SHARP 6N139

6N139
6N139
High Sensitivity, High Speed
OPIC Photocoupler
■ Features
■ Outline Dimensions
1.2 ± 0.3
0.85 ± 0.3
8
Primary Side Mark (Sunken place )
( Unit : mm )
Internal connection
diagram
6
7
5
6N139
1
2
3
4
0.8 ± 0.2
6
5
1
2
3
4
3.5 ± 0.5
0.5TYP.
3.7 ± 0.5
1. Interfaces for computer peripherals
2. Computers, measuring instruments, control
equipment
3. Telephone sets
4. Signal transmission between circuits of
different potentials and impedances
7
7.62 ± 0.3
9.22 ± 0.5
■ Applications
8
6.5 ± 0.5
1. High current transfer ratio
( CTR: MIN. 500 % at I F = 1.6mA )
2. High speed response
( t PHL : TYP. 0.2 µ s at R L = 270 Ω )
3. High commom mode rejection voltage
( CM H : TYP. 500V/ µ s )
4. TTL compatible output
5. Recognized by UL , file No. E64380
θ = 0 to 13˚
θ
2.54 ± 0.25
0.5 ± 0.1
0.26 ± 0.1
1 NC
5 GND
2 Anode
6 VO
3 Cathode
7 VB
4 NC
8 V CC
θ
* “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
■ Absolute Maximum Ratings
Input
Output
Parameter
Forward current
*1
Peak forward current
*2
Peak transient forward current
Reverse voltage
Power dissipation
Supply voltage
Output voltage
Emitter-base reverse
withstand voltage ( Pin 5 to 7 )
*3
Average output current
Power dissipation
*4
Isolation voltage
Operating temperature
Storage temperature
*5
Soldering temperature
( Ta = 25˚C )
Symbol
IF
IF
I FM
VR
P
V CC
VO
Rating
20
40
1
5
35
- 0.5 to + 18
- 0.5 to + 18
Unit
mA
mA
A
V
mW
V
V
V EBO
0.5
V
IO
PO
V iso
T opr
T stg
T sol
60
100
2 500
0 to + 70
- 55 to + 125
260
mA
mW
V rms
˚C
˚C
˚C
*1 50% duty cycle, Pulse width: 1ms
*2 Pulse width <=1µs, 300pps
*3 Decreases at the rate of 0.7mA /˚C if the external temperature is more than 25˚C
*4 40 to 60% RH, AC for 1 minute
*5 For 10 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ”
6N139
■ Electro-optical Characteristics
Parameter
*1
Symbol
CTR(1)
CTR(2)
V OL(1)
V OL(2)
V OL(2)
I OH
I CCL
I CCH
VF
*2
BV R
C IN
Current transfer ratio
Logic ( 0 ) output voltage
Logic (1) output current
Logic ( 0 ) supply current
Logic (1) supply current
Input forward voltage
Input forward voltage temperature coefficient
Input reverse voltage
Input capacitance
*3
Leak current
( Ta = 0 to + 70˚C unless otherwise specified )
( input-output )
I I-O
( input-output )
Isolation resistance
*3
Capacitance ( input-output )
*3
R I-O
CI-O
Conditions
I F = 0.5mA, V O = 0.4V, V CC = 4.5V
I F = 1.6mA, V O = 0.4V, V CC = 4.5V
I O = 6.4mA, VCC = 4.5V, I F= 1.6mA
I O = 15mA, VCC = 4.5V, I F = 5mA
I O = 24mA, V CC = 4.5V, I F = 12mA
I F = 0, V CC = V O = 18V
I F = 1.6mA, V CC = 5V, V O = open
I F = 0, V CC = 5V, V O = open
I F = 1.6mA, Ta = 25˚C
I F = 1.6mA
I R = 10 µA, Ta = 25˚C
V F = 0, f = 1MHz
Ta = 25˚C, 45% RH, t = 5s
V I-O = 3kV DC
V I-O = 500V DC
f = 1MHz
MIN.
400
500
5.0
-
TYP.
1 800
1 600
0.1
0.1
0.1
0.05
0.5
10
1.5
- 1.9
60
MAX.
0.4
0.4
0.4
100
1.7
-
Unit
%
%
V
V
V
µA
mA
nA
V
mV/˚C
V
pF
-
-
1.0
µA
-
1012
0.6
-
Ω
pF
Note ) Typical value : at Ta = 25˚C, VCC = 5V
*1 Current transfer ratio is a ratio of input current
and output current expressed in % .
*2 ∆ V F / ∆ Ta
*3 Measured as 2-pin element ( Short 1,2,3,4 and 5, 6, 7, 8. )
■ Switching Characteristics
( Ta = 25˚C, VCC = 5V )
Parameter
Symbol
*4
Propagation delay time
Output (1) → ( 0 )
t PHL
*4
Propagation delay time
Output ( 0 ) → (1)
t PLH
*5
*6 Instantaneous
common mode
rejection voltage “ Output (1)”
*5
*6 Instantaneous common mode
rejection voltage “ Output ( 0 ) ”
CM H
CM L
Conditions
R L = 4.7k Ω , I F = 0.5mA
R L = 270 Ω , I F = 12mA
R L = 4.7k Ω , I F = 0.5mA
R L = 270 Ω , I F = 12mA
I F = 0, VCM = 10V P-P
R L = 2.2k Ω
I F = 1.6 mA , V CM = 10V P-P
R L = 2.2k Ω
MIN.
