode
This mode loads gain control data serially into a decoder
in the SI. Each of the six bits are loaded on the rising edge
of SCLK. After the load has completed, SEN goes inactive,
loading the data in parallel to a gain control register in the
SI, changing the gain of the DPGA.
Digitally Programmable Gain Amplifier (DPGA)
The gain of the differential DPGA is programmable from
0 to 34 dBV in 63 equal steps by a 6-bit word output in
parallel from a gain control register in the SI. For all gain
settings, the DPGA signal bandwidth exceeds 30 MHz.
The settling time between gain changes can be adjusted
by an external decoupling capacitor connected to
DPGAC1 (pin 14) and/or DPGAC2 (pin 3). The analog
input signals can be either AC or DC coupled. When used
only as a dual 8-bit ADC, both DPGAs can be disabled to
reduce power consumption.
Count-up/count-down mode
Count-up/count-down mode is selected when SMODE is
in the opposite state to parallel load mode. This mode
either increments or decrements the SI gain control
register in one-bit steps when SEN and SCLK are both
active; the state of SDATA determines the count direction
(up or down). This allows the gain of the DPGA to be
changed asynchronously and intermittently.
Analog-to-Digital Converter (ADC)
The 8-bit ADC converts the differential analog input signal
into a binary output format at a maximum conversion rate
of 100 Msps. All digital input and output signals are
TTL/CMOS compatible.
ADC digital outputs
Digital noise on the internal supply lines increases when
the VDDO voltage increases, affecting the crosstalk
between channels. This effect can be reduced by making
SR (pin 52) HIGH, changing the slew-rate of the ADC
digital outputs.
The ADC clock signal can be from either a differential or a
single-ended source; when single-ended, the unused
clock input pin should be decoupled externally. The analog
input to the ADC is AC coupled.
When used only as a dual ADC, the ADC can be externally
biased by regulator output Voref1 (pin 19) and/or
Voref2 (pin 62) using series resistors of, for example, 50 Ω,
connected to the ADC buffer inputs providing a lower input
impedance. This requires Voref1 and/or Voref2 to be
decoupled to ground by a 10 nF capacitor.
Vref1 (pin 13) and/or Vref2 (pin 4) provide a voltage
corresponding to the bias of the ADC which can be used
as a reference output to an external control circuit.
Alternatively, an external control voltage can be applied to
these pins to adjust the full-scale range of the ADC.
1999 Sep 16
7
Philips Semiconductors
Objective specification
Dual 8-bit, 100 Msps A/D converter with
DPGA
Table 1
TDA8798
Serial interface truth table; see notes 1 and 2
SMODE
SEN1
SEN2
SDATA
1
1
U
WAIT
0
1
1
Di
SISR: SISR ← Di
0
0
1
1
0
SCLK
X,
ACTION
SISR: SISR ← 1
GCR1: GCR1 + 1
0
0
1
0
SISR: SISR ← 0
GCR1: GCR1 − 1
0
1
0
1
SISR: SISR ← 1
GCR2: GCR2 + 1
0
1
0
0
SISR: SISR ← 0
GCR2: GCR2 − 1
0
0
0
1
SISR: SISR ← 1
GCR1: GCR1 + 1
GCR2: GCR2 + 1
0
0
0
0
SISR: SISR ← 0
GCR1: GCR1 − 1
GCR2: GCR2 − 1
1
X,
1
1
1
1
X,
X,
X,
X,
X,
X,
X,
X,
X,
U
WAIT
Di
SISR: SISR ← Di
U
GCR1: SISR
U
GCR2: SISR
U
GCR1: SISR
GCR2: SISR
Notes
1. ‘← Di’: shifting LSB and loading new LSB with value Di.
2. In count-up/count-down mode, the gain control register cannot be incremented above the maximum gain value of 63,
or decremented below the minimum gain value of 0.
