MG600Q1US61 TOSHIBA IGBT Module Silicon N Channel IGBT MG600Q1US61 High Power Switching Applications Motor Control Applications · High input impedance · High speed: tf = 0.3 µs (max) Unit: mm Inductive load · Low saturation voltage: VCE (sat) = 2.6 V (max) · The electrodes are isolated from case. · Enhancement-mode Equivalent Circuit C G E E JEDEC ― JEITA ― TOSHIBA 2-109F1A Weight: 465 g (typ.) Maximum Ratings (Tc = 25°C) Characteristics Symbol Rating Unit Collector-emitter voltage VCES 1200 V Gate-emitter voltage VGES ±20 V Collector current DC (Tc = 80°C) IC 600 A Forward current DC (Tc = 80°C) IF 600 A Collector power dissipation (Tc = 25°C) PC 5400 W Junction temperature Tj 150 °C Storage temperature range Tstg -40 to 125 °C Isolation voltage Visol 2500 (AC 1 minute) Vrms Terminal ¾ 3 N·m Mounting ¾ 3 N·m Screw torque 1 2002-10-04 MG600Q1US61 Electrical Characteristics (Ta = 25°C) Characteristics Symbol Test Condition Min Typ. Max Unit Gate leakage current IGES VGE = ±20 V, VCE = 0 V ¾ ¾ ±500 nA Collector cut-off current ICES VCE = 1200 V, VGE = 0 V ¾ ¾ 1 mA 6.0 7.0 8.0 V Tc = 25°C ¾ 2.1 2.6 Tc = 125°C ¾ 2.7 3.2 ¾ 50000 ¾ ¾ 0.3 ¾ ¾ 0.2 ¾ ¾ 0.5 ¾ ¾ 0.5 ¾ ¾ 0.1 0.3 ¾ 0.6 ¾ Tc = 25°C ¾ 2.4 2.8 Tc = 125°C ¾ 2.2 ¾ Gate-emitter cut-off voltage VGE (off) IC = 600 mA, VCE = 5V Collector-emitter saturation voltage VCE (sat) IC = 600 A, VGE = 15 V Input capacitance VCE = 10 V, VGE = 0 V, f = 1 MHz Cies Turn-on delay time td (on) Rise time tr Turn-on time Switching time Inductive load VCC = 600 V IC = 600 A VGE = ±15 V RG = 2.0 W ton Turn-off delay time td (off) Fall time (Note 1) tf Turn-off time toff Forward voltage VF IF = 600 A, VGE = 0 V Reverse recovery time trr IF = 600 A, VGE = -15 V, di/dt = 1500 A/ms ¾ 0.2 ¾ Transistor stage ¾ ¾ 0.023 Diode stage ¾ ¾ 0.05 Thermal resistance Rth (j-c) V pF ms V ms °C/W Note 1: Switching time and reverse recovery time test circuit and timing chart RG VGE IF 90% 10% 0 -VGE IC VCC L IC RG 90% 90% VCE 0 IF IF toff 90% Irr 50% Irr Irr 10% tf td (off) 10% td (on) tr ton trr 2 2002-10-04 MG600Q1US61 < VCE (sat) Rank > < VF Rank > VCE (sat) VF Rank Symbol Min Max Rank Symbol Min Max 21 1.80 2.10 D 1.90 2.20 22 1.90 2.20 E 2.10 2.40 23 2.00 2.30 F 2.30 2.60 24 2.10 2.40 G 2.50 2.80 25 2.20 2.50 26 2.30 2.60 27 2.40 2.70 < Mark Position > Mark position 24D 3 2002-10-04 MG600Q1US61 IC – VCE IC – VCE 900 Common 800 emitter Tj = 25°C 700 (A) 12 IC 600 15 20 500 Collector current Collector current IC (A) 900 400 300 10 200 100 0 2 4 6 Collector-emitter voltage 8 VCE 15 20 600 500 400 10 300 200 0 10 VGE = 9 V 0 (V) 2 4 VCE – VGE VCE (V) VCE 6 600 4 900 2 10 Tj = 125°C 8 6 600 4 900 2 IC = 300 A IC = 300 A 0 0 5 10 Gate-emitter voltage VGE 15 0 0 20 5 10 (V) VCE – VGE IC – VGE Common emitter 800 6 600 4 900 2 10 Gate-emitter voltage VGE 15 600 500 VCE = 5 V 400 300 200 Tj = 125°C 100 IC = 300 A 5 (A) 8 700 IC Tj = -40°C Collector current (V) VCE 20 (V) 900 Common emitter Collector-emitter voltage 15 Gate-emitter voltage VGE 12 0 0 (V) Common emitter Tj = 25°C 8 10 10 VCE – VGE Collector-emitter