6N139 6N139 High Sensitivity, High Speed OPIC Photocoupler ■ Features ■ Outline Dimensions 1.2 ± 0.3 0.85 ± 0.3 8 Primary Side Mark (Sunken place ) ( Unit : mm ) Internal connection diagram 6 7 5 6N139 1 2 3 4 0.8 ± 0.2 6 5 1 2 3 4 3.5 ± 0.5 0.5TYP. 3.7 ± 0.5 1. Interfaces for computer peripherals 2. Computers, measuring instruments, control equipment 3. Telephone sets 4. Signal transmission between circuits of different potentials and impedances 7 7.62 ± 0.3 9.22 ± 0.5 ■ Applications 8 6.5 ± 0.5 1. High current transfer ratio ( CTR: MIN. 500 % at I F = 1.6mA ) 2. High speed response ( t PHL : TYP. 0.2 µ s at R L = 270 Ω ) 3. High commom mode rejection voltage ( CM H : TYP. 500V/ µ s ) 4. TTL compatible output 5. Recognized by UL , file No. E64380 θ = 0 to 13˚ θ 2.54 ± 0.25 0.5 ± 0.1 0.26 ± 0.1 1 NC 5 GND 2 Anode 6 VO 3 Cathode 7 VB 4 NC 8 V CC θ * “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ■ Absolute Maximum Ratings Input Output Parameter Forward current *1 Peak forward current *2 Peak transient forward current Reverse voltage Power dissipation Supply voltage Output voltage Emitter-base reverse withstand voltage ( Pin 5 to 7 ) *3 Average output current Power dissipation *4 Isolation voltage Operating temperature Storage temperature *5 Soldering temperature ( Ta = 25˚C ) Symbol IF IF I FM VR P V CC VO Rating 20 40 1 5 35 - 0.5 to + 18 - 0.5 to + 18 Unit mA mA A V mW V V V EBO 0.5 V IO PO V iso T opr T stg T sol 60 100 2 500 0 to + 70 - 55 to + 125 260 mA mW V rms ˚C ˚C ˚C *1 50% duty cycle, Pulse width: 1ms *2 Pulse width <=1µs, 300pps *3 Decreases at the rate of 0.7mA /˚C if the external temperature is more than 25˚C *4 40 to 60% RH, AC for 1 minute *5 For 10 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ” 6N139 ■ Electro-optical Characteristics Parameter *1 Symbol CTR(1) CTR(2) V OL(1) V OL(2) V OL(2) I OH I CCL I CCH VF *2 BV R C IN Current transfer ratio Logic ( 0 ) output voltage Logic (1) output current Logic ( 0 ) supply current Logic (1) supply current Input forward voltage Input forward voltage temperature coefficient Input reverse voltage Input capacitance *3 Leak current ( Ta = 0 to + 70˚C unless otherwise specified ) ( input-output ) I I-O ( input-output ) Isolation resistance *3 Capacitance ( input-output ) *3 R I-O CI-O Conditions I F = 0.5mA, V O = 0.4V, V CC = 4.5V I F = 1.6mA, V O = 0.4V, V CC = 4.5V I O = 6.4mA, VCC = 4.5V, I F= 1.6mA I O = 15mA, VCC = 4.5V, I F = 5mA I O = 24mA, V CC = 4.5V, I F = 12mA I F = 0, V CC = V O = 18V I F = 1.6mA, V CC = 5V, V O = open I F = 0, V CC = 5V, V O = open I F = 1.6mA, Ta = 25˚C I F = 1.6mA I R = 10 µA, Ta = 25˚C V F = 0, f = 1MHz Ta = 25˚C, 45% RH, t = 5s V I-O = 3kV DC V I-O = 500V DC f = 1MHz MIN. 400 500 5.0 - TYP. 1 800 1 600 0.1 0.1 0.1 0.05 0.5 10 1.5 - 1.9 60 MAX. 0.4 0.4 0.4 100 1.7 - Unit % % V V V µA mA nA V mV/˚C V pF - - 1.0 µA - 1012 0.6 - Ω pF Note ) Typical value : at Ta = 25˚C, VCC = 5V *1 Current transfer ratio is a ratio of input current and output current expressed in % . *2 ∆ V F / ∆ Ta *3 Measured as 2-pin element ( Short 1,2,3,4 and 5, 6, 7, 8. ) ■ Switching Characteristics ( Ta = 25˚C, VCC = 5V ) Parameter Symbol *4 Propagation delay time Output (1) → ( 0 ) t PHL *4 Propagation delay time Output ( 0 ) → (1) t PLH *5 *6 Instantaneous common mode rejection voltage “ Output (1)” *5 *6 Instantaneous common mode rejection voltage “ Output ( 0 ) ” CM H CM L Conditions R L = 4.7k Ω , I F = 0.5mA R L = 270 Ω , I F = 12mA R L = 4.7k Ω , I F = 0.5mA R L = 270 Ω , I F = 12mA I F = 0, VCM = 10V P-P R L = 2.2k Ω I F = 1.6 mA , V CM = 10V P-P R L = 2.2k Ω MIN. - TYP. 5 0.3 10 1.5 MAX. 25 1 60 7 Unit µs µs µs µs - 500 - V/ µ s - - 500 - V/ µ s *5 Instantaneous common mode rejection voltage “ output (1)” represents a common mode voltage variation that can hold the output above (1) level ( VO > 2.0V) . *6 Instantaneous common mode rejection voltage “ output ( 0 ) ” represents a common mode voltage variation that can hold the output above ( 0 ) level ( VO < 0.8V) . *4 Test circuit for Propagation Delay Time Pulse generator Pulse input duty ratio = 1/10 IF 0 IF IF monitor 100 Ω 1 8 2 7 3 6 4 5 VCC 5V VO RL VO 1.5V VOL 1.5V CL = 15pF t PHL t PLH 6N139 * 6 Test Circuit for Instantaneous Common Mode Rejection Voltage IF B A 1 8 2 7 3 6 4 5 10V VCM 0V VCC = 5V VO VCM 5V 2V IF = 0 0.8V VO IF = 1.6mA VOL Fig. 2 Power Dissipation vs. Ambient Temperature 120 Power dissipation P O , P tot ( mW ) 30 Forward current I F ( mA ) tf CMH Vo Fig. 1 Forward Current vs. Ambient Temperature 20 10 70 75 25 50 Ambient temperature T a ( ˚C ) 0 PO 100 80 60 40 35 P 20 0 0 0 100 25 50 70 75 Ambient temperature T Fig. 3 Forward Current vs. Forward Voltage a 100 ( ˚C ) Fig. 4 Output Current vs. Output Voltage 60 100 Output current I O ( mA ) 70˚C 4.5mA 4.0mA 40 3.5mA 3.0mA 2.5mA 30 2.0mA 20 1.5mA 0.1 1.0mA 0.5mA 10 0.01 1.0 0 1.2 1.4 1.6 Forward voltage V 1.8 F (V) 2.0 2.2 0 1 Output voltage V O ( V ) 2 .) 25˚C 50˚C X T a = 0˚C 1 A 10 I F = 5mA (M PO V CC = 5V T a = 25˚C 50 Forward current I F ( mA ) tr RL CML VFF 10% 90% 90% 10% 6N139 Fig. 5 Current Transfer Ratio vs. Forward Current Fig. 6 Output Current vs. Forward Current 50 T a = 70˚C 10 ( mA ) 25˚C 0˚C T a = 70˚C O 800 600 0.1 400 0.01 0.004 0.01 10 F 100 Propagation delay time t PHL , t PHL ,t PLH ( mA ) 10 t PLH t PHL IF = 0.5mA RL = 4.7k Ω 1/f = 1ms t PLH 5 t PHL 0 0 0 10 20 30 40 50 60 0 70 10 Ambient temperature T a ( ˚C ) 100 tf 10 tr 1 Logic ( 1 ) supply current I CCH ( A ) Adjust I F to V OL = 2V T a = 25˚C 10 -6 10 -7 10 -8 10 -9 10 1 Load resistance RL ( k Ω ) 30 40 50 a 60 70 ( ˚C ) Fig. 9 Logic ( 1 ) Supply Current vs. Ambient Temperature 1000 0.1 20 Ambient temperature T Fig. 8 Rise Time, Fall Time vs. Load Resistance Rise time, fall time t r , t f ( µ s ) F Fig. 7-b Propagation Delay Time vs. Ambient Temperature IF = 12mA RL = 270 Ω 1/f = 100 µ s 1 1 Forward current I Fig. 7-a Propagation Delay Time vs. Ambient Temperature 2 0.1 ( mA ) ( µ s) 1 Forward current I V CC = 5.0V VO = 0.4V 10 100 PLH 0.1 ( µ s) 25˚C 0˚C 200 Propagation delay time t 1 Output current I Current transfer ratio CTR ( % ) 1 000 V CC = 4.5V VO = 0.4V 10 IF = 0mA V CC = 15V V O = OPEN - 10 0 10 20 30 40 50 60 Ambient temperature T a ( ˚C ) 70 6N139 *7 Test Circuit for Rise Time, Fall Time vs. Load Resistance Input IF O Pulse input Duty ratio = 1 / 10 Pulse oscillator IF IF monitor VO 1 8 2 7 3 6 VO 4 5 CL = 15 PF 100 Ω VCC Output (saturated) 1.5V 5V 1.5V VOL RL tPHL tPLH 10% 90% tr 90% 10% Output (non-saturated) ■ Precautions for Use ( 1 ) It is recommended that a by-pass capacitor of more than 0.01µF be added between V CC and GND near the device in order to stabilize power supply line. ( 2 ) Transistor of detector side in bipolar configuration is apt to be affected by static electricity for its minute design. When handling them, general counterplan against static electricity should be taken to avoid breakdown of devices or degradation of characteristics. ( 3 ) As for other general cautions, please refer to the chapter “ Precautions for Use ” . 5V 2V tf