1999 Sep 16
8
Philips Semiconductors
Objective specification
Dual 8-bit, 100 Msps A/D converter with
DPGA
Table 2
Abbreviations
TDA8798
Table 4
SYMBOL
SR truth table
SR
DESCRIPTION
ADC DIGITAL OUTPUT SLEW RATE
GCR1
DPGA1 gain control register value
0
maximum
GCR2
DPGA2 gain control register value
1
minimum
SISR
Serial interface shift register value
X
can be either logic state 0 or logic
state 1
Table 5
DPGAEN truth table
DPGAEN
rising edge
DPGA FUNCTIONALITY
0
enabled
1
disabled
falling edge
Table 6
U
can be either undefined logic state X
rising edge or falling edge
Di
Data input
Table 3
GAIN CONTROL
REGISTER VALUE
TE truth table
TE
Gain Control
ADC TRACK-AND-HOLD
GAIN (dBV)
000000
0.00
000001
0.54
000010
1.08
...
...
0
track-and-hold enabled
...
...
1
track enabled
...
...
111110
33.46
111111
34.00
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VDDA
analog supply voltage
−0.3
+7.0
V
VDDD
digital supply voltage
−0.3
+7.0
V
VDDO
output stage supply voltage
−0.3
+7.0
V
∆VDDX
supply voltage differences between
VDDA and VDDD
−1.0
+1.0
V
VDDO and VDDD
−1.0
+1.0
V
−1.0
+1.0
V
−0.3
+7.0
V
VDDA and VDDO
Vi(VIN)
input voltage range on VIN1 and VIN2
(pins 10 and 7)
IO
output current
−
10
mA
Tstg
storage temperature
−55
+150
°C
Tamb
ambient temperature
0
70
°C
Tj
junction temperature
−
104
°C
1999 Sep 16
referenced to VSSA
9
Philips Semiconductors
Objective specification
Dual 8-bit, 100 Msps A/D converter with
DPGA
TDA8798
HANDLING
Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is
desirable to take normal precautions appropriate to handling integrated circuits.
THERMAL CHARACTERISTICS
SYMBOL
Rth(j-a)
PARAMETER
CONDITIONS
thermal resistance from junction to ambient
VALUE
UNIT
68
K/W
in free air
CHARACTERISTICS
VDDA = V5 (or V12 or V20 or V61) to V8 (or V9 or V21 or V60) = 3.15 to 3.45 V; VDDD = V25 (or V56) to V24 (or V57) = 3.0
to 3.6 V; VDDO = V31 (or V50) to V32 (or V49) = 2.7 to 3.6 V; VSSA, VSSD and VSSO shorted together; VDDA to
VDDD = −0.25 to +0.25 V; VDDD to VDDO = −0.25 to +0.90 V; VDDA to VDDO = −0.25 to +0.75 V; Tamb = 0 to 70 °C; typical
values measured at VDDA = VDDD = VDDO = 3.3 V and Tamb = 25 °C; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supplies
VDDA
analog supply voltage
3.15
3.3
3.45
V
VDDD
digital supply voltage
3.0
3.3
3.6
V
VDDO
output stage supply voltage
2.7
3.3
3.6
V
IDDA
analog supply current
DPGAEN LOW
−
106
−
mA
DPGAEN HIGH
−
tbf
−
mA
IDDD
digital supply current
−
30
−
mA
IDDO
output stage supply current
−
3
−
mA
at G(min)
−
0.5
−
V
at G(max)
−
10
−
mV
tbf
2.8
tbf
V
fCLK = 100 MHz;
ramp input
Digital programmable gain amplifiers
ANALOG INPUTS (VIN1, VIN1N, VIN2 AND VIN2N)
Vi(dif)(max)(p-p)
maximum differential input
voltage (peak-to-peak value)
Vi(cm)(DPGA)
common mode input voltage
Ii(DPGA)
input current
−
tbf
−
µA
Ri(DPGA)
input resistance
1
−
−
kΩ
Ci(DPGA)
input capacitance
−
−
5
pF
at G(min)
−
0.5
−
V
at G(max)
−
0.5
−
V
−
3.1
−
V
−
115
160
Ω
−
−
5
pF
at Vi(cm)(DPGA)
ANALOG OUTPUTS (DPGA1, DPGA1N, DPGA2 AND DPGA2N)
Vo(dif)(max)(p-p)
maximum differential output
voltage (peak-to-peak value)
Vo(cm)(DPGA)
common mode output voltage
Ro(DPGA)
output resistance
Co(DPGA)
output capacitance
1999 Sep 16
at Vo(cm)(DPGA)
10
Philips Semiconductors
Objective specification
Dual 8-bit, 100 Msps A/D converter with
DPGA
SYMBOL
PARAMETER
TDA8798
CONDITIONS
MIN.
