Freescale Semiconductor Technical Data Available at http://freescale.com/RFMMIC > Design Support > Reference Designs Rev. 0, 2/2012 RF Power Reference Design LTE 750 MHz Power Amplifier Lineup InGaP HBT Driving GaAs pHEMT Amplifier Lineup Characteristics This reference design provides a high-gain amplifier solution, specifically tuned for LTE and W--CDMA base station applications occupying the 725 to 760 MHz frequency band. • Typical Single--Carrier LTE Performance • GPA: VCC = 5 Vdc, ICC = 132 mAdc • Power GaAs FET: VDD = 12 Vdc, IDQ = 180 mA, VGS = --0.82 Vdc • Output Power: 1.0 Watts Avg. • 10 MHz Channel Bandwidth @ 10 MHz Offset • Input Signal PAR = 10.5 dB @ 0.01% Probability on CCDF, IQ Magnitude Clipping Frequency Gps (dB) ηD (%) Output PAR (dB) ACPR (dBc) 740 MHz 36.5 23.4 9.0 --40.3 750 MHz 36.4 24.1 9.0 --40.4 760 MHz 36.4 24.8 8.9 --40.4 MMG3014N Driving MRFG35010AN LTE 725--760 MHz, 1.0 W AVG., 12 V LTE AMPLIFIER LINEUP REFERENCE DESIGN • Output Capable of Handling 3:1 VSWR, @ 12 Vdc, 750 MHz, 10 Watts CW Output Power • Designed for Digital Predistortion Error Correction Systems MMG3014N/MRFG35010AN REFERENCE DESIGN The amplifier lineup consists of a GaAs HBT pre--driver and GaAs pHEMT driver amplifier, tuned for optimal gain, efficiency, linearity and dynamic range performance at 1.0 Watts average output power. Performance characteristics of the reference design are provided in this document. Contact your local Freescale sales office or authorized Freescale distributor for additional information on reference design board availability for hands--on assessment and customization. VDD VCC MMG3014N Bias RF INPUT Bias Bias VGS Input Matching Output Matching MRFG35010AN RF OUTPUT Matching Matching Figure 1. Functional Block Diagram © Freescale Semiconductor, Inc., 2012. All rights reserved. RF Reference Design Data Freescale Semiconductor, Inc. MMG3014N Driving MRFG35010AN LTE 1 AMPLIFIER LINEUP TEST CONDITIONS AMPLIFIER LINEUP — ALTERNATE CHARACTERISTICS • GPA: VCC = 5 Vdc, ICC = 132 mAdc • Power GaAs FET: VDD = 12 Vdc, IDQ = 180 mA, VGS = --0.82 Vdc • Output Power: 1.0 Watts Avg. • IQ Magnitude Clipping • Typical Single--Carrier W--CDMA Performance • Measured in 3.84 MHz Channel Bandwidth @ 5 MHz Offset • Input Signal PAR = 8.5 dB @ 0.01% Probability on CCDF Note: Refer to Appendix A for Power--up Sequence Frequency Gps (dB) ηD (%) Output PAR (dB) ACPR (dBc) 740 MHz 36.4 23.8 8.3 --40.9 750 MHz 36.3 24.5 8.2 --41.0 760 MHz 36.3 25.2 8.1 --41.0 REFERENCE DESIGN HARDWARE Figure 2. Performance Optimized Hardware HEATSINKING When operating this fixture it is important that adequate heatsinking is provided for the device. Excessive heating of the device may degrade the values of the included measurements and continued operation at excessive temperatures may destroy the device. MMG3014N Driving MRFG35010AN LTE Reference Design 2 RF Reference Design Data Freescale Semiconductor, Inc. --VGS C12 C11 C8 C7 C9 C13 C6 C10 C14 C5 C15 C4 +VCC +VDS C3 C16 R1 C2 R2 C22 C23 C1 C18 RFOUT Q2 RFIN C21 L1 C24 C25 L2 Q1 C19 C17 C20 MMG3014N/MRFG35010AN Rev. 1 Figure 3. MMG3014N Driving MRFG35010AN Board Layout Table 1. MMG3014N Driving MRFG35010AN Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C18 100 pF Chip Capacitors ATC600F101JT250XT ATC C2 22 pF Chip Capacitor ATC600F220JT250XT ATC C3, C16 10 pF Chip Capacitors ATC100A100JP150XT ATC C4, C15 100 pF Chip Capacitors ATC100A101JP150XT ATC C5, C14 100 pF Chip Capacitors ATC100B101JP500XT ATC C6, C13 1000 pF Chip Capacitors ATC100B102JP500XT ATC C7, C12 0.1 μF Chip Capacitors CDR33BX104AKYS Kemet