-
TYP.
5
0.3
10
1.5
MAX.
25
1
60
7
Unit
µs
µs
µs
µs
-
500
-
V/ µ s
-
- 500
-
V/ µ s
*5 Instantaneous common mode rejection voltage “ output (1)” represents a common mode voltage variation that can hold the
output above (1) level ( VO > 2.0V) .
*6 Instantaneous common mode rejection voltage “ output ( 0 ) ” represents a common mode voltage variation that can hold the
output above ( 0 ) level ( VO < 0.8V) .
*4 Test circuit for Propagation Delay Time
Pulse generator
Pulse input
duty ratio
= 1/10
IF
0
IF
IF monitor
100 Ω
1
8
2
7
3
6
4
5
VCC
5V
VO
RL
VO
1.5V
VOL
1.5V
CL = 15pF
t PHL
t PLH
6N139
* 6 Test Circuit for Instantaneous Common Mode Rejection Voltage
IF
B
A
1
8
2
7
3
6
4
5
10V
VCM
0V
VCC = 5V
VO
VCM
5V
2V
IF = 0
0.8V
VO
IF = 1.6mA
VOL
Fig. 2 Power Dissipation vs.
Ambient Temperature
120
Power dissipation P O , P tot ( mW )
30
Forward current I F ( mA )
tf
CMH
Vo
Fig. 1 Forward Current vs.
Ambient Temperature
20
10
70 75
25
50
Ambient temperature T a ( ˚C )
0
PO
100
80
60
40
35
P
20
0
0
0
100
25
50
70 75
Ambient temperature T
Fig. 3 Forward Current vs. Forward Voltage
a
100
( ˚C )
Fig. 4 Output Current vs. Output Voltage
60
100
Output current I O ( mA )
70˚C
4.5mA
4.0mA
40
3.5mA
3.0mA
2.5mA
30
2.0mA
20
1.5mA
0.1
1.0mA
0.5mA
10
0.01
1.0
0
1.2
1.4
1.6
Forward voltage V
1.8
F
(V)
2.0
2.2
0
1
Output voltage V O ( V )
2
.)
25˚C
50˚C
X
T a = 0˚C
1
A
10
I F = 5mA
(M
PO
V CC = 5V
T a = 25˚C
50
Forward current I F ( mA )
tr
RL
CML
VFF
10%
90%
90%
10%
6N139
Fig. 5 Current Transfer Ratio vs.
Forward Current
Fig. 6 Output Current vs. Forward Current
50
T a = 70˚C
10
( mA )
25˚C
0˚C
T a = 70˚C
O
800
600
0.1
400
0.01
0.004
0.01
10
F
100
Propagation delay time t PHL , t
PHL
,t
PLH
( mA )
10
t PLH
t PHL
IF = 0.5mA
RL = 4.7k Ω
1/f = 1ms
t PLH
5
t PHL
0
0
0
10
20
30
40
50
60
0
70
10
Ambient temperature T a ( ˚C )
100
tf
10
tr
1
Logic ( 1 ) supply current I CCH ( A )
Adjust I F to V OL = 2V
T a = 25˚C
10
-6
10
-7
10
-8
10
-9
10
1
Load resistance RL ( k Ω )
30
40
50
a
60
70
( ˚C )
Fig. 9 Logic ( 1 ) Supply Current vs.
Ambient Temperature
1000
0.1
20
Ambient temperature T
Fig. 8 Rise Time, Fall Time vs.
Load Resistance
Rise time, fall time t r , t f ( µ s )
F
Fig. 7-b Propagation Delay Time vs.
Ambient Temperature
IF = 12mA
RL = 270 Ω
1/f = 100 µ s
1
1
Forward current I
Fig. 7-a Propagation Delay Time vs.
Ambient Temperature
2
0.1
( mA )
( µ s)
1
Forward current I
V CC = 5.0V
VO = 0.4V
10
100
PLH
0.1
( µ s)
25˚C
0˚C
200
Propagation delay time t
1
Output current I
Current transfer ratio CTR ( % )
1 000
V CC = 4.5V
VO = 0.4V
10
IF = 0mA
V CC = 15V
V O = OPEN
- 10
0
10
20
30
40
50
60
Ambient temperature T a ( ˚C )
70
6N139
*7 Test Circuit for Rise Time, Fall Time vs. Load Resistance
Input
IF
O
Pulse
input
Duty ratio
= 1 / 10
Pulse
oscillator
IF
IF monitor
VO
1
8
2
7
3
6
VO
4
5
CL = 15 PF
100 Ω
VCC
Output
(saturated)
1.5V
5V
1.5V
VOL
RL
tPHL
tPLH
10%
90%
tr
90%
10%
Output
(non-saturated)
■ Precautions for Use
( 1 ) It is recommended that a by-pass capacitor of more than 0.01µF be added between V CC and
GND near the device in order to stabilize power supply line.
( 2 ) Transistor of detector side in bipolar configuration is apt to be affected by static electricity
for its minute design. When handling them, general counterplan against static electricity
should be taken to avoid breakdown of devices or degradation of characteristics.
( 3 ) As for other general cautions, please refer to the chapter “ Precautions for Use ” .
5V
2V
tf