TYP.
MAX.
UNIT
BANDWIDTH AND SETTLING
B(−3dB)(DPGA)
DPGA −3 dB bandwidth
at Vi(dif)(max)
30
tbf
−
MHz
tst
settling time
full-scale transition
10% to 90%
40
−
−
ns
td(g)
group delay
fi up to 15 MHz
at G(min)
−
tbf
−
ps
at G(max)
−
tbf
−
ps
GAIN
G(min)
minimum gain setting
tbf
0
tbf
dBV
G(max)
maximum gain setting
tbf
34
tbf
dBV
Gstep
gain step size
−
0.54
−
dBV
Gstep(L)
gain step size linearity (actual
gain step/average − 1)
−0.75
−
+0.75 dBV
G(m)(c-c)
channel-to-channel gain
matching
at G(min)
−
tbf
−
dB
at G(max)
−
tbf
−
dB
∆G/∆T
amplifier gain stability as a
function of temperature
at G(min)
−
8
tbf
mdB/°C
at G(max)
−
8
tbf
mdB/°C
amplifier gain stability as a
function of power supply
voltage
at G(min)
−
0.4
tbf
dB/V
at G(max)
−
0.8
tbf
dB/V
CL = 68 pF
−
160
−
ns
−
−
20
ns
40
−
−
dB
40
−
−
dB
00H
40
tbf
−
dB
20H
40
tbf
−
dB
3FH
−
tbf
−
dB
tbf
50
−
dB
∆G/∆VDD
GAIN SWITCHING; TAMB = 25 °C
tst(G-G)
settling time between two
consecutive gain settings
tPD
propagation delay
REJECTION
PSRR
power supply rejection ratio
CMRR
common mode rejection ratio
DC to 15 MHz
at G(min)
HARMONICS; TAMB = 25 °C
HD2
HD3
second harmonic distortion
third harmonic distortion
fi = 15 MHz;
at Vo(dif)(max); at gain
control register:
fi = 15 MHz;
at Vo(dif)(max); at gain
control register:
00H
1999 Sep 16
20H
tbf
50
−
dB
3FH
−
50
−
dB
11
Philips Semiconductors
Objective specification
Dual 8-bit, 100 Msps A/D converter with
DPGA
SYMBOL
PARAMETER
TDA8798
CONDITIONS
MIN.
TYP.
MAX.