voltage (V) VCE 8 12 Common emitter Collector-emitter voltage 6 Collector-emitter voltage 12 10 12 100 VGE = 9 V 0 Common 800 emitter Tj = 25°C 700 0 0 20 (V) 2 4 6 8 25 10 Gate-emitter voltage VGE 4 12 14 (V) 2002-10-04 MG600Q1US61 IF – VF VCE, VGE – QG Common cathode (V) VGE = 0 500 V CE 400 Collector-emitter voltage Forward current IF (A) Tj = 25°C 300 125 200 100 -40 0 0 0.5 1 1.5 2 Forward voltage VF 2.5 800 400 200 8 VCE = 0 V 200 4 1000 (V) 2000 Charge 3000 QG (mJ) Eon toff Switching loss ton 1000 tr td (on) Eoff 100 VCC = 600 V IC = 600 A VGE = ±15 V : Tj = 25°C : Tj = 125°C tf 5 10 15 20 Gate resistance RG 10 0 25 5 (9) Switching time – IC 20 25 (9) Switching loss – IC (mJ) td (off) 1000 Switching loss (ns) 15 1000 toff Switching time 10 Gate resistance RG 10000 td (on) ton tf 100 100 100 Eoff Eon 10 VCC = 600 V, RG = 2 W VGE = ±15 V, Ls = 100 nH : Tj = 25°C : Tj = 125°C tr 10 0 (nC) Switching loss – RG td (off) 100 0 0 5000 4000 1000 VCC = 600 V, IC = 600 A VGE = ±15 V : Tj = 25°C : Tj = 125°C (ns) Switching time 12 600 Switching time – RG 10000 16 400 600 0 0 3 20 Common emitter RL = 1 W Tj = 25°C (V) 1000 Gate-emitter voltage VGE 600 200 300 Collector current 400 IC 500 VCC = 600 V, RG = 2 W VGE = ±15 V, Ls = 100 nH : Tj = 25°C : Tj = 125°C 1 0 600 (A) 100 200 300 Collector current 5 400 IC 500 600 (A) 2002-10-04 MG600Q1US61 Irr, trr – IF Edsw – IF 100 Irr (A) (ms) 1000 100 (mJ) Reverse recovery loss Edsw Peak reverse recovery current Reverse recovery time trr trr Irr VCC = 600 V RG = 2 W VGE = ±15 V : Tj = 25°C 10 : Tj = 125°C 10 0 100 200 300 400 Forward current IF 500 1 0 600 (A) IC (pF) Collector current 5000 Coes 3000 Cres 1000 10 VCE 30 50 IC max (continuous) 50 ms* 100 100 ms* 30 10 1 ms* * Single nonrepetitive pulse Tc = 25°C Curves must be with increase in temperature. 3 (V) 10 100 300 VCE 1000 3000 (V) Rth (t) – tw Transient thermal resistance Rth (j-c) (°C/W) 1 (A) IC 30 Collector-emitter voltage Reverse bias soa Collector current 600 (A) 300 3 1 100 10000 1000 100 Tj < = 125°C VGE = ±15 V RG = 2 W 10 0 IF 500 IC max (pulsed) * 1000 10000 Collector-emitter voltage 400 Safe operating area 30000 5 300 3000 Cies 3 200 Forward current 50000 Common emitter 500 f = 1 MHz Tj = 25°C 300 0.3 0.5 1 0.1 100 (A) C – VCE I V 100000 Capacitance C VCC = 600 V RG = 2 W VGE = ±15 V : Tj = 25°C : Tj = 125°C 200 400 600 800 Collector-emitter voltage 1000 VCE 1200 Tc = 25°C 0.3 0.1 Diode stage 0.03 0.003 0.001 0.0003 0.001 1400 (V) Transistor stage 0.01 0.01 0.1 Pulse width 6 1 tw 10 (s) 2002-10-04 MG600Q1US61 Short circuit soa Collector current IC (A) 10000 1000 100 VGE = ±15 V tw = 10 ms Tj = 125°C 10 0 200 400 600 800 Collector-emitter voltage 1000 VCE 1200 1400 (V) 7 2002-10-04 MG600Q1US61 RESTRICTIONS ON PRODUCT USE 000707EAA · TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc.. · The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer’s own risk. · The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. · The information contained herein is subject to change without notice. 8 2002-10-04