C8, C11 39K pF Chip Capacitor ATC200B393KP50XT ATC C9, C10 22 μF, 35 V Tantalum Capacitors T491X226K035AT Kemet C17 12 pF Chip Capacitor ATC600F120JT250XT ATC C19 1.8 pF Chip Capacitor ATC600F1R8BT250XT ATC C20 8.2 pF Chip Capacitor ATC600F8R2BT250XT ATC C21, C23 220 pF Chip Capacitors C0805C221J5GAC Kemet C22 5.6 pF Chip Capacitor 06035J5R6BBS AVX C24 2.2 μF, 16 V Tantalum Capacitor T491A225K016AS Kemet C25 0.1 μF Chip Capacitor C0603C104J5RAC Kemet L1 4.7 nH Chip Inductor LL1608--FH4N7S TOKO L2 10 nH Chip Inductor LL1608--FH10NJ TOKO Q1 Power FET GaAs Transistor MRFG35010ANT1 Freescale Q2 InGaP HBT GPA MMG3014NT1 Freescale R1 51 Ω, 1/8 W Chip Resistor RM73BIJT510J KOA Speer R2 5.1 Ω, 1/4 W Chip Resistor CRCW08055R10JNEA Newark PCB 0.020″, εr = 3.5 RO4350B Rogers MMG3014N Driving MRFG35010AN LTE Reference Design RF Reference Design Data Freescale Semiconductor, Inc. 3 TYPICAL CHARACTERISTICS — 10 MHz LTE Test Signal (Single--Carrier LTE, Test Model 1.1, 10 MHz, PAR = 10.5 dB @ 0.01% Probability on CCDF) 38 40 740 MHz 750 MHz Gps, POWER GAIN (dB) 37 760 MHz 36 VCC = 5 Vdc ICC = 132 mA VDD = 12 Vdc IDQ = 180 mA VGS = --0.82 Vdc 35 34 14 19 24 29 30 ηD, DRAIN EFFICIENCY (%) 750 MHz 20 740 MHz VCC = 5 Vdc ICC = 132 mA VDD = 12 Vdc IDQ = 180 mA VGS = --0.82 Vdc 10 0 34 14 19 24 29 34 Pout, OUTPUT POWER (dBm) Pout, OUTPUT POWER (dBm) Figure 4. Power Gain versus Output Power Figure 5. Drain Efficency versus Output Power 11 PAR, PEAK--TO--AVERAGE RATIO (dB) --30 ACP, ADJACENT CHANNEL POWER (dBc) 760 MHz --36 740 MHz --42 750 MHz VCC = 5 Vdc ICC = 132 mA VDD = 12 Vdc IDQ = 180 mA VGS = --0.82 Vdc --48 760 MHz --54 14 19 24 29 740 MHz 10 760 MHz 9 VCC = 5 Vdc ICC = 132 mA VDD = 12 Vdc IDQ = 180 mA VGS = --0.82 Vdc 8 7 34 750 MHz 14 19 24 29 34 Pout, OUTPUT POWER (dBm) Pout, OUTPUT POWER (dBm) Figure 6. Adjacent Channel Power versus Output Power Figure 7. Peak--to--Average Ratio versus Output Power 10 MHz LTE TEST SIGNAL 100 10 0 --10 10 MHz Channel BW --20 1 --30 Input Signal (dB) PROBABILITY (%) 10 0.1 LTE. ACPR Measured in 10 MHz Channel Bandwidth @ ±10 MHz Offset. Input Signal PAR = 10.5 dB @ 0.01% Probability on CCDF 0.01 0.001 0 3 6 --40 --50 --60 --70 +ACPR in 10 MHz Integrated BW --ACPR in 10 MHz Integrated BW --80 9 12 PEAK--TO--AVERAGE (dB) Figure 8. CCDF LTE IQ Magnitude Clipping, Single--Carrier Test Signal --90 --100 --25 --20 --15 --10 --5 0 5 10 15 20 25 f, FREQUENCY (MHz) Figure 9. Single--Carrier LTE Spectrum MMG3014N Driving MRFG35010AN LTE Reference Design 4 RF Reference Design Data Freescale Semiconductor, Inc. TYPICAL CHARACTERISTICS — 8.5 dB Input PAR W--CDMA Test Signal (Single--Carrier W--CDMA, 3GPP Test Model 1, 64 DPCH, PAR = 8.5 dB @ 0.01% Probability on CCDF) 38 40 740 MHz Gps, POWER GAIN (dB) 37 750 MHz 36 760 MHz VCC = 5 Vdc ICC = 132 mA VDD = 12 Vdc IDQ = 180 mA VGS = --0.82 Vdc 35 34 ηD, DRAIN EFFICIENCY (%) 740 MHz 14 19 24 29 20 750 MHz VCC = 5 Vdc ICC = 132 mA VDD = 12 Vdc IDQ = 180 mA VGS = --0.82 Vdc 10 14 19 24 29 34 Pout, OUTPUT POWER (dBm) Pout, OUTPUT POWER (dBm) Figure 10. Power Gain versus Output Power Figure 11. Drain Efficency versus Output Power 10 PAR, PEAK--TO--AVERAGE RATIO (dB) ACP, ADJACENT CHANNEL POWER (dBc) 760 MHz 0 34 --30 --36 750 MHz --42 740 MHz VCC = 5 Vdc ICC = 132 mA VDD = 12 Vdc IDQ = 180 mA VGS = --0.82 Vdc --48 760 MHz --54 30 14 19 24 29 750 MHz 740 MHz 8 VCC = 5 Vdc ICC = 132 mA VDD = 12 Vdc IDQ = 180 mA VGS = --0.82 Vdc 7 6 34 760 MHz 9 14 19 24 29 34 Pout, OUTPUT POWER (dBm) Pout, OUTPUT POWER (dBm) Figure 12. Adjacent Channel Power versus Output Power Figure 13. Peak--to--Average