UNIT
NOISE
Vn(o)(rms)
output referred noise
(RMS value)
DPGA at G(max);
Zi = 50 Ω; noise
bandwidth = 15 MHz
−
tbf
2
mVrms
ADC (without DPGA; fCLK = 100 MHz; from buffer input to digital output)
ANALOG INPUTS (BUF1, BUF1N, BUF2 AND BUF2N)
Vi(dif)(FS)(p-p)
differential input voltage
full-scale amplitude;
(peak-to-peak value)
−
500
−
mV
Vi(cm)(ADC)
common mode input voltage
−
tbf
−
V
Ii(ADC)
input current
−
tbf
−
µA
Ri(ADC)
input resistance
−
20
−
kΩ
Ci(ADC)
input capacitance
−
3
−
pF
without DPGA
−
±1.0
tbf
LSB
with DPGA
at G(min)
−
±3.0
tbf
LSB
without DPGA
−
±0.5
tbf
LSB
with DPGA
at G(min)
−
±0.5
tbf
LSB
at Vi(cm)(ADC)
STATIC LINEARITY
NLdc(i)
NLdc(dif)
DC integral non-linearity
DC differential non-linearity
ramp input;
ramp input;
DYNAMIC PERFORMANCE
THD
total harmonic distortion
fi = 4.43 MHz
−
−55
−
dB
S/N
signal-to-noise ratio
without harmonics
−
−46
−
dB
−
120
−
MHz
−
−40
−
dB
−
−
0.8
V
BANDWIDTH
B(−3dB)(ADC)
ADC −3 dB analog bandwidth
CROSSTALK BETWEEN ADC1 AND ADC2
αct
crosstalk between channels
CLOCK INPUTS: CLK1, CLK1N, CLK2 AND CLK2N; note 1
VIL
LOW-level clock input voltage
VIH
HIGH-level clock input voltage
2.0
−
VDDD
V
IIH
HIGH-level clock input current
−
−
100
µA
IIL
LOW-level clock input current
−100
−
−
µA
−
−
0.8
V
DIGITAL CONTROL INPUTS (OE, TE, TEST, DPGAEN AND SR)
VIL
LOW-level input voltage
VIH
HIGH-level input voltage
2.0
−
VDDD
V
IIH
HIGH-level input current
−5
−
+5
µA
IIL
LOW-level input current
−5
−
+5
µA
1999 Sep 16
12
Philips Semiconductors
Objective specification
Dual 8-bit, 100 Msps A/D converter with
DPGA
SYMBOL
PARAMETER
TDA8798
CONDITIONS
MIN.
TYP.
MAX.
UNIT
DIGITAL OUTPUTS (A0 TO A7 AND B0 TO B7)
VOL
LOW-level output voltage
IO = 1 mA
−
0.4
V
VOH
HIGH-level output voltage
IO = −1 mA
VDDO − 0.4 V −
−
−
V
IOZ
output current in 3-state mode VO > 0.4 V;
VO < (VDDO − 0.4 V)
−20
−
+20
µA
ADC CLOCK TIMING
fCLK(max)
maximum clock frequency
100
−
−
MHz
tW(CLKL)
clock pulse width LOW
duration
4.0
−
−
ns
tW(CLKH)
clock pulse width HIGH
duration
4.0
−
−
ns
tr(CLK)
clock pulse rise time
0.75
1
2
ns
tf(CLK)
clock pulse fall time
0.75
1
2
ns
−
−
tbf
ns
DATA TIMING (see Fig.4); FCLK = 100 MHZ; CDPGAC = 10 PF
td(s)(D)
data sampling delay time
td(Q)
data output delay time
th(Q)
SR HIGH
−
5.0
tbf
ns
SR LOW
−
tbf
tbf
ns
SR HIGH
tbf
5.0
−
ns
SR LOW
tbf
tbf
−
ns
output delay enable at logic
HIGH
SR HIGH
−
tbf
tbf
ns
SR LOW
−
tbf
tbf
ns
output delay enable at logic
LOW
SR HIGH
−
tbf
tbf
ns
SR LOW
−
tbf
tbf
ns
output delay disable at logic
HIGH
SR HIGH
−
tbf
tbf
ns
SR LOW
−
tbf
tbf
ns
output delay disable at logic
LOW
SR HIGH
−
tbf
tbf
ns
SR LOW
−
tbf
tbf
ns
−
1.24
−
V
−
−
10
Ω
data output hold time
3-STATE OUTPUT DELAY TIMES (see Fig.6)
tdZH
tdZL
tdHZ
tdLZ
ADC REFERENCE OUTPUTS (VREF1 AND VREF2)
Vo(ref)
ADC reference output voltage
Ro(ref)
ADC reference output
resistance
Io(ref)(max)
ADC reference maximum
output current
−
4.0
−
mA
Co(ref)
ADC reference output
capacitance
−
−
3
pF
1999 Sep 16
at Vo(ref)
13
Philips Semiconductors
Objective specification
Dual 8-bit, 100 Msps A/D converter with
DPGA
SYMBOL
PARAMETER
TDA8798
CONDITIONS
MIN.
TYP.
MAX.
UNIT
COMMON MODE REFERENCE OUTPUTS (VOREF1 AND VOREF2)
Vo(ref)
reference output voltage
−
VDDA − 0.42 V −
V
Ro(ref)
reference output resistance
at Vo(cm)(ref)
−
400
−
Ω
Io(ref)
reference maximum output
current
at Vo(cm)(ref) − 0.2 V
−
170
−
µA
Co(ref)
reference output capacitance
−
−
3
pF
Serial Interface
DIGITAL INPUTS (SEN1, SEN2, SCLK, SDATA AND SMODE)
VIL
LOW-level input voltage
0
−
0.8
V
VIH
HIGH-level input voltage
2.0
−
VDDD
V
IIH
HIGH-level input current
−5
0
+5
µA
IIL
LOW-level input current
−5
0
+5
µA
GAIN CONTROL DATA TIMING (see Fig.4)
fSCLK(max)
maximum clock frequency
5
−
−
MHz
tW(SCLKH)
clock pulse width HIGH
20
−
−
ns
tW(SCLKL)
clock pulse width LOW
20
−
−
ns
tsu(SEN-SCLK)
SEN to SCLK set-up time
5
−
−
ns
th(SEN-SCLK)
SEN to SCLK hold time
5
−
−
ns
tsu(SDATA-SCLK) SDATA to SCLK set-up time
5
−
−
ns
th(SMODE-SCLK) SMODE to SCLK hold time
5
−
−
ns
th(SMODE-SEN)
SMODE to SEN hold time
5
−
−
ns
td(SEN-Q)
delay SEN rising edge to
change gain control register
value
−
−
5
ns
td(SCLK-Q)
delay SCLK rising edge to
change gain control register
value
−
−
5
ns
Note
1. Single-ended clock signal sources are allowed. The unused clock input is internally biased at the logical threshold
(1.65 V for nominal supply conditions), and should be correctly decoupled.
1999 Sep 16
14
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
50%
SMODE
th(SMODE-SEN)
50%
SEN
th(SMODE-SCLK)
t W(SCLKH)
tsu(SEN-SCLK)
t W(SCLKL)
tsu(SEN-SCLK)
tsu(SEN-SCLK)
th(SEN-SCLK)
50%
SCLK
tsu(SDATA-SCLK)
15
up = 1
down = 0
SDATA
D5
(MSB)
D4
D3
D2
D1
up = 1
down = 0
D0
(LSB)
Philips Semiconductors
count-up/count-down mode
Dual 8-bit, 100 Msps A/D converter with
DPGA
handbook, full pagewidth
1999 Sep 16
parallel load mode
td(SEN-Q)
td(SCLK-Q)
SI GAIN
CONTROL
REGISTER
D5 D4 D3 D2 D1 D0
REG +/−1
REG +/−1
tst(G-G)
10%
DPGA
OUTPUTS
90%
tPD
Objective specification
TDA8798
Fig.4 Timing diagram of serial interface.
MGM865
Philips Semiconductors
Objective specification
Dual 8-bit, 100 Msps A/D converter with
DPGA
TDA8798
t W(CLKL)
handbook, full pagewidth
t W(CLKH)
HIGH
50 %
CLK
LOW
sample N
sample N + 1
sample N + 2
Vi
th(Q)
td(s)(D)
DATA
A0 to A7
B0 to B7
HIGH
DATA
N−2
DATA
N−1
DATA
N
DATA
N+1
50 %
LOW
td(Q)
MGM866
Fig.5 Timing diagram for the ADC.