Ratio versus Output Power 8.5 dB W--CDMA TEST SIGNAL 100 10 0 --10 3.84 MHz Channel BW --20 1 --30 Input Signal (dB) PROBABILITY (%) 10 0.1 W--CDMA. ACPR Measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. Input Signal PAR = 8.5 dB @ 0.01% Probability on CCDF 0.01 0.001 0 6 3 --40 --50 --60 --ACPR in 3.84 MHz Integrated BW --70 +ACPR in 3.84 MHz Integrated BW --80 9 PEAK--TO--AVERAGE (dB) Figure 14. CCDF W--CDMA IQ Magnitude Clipping, Single--Carrier Test Signal 12 --90 --100 --9 --7.2 --5.4 --3.6 --1.8 0 1.8 3.6 f, FREQUENCY (MHz) 5.4 7.2 9 Figure 15. Single--Carrier W--CDMA Spectrum MMG3014N Driving MRFG35010AN LTE Reference Design RF Reference Design Data Freescale Semiconductor, Inc. 5 CHARACTERISTICS — CW Test Signal Gp, SMALL--SIGNAL GAIN (dB) S21 S11 30 --7 --14 20 S22 --21 10 0 Pin = --25 dBm 500 600 700 800 900 1000 1100 IRL, INPUT RETURN LOSS (dB) ORL, OUTPUT RETURN LOSS (dB) 0 40 --28 1200 f, FREQUENCY (MHz) Note: Reference Impedance = 50 Ω Figure 16. Small--Signal Gain, Input and Output Return Loss versus Frequency 60 39 45 38 ηD 30 37 Gain 36 35 20 25 30 15 35 40 ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) f = 750 MHz 0 Pout, OUTPUT POWER (dBm) Figure 17. Power Gain and Drain Efficency versus Output Power MMG3014N Driving MRFG35010AN LTE Reference Design 6 RF Reference Design Data Freescale Semiconductor, Inc. APPENDIX A Power--Up Sequence The MMG3014N and MRFG35010AN devices are biased separately. Apply bias as follows: 1. Terminate the RF input and output with 50 Ω impedances: no RF signal applied. 2. Apply --1.5 Vdc supply across the --VGS (negative gate voltage) and GND terminals of MRFG35010AN. 3. Apply +12 Vdc supply across the +VDS (positive drain voltage) and GND terminals of MRFG35010AN. 4. Increase the --V GS value to set the I DQ (drain quiescent current) to 180 mA. --V GS should be approximately --0.82 Vdc. 5. Apply +5 V supply to VCC terminal of MMG3014N. 6. ICC should be around 132 mA. 7. Apply RF signal to input terminal and set signal level to --20 dBm. Power--Down Sequence 1. Remove RF signal from input terminal. 2. Remove VCC from MMG3014N. 3. Adjust MRFG35010AN’s --VGS to --1.5 Vdc. 4. IDQ should be near zero. 5. Remove +VDS from MRFG35010AN. 6. Remove --VGS from MRFG35010AN. MMG3014N Driving MRFG35010AN LTE Reference Design RF Reference Design Data Freescale Semiconductor, Inc. 7 APPENDIX B Tuning Tips • Adjusting the value or location of C19 and C20 will have significant effect on ACPR, output return loss and efficiency. • Adjusting the values or locations of C17 on MRFG35010AN input will have significant impact on gain and input return loss. MMG3014N Driving MRFG35010AN LTE Reference Design 8 RF Reference Design Data Freescale Semiconductor, Inc. APPENDIX C Simulation Models Download s imulation models of MMG3014N and MRFG35010AN from: http://www.freescale.com/RFMMIC (click on the “Design Support” tab) MMG3014N Driving MRFG35010AN LTE Reference Design RF Reference Design Data Freescale Semiconductor, Inc. 9 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1--800--521--6274 or +1--480--768--2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1--8--1, Shimo--Meguro, Meguro--ku, Tokyo 153--0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1--800--441--2447 or +1--303--675--2140 Fax: +1--303--675--2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2012. All rights reserved. MMG3014N Driving MRFG35010AN LTE Reference Design Available at http://freescale.com/RFMMIC > Design Support > Reference Designs Rev. 0, 2/2012 10 RF Reference Design Data Freescale Semiconductor, Inc.