VDDO
handbook, full pagewidth
50%
OE
0V
tdZH
tdHZ
logic HIGH
90%
data
output
50%
tdLZ
tdZL
high impedance
data
output
high impedance
50%
logic LOW
10%
VDDO
TDA8798
OE
A0 to A7
B0 to B7
3.3 kΩ
S1
10 pF
TEST
S1
tdLZ
VDDO
tdZL
VDDO
tdHZ
GND
tdZH
GND
MGM868
Fig.6 Timing diagram and test conditions of 3-state output delay time.
1999 Sep 16
16
Philips Semiconductors
Objective specification
Dual 8-bit, 100 Msps A/D converter with
DPGA
TDA8798
TEST AND APPLICATION INFORMATION
handbook, full pagewidth
3.3 V
3.3 V
100 nF(1)
3.3 V
100 nF(1)
100 nF(1)
49
VSSO2
VDDO2
50
51
OE
SR
52
DPGAEN
53
54
TEST
TE
55
56
57
VDDD2
TE
CLK2
VSSD2
CLK2
58
CLK2N
59
60
VSSA4
VDDA4
61
Voref2
62
VSSD
100 nF
100 nF(1)
VSSD
3.3 V
B5
B4
B3
B2
B1
B0
A0
A1
A2
A3
A4
A5
A6
A7
B7
B6
B5
B4
B3
B2
B1
B0
A0
A1
A2
A3
A4
A5
A6
A7
32
31
30
B6
VSSO
100 nF(1)
VSSD
3.3 V
B7
VSSO1
VDDO1
29
100 nF(1)
VSSA
SEN1
VSSA
SEN1
(2)
SCLK
100 nF
(2)
BUF2N
33
16
BUF1
100 nF
63
34
15
17
DPGA1N
35
14
28
DPGA1
SCLK
68 pF(3)
36
13
SDATA
VSSA
DPGAC1
37
12
27
VSSA
Vref1
SDATA
100 nF(1)
SEN2
3.3 V
38
11
SEN2
VDDA1
26
VIN1N
39
10
SMODE
VIN1N
SMODE
100 nF(4)
40
9
25
VIN1
VIN1
TDA8798HL
24
100 nF(4)
41
8
VDDD1
VSSA1
42
7
23
VSSA2
CLK1
VIN2
43
VSSD1
VIN2
44
6
CLK1
100 nF(4)
5
22
VIN2N
CLK1N
100 nF(4)
VIN2N
21
3.3 V
45
4
VSSA3
100 nF(1) V
DDA2
46
3
20
Vref2
VSSA
47
2
VDDA3
DPGAC2
19
68 pF(3)
VSSA
48
Voref1
DPGA2
VSSO
1
18
DPGA2N
BUF1N
(2)
BUF2
100 nF
(2)
64
100 nF
VSSD
100 nF
VSSD
VSSA
DPGAEN
VSSD
VSSO
OE
VSSD
SR
VSSA
VSSO
3.3 V
MGM867
Analog and digital supplies must be separate and decoupled.
(1) Supply decoupling capacitor must be placed as close as possible to the chip’s pin. Value may need changing depending on the external filter
characteristics.
(2) Capacitor may be replaced when an external filter is used with AC coupling.
(3) Capacitor value may be changed to adjust settling time between DPGA gain changes.
(4) Capacitor value may need changing depending on the high-pass cut-off frequency of the external filter.
Fig.7 Application diagram.
1999 Sep 16
17
Philips Semiconductors
Objective specification
Dual 8-bit, 100 Msps A/D converter with
DPGA
TDA8798
INTERNAL PIN CONFIGURATIONS
handbook, halfpage
V
DDA2
handbook, halfpage
V
DDA1
0.5 V
VIN2
VIN2N
0.5 V
VIN1
VIN1N
1 kΩ
1 kΩ
VSSA2
VSSA1
MGM870
MGM869
Fig.8 DPGA1 analog input.
Fig.9 DPGA2 analog input.
handbook, V
halfpage
DDA3
handbook, V
halfpage
Voref1
Voref2
DDA4
BUF1
BUF1N
20
kΩ
0.42 V
BUF2
BUF2N
20
kΩ
VSSA4
VSSA3
MGM872
MGM871
Fig.10 ADC1 buffer input and Voref1 output.
Fig.11 ADC2 buffer input and Voref2 output.
handbook,
halfpage
V
DDD1
handbook,
halfpage
V
CLK1
CLK2
DDD2
CLK1N
CLK2N
20
kΩ
20
kΩ
1.4 V
1.4 V
VSSD1
VSSD2
MGM873
MGM874
Fig.12 ADC1 clock buffer input.
1999 Sep 16
0.42 V
Fig.13 ADC2 clock buffer input.
18
Philips Semiconductors
Objective specification
Dual 8-bit, 100 Msps A/D converter with
DPGA
handbook, halfpage
TDA8798
handbook, halfpage
VDDA3
VDDA4
VDDA2
VDDA1
100 Ω
100 Ω
DPGA1
DPGA2
DPGA1N
DPGA2N
VSSA1
VSSA2
MGM876
MGM875
Fig.14 DPGA1 buffer output.
handbook, halfpage
Fig.15 DPGA2 buffer output.
handbook, halfpage
VDDD1
SMODE
SEN1
SEN2
SDATA
SCLK
VDDD2
TE
DPGAEN
VSSD1
VSSD2
MGM877
MGM878
Fig.16 Serial Interface inputs.
Fig.17 TE and DPGAEN inputs.
handbook, halfpage
VDDO1
OE
handbook, halfpage V
DDO2
OE
SR
A0N
A0
VSSO2
MGM879
VSSO1
MGM880
Fig.18 OE and SR inputs.
1999 Sep 16
Fig.19 ADC1 A0 to A7 outputs.
19
Philips Semiconductors
Objective specification
Dual 8-bit, 100 Msps A/D converter with
DPGA
handbook, halfpage
TDA8798
VDDO2
VDDA3
OE
Vref1
B0N
B0
1.24 V
VSSA3
VSSO2
FCE268
MGM881
Fig.20 ADC2 B0 to B7 outputs.
Fig.21 Vref1 output.
VDDA4
Vref2
1.24 V
VSSA4
FCE269
Fig.22 Vref2 output.
1999 Sep 16
20
Philips Semiconductors
Objective specification
Dual 8-bit, 100 Msps A/D converter with
DPGA
TDA8798
PACKAGE OUTLINE
LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm
SOT314-2
c
y
X
A
48
33
49
32
ZE
e
E HE
A
A2
(A 3)
A1
wM
θ
bp
pin 1 index
64
Lp
L
17
1
detail X
16
ZD
e
v M A
wM
bp
D
B
HD
v M B
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
mm
1.60
0.20
0.05
1.45
1.35
0.25
0.27
0.17
0.18
0.12
10.1
9.9
10.1
9.9
0.5
HD
HE
12.15 12.15
11.85 11.85
L
Lp
v
w
y
1.0
0.75
0.45
0.2
0.12
0.1
Z D (1) Z E (1)
θ
1.45
1.05
7
0o
1.45
1.05
o
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
OUTLINE
VERSION
REFERENCES
IEC
JEDEC
EIAJ
ISSUE DATE
95-12-19
97-08-01
SOT314-2
1999 Sep 16
EUROPEAN
PROJECTION
21
Philips Semiconductors
Objective specification
Dual 8-bit, 100 Msps A/D converter with
DPGA
• For packages with leads on two sides and a pitch (e):
SOLDERING
– larger than or equal to 1.27 mm, the footprint
longitudinal axis is preferred to be parallel to the
transport direction of the printed-circuit board;
Introduction to soldering surface mount packages
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our “Data Handbook IC26; Integrated Circuit Packages”
(document order number 9398 652 90011).
– smaller than 1.27 mm, the footprint longitudinal axis
must be parallel to the transport direction of the
printed-circuit board.
There is no soldering method that is ideal for all surface
mount IC packages. Wave soldering is not always suitable
for surface mount ICs, or for printed-circuit boards with
high population densities. In these situations reflow
soldering is often used.
The footprint must incorporate solder thieves at the
downstream end.
• For packages with leads on four sides, the footprint must
be placed at a 45° angle to the transport direction of the
printed-circuit board. The footprint must incorporate
solder thieves downstream and at the side corners.
Reflow soldering
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
Several methods exist for reflowing; for example,
infrared/convection heating in a conveyor type oven.
Throughput times (preheating, soldering and cooling) vary
between 100 and 200 seconds depending on heating
method.
Typical dwell time is 4 seconds at 250 °C.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
Manual soldering
Typical reflow peak temperatures range from
215 to 250 °C. The top-surface temperature of the
packages should preferable be kept below 230 °C.
Fix the component by first soldering two
diagonally-opposite end leads. Use a low voltage (24 V or
less) soldering iron applied to the flat part of the lead.
Contact time must be limited to 10 seconds at up to
300 °C.
Wave soldering
Conventional single wave soldering is not recommended
for surface mount devices (SMDs) or printed-circuit boards
with a high component density, as solder bridging and
non-wetting can present major problems.
When using a dedicated tool, all other leads can be
soldered in one operation within 2 to 5 seconds between
270 and 320 °C.
To overcome these problems the double-wave soldering
method was specifically developed.
If wave soldering is used the following conditions must be
observed for optimal results:
• Use a double-wave soldering method comprising a
turbulent wave with high upward pressure followed by a
smooth laminar wave.
1999 Sep 16
TDA8798
22
Philips Semiconductors
Objective specification
Dual 8-bit, 100 Msps A/D converter with
DPGA
TDA8798
Suitability of surface mount IC packages for wave and reflow soldering methods
SOLDERING METHOD
PACKAGE
REFLOW(1)
WAVE
BGA, SQFP
not suitable
HLQFP, HSQFP, HSOP, HTSSOP, SMS not
PLCC(3), SO, SOJ
suitable
suitable(2)
suitable
suitable
LQFP, QFP, TQFP
SSOP, TSSOP, VSO
suitable
not
recommended(3)(4)
suitable
not
recommended(5)
suitable
Notes
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum
temperature (with respect to time) and body size of the package, there is a risk that internal or external package
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.
The package footprint must incorporate solder thieves downstream and at the side corners.
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
1999 Sep 16
23
Philips Semiconductors – a worldwide company
Argentina: see South America
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 68 9211, Fax. +359 2 68 9102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +45 33 29 3333, Fax. +45 33 29 3905
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615 800, Fax. +358 9 6158 0920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 2353 60, Fax. +49 40 2353 6300
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: PT Philips Development Corporation, Semiconductors Division,
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),
Tel. +39 039 203 6838, Fax +39 039 203 6800
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,
Tel. +48 22 5710 000, Fax. +48 22 5710 001
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,
Tel. +27 11 471 5401, Fax. +27 11 471 5398
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 821 2382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93 301 6312, Fax. +34 93 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2741 Fax. +41 1 488 3263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 62 5344, Fax.+381 11 63 5777
For all other countries apply to: Philips Semiconductors,
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Internet: http://www.semiconductors.philips.com
SCA 68
© Philips Electronics N.V. 1999
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
545004/25/02/pp24
Date of release: 1999
Sep 16
Document order number:
9397 750 05466