TOSHIBA TB6066FNG

TB6066FNG
TOSHIBA BiCMOS Linear Integrated Circuit Silicon Monolithic
TB6066FNG
Shock Sensor IC
TB6066FNG detects an existence of external shock through the
shock sensor and output Low-level signal at 7 pin.
It has so excellent characteristic in S/N ratio that user can use
Analog signal for mechanical control systems, like servo control.
Features
•
TB6066FNG operates from 2.7 to 5.5 V DC single power
supply voltage.
•
Signal from the shock sensor is amplified according to setting
gain, and is detected through the internal window
comparator.
•
Input terminal of sensor signal is designed high impedance.
•
Three Operatinal-Amplifier is built in for design flexibility. (*Note 1)
•
Sensitivity of shock detection can be adjusted by external devices.
•
Small package: SSOP16-P-225-0.65B (0.65 mm pitch)
•
Excellent S/N ratio: Improved 10dB compared with our TA6038FN/FNG
Weight: 0.07 g (typ.)
Differential input impedance = 100 MΩ (typ.)
*Note 1: LPF (low pass filter) circuitry is not bulit in. User needs to make some filter with one
operational-amplifier to cancel the signal of resonant frequency of piezo sensor
Block Diagram
C1
16
50 MΩ
15
14
13
12
11
10
1V
OP2 AMP
Diff Amp
×5
OP1 AMP
9 VCC
1.2 V
OP3 AMP
0.63 V
8 GND
Comparator
50 MΩ
1
C2
2
3
Guard
C3
R1
4
R2
C4
1
5
6
7
“L” output when shock
detected.
2003-05-14
TB6066FNG
Pin Function
Pin No.
Pin Name
Function
1
SIA
Connection terminal of shock sensor
2
SOA
Amp (A) output terminal
3
VR
Guard terminal. Reference voltage to protect (1, 16 pin)
4
A3I
OP-AMP (3) input terminal
5
A3O
OP-AMP (3) output terminal
6
CMI
Comparator Input terminal
7
CMO
Comparator Output terminal (output = “L” when shock is detected.)
8
GND
Ground terminal
9
VCC
Power supply voltage
10
A1O
OP-AMP (1) output terminal
11
A1I
OP-AMP (1) input terminal
12
A2O
OP-AMP (2) output terminal
13
A2I
OP-AMP (2) input terminal
14
DO
Differential-Amp output terminal
15
SOB
Amp (B) output terminal
16
SIB
Connection terminal of shock sensor
Pin Connection (top view)
SIA 1
16 SIB
SOA 2
15 SOB
VR 3
14 DO
A3I 4
13 A2I
A3O 5
12 A2O
CMI 6
11 A1I
CMO 7
10 A1O
GND 8
9
VCC
2
2003-05-14
TB6066FNG
Maximum Ratings (Ta = 25°C)
Characteristics
Symbol
Rating
Unit
Power supply voltage
VCC
6
V
Input voltage
VIN
−0.3 to VCC + 0.3
V
Power dissipation
PD
300
mW
Storage temperature
Tstg
−55 to 150
°C
Recommend Operating Condition
Characteristics
Symbol
Rating
Unit
Power supply voltage
VCC
2.7 to 5.5
V
Operating temperature
Topr
−25 to 85
°C
Note: The IC may be destroyed due to short circuit between adjacent pins, incorrect orientation of device’s mounting,
connecting positive and negative power supply pins wrong way round, air contamination fault, or fault by
improper grounding.
3
2003-05-14
TB6066FNG
Electrical Characteristics (1) --- Guaranteed data
(unless otherwise specified, VCC = 3.3 V, Ta = 25°C)
Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Supply voltage
VCC


2.7
3.3
5.5
V
Supply current
ICC
1
VCC = 3.3 V

3.5
5
VCC = 5.0 V

3.6
5
Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Gain
GvBuf
2

13.6
14
14.4
dB
Output DC voltage
VoBuf
3
Connect C = 1000 pF between
1 pin and 2 pin,
15 pin and 16 pin,
0.7
1
1.3
V
Output source current
IBso
4
Voh = VCC − 1 V
0.6
1.9

mA
Output sink current
IBsi
5
Vol = 0.3 V
70
150

µA
Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Characteristics
mA
(DIFF-AMP)
Characteristics
(OP-AMP1)
Characteristics
Vin1
6

1.135
1.2
1.265
V
Input current
Iin
7


40
100
nA
Output voltage range (Low side)
Vol


0.3


V
Output voltage range (High side)
Voh




VCC − 1
V
Output source current
IAso
8
Voh = VCC − 1 V
200
800

µA
Output sink current
IAsi
9
Vol = 0.3 V
100
200

µA
Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Input voltage range (Low side)
Vil


0


V
Input voltage range (High side)
Vih




VCC − 1
V
Input current
Iin
10
−100

100
nA
Output voltage range (Low side)
Vol


0.3


V
Output voltage range (High side)
Voh




VCC − 1
V
Output source current
IAso
11
Voh = VCC − 1 V
200
800

µA
Output sink current
IAsi
12
Vol = 0.3 V
100
200

µA
Input voltage 1
(OP-AMP2)
Characteristics
Input voltage 1.0 V
4
2003-05-14
TB6066FNG
(OP-AMP3)
Characteristics
Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Vin1
13

1.135
1.2
1.265
V
Input current
Iin
14


40
100
nA
Output voltage range (Low side)
Vol


0.3


V
Input voltage 1
Output voltage range (High side)
Voh




VCC − 1
V
Output source current
IAso
15
Voh = VCC − 1 V
200
800

µA
Output sink current
IAsi
16
Vol = 0.3 V
100
200

µA
Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Output pull-up resistance
RWu
17

21
27
33
kΩ
Output sink current
IWsi
18
1.0
3.0

mA
Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Vref


0.50
0.63
0.80
V
(Window-Comparator)
Characteristics
Vol = 0.3 V
(Guard Terminal)
Characteristics
Reference Voltage
Note: This terminal should be used to make guard ring for (1, 16 pin). Please don’t use for any other usage.
5
2003-05-14
TB6066FNG
Electrical Characteristics (2) --- Reference data for application (Note)
(DIFF-AMP)
Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Zin


30
100

MΩ
Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
fT


500


kHz
Openloop gain
Gvo


80
90

dB
Offset voltage (OP-AMP1/3)
Voff


−5
0
5
mV
Offset voltage (OP-AMP2)
Voff


−15
0
15
mV
Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Vtrp1


Vin1
±0.37
Vin1
±0.4
Vin1
±0.43
V
Characteristics
Input impedance
(OP-AMP1/2/3)
Characteristics
Cut-off frequency
(Window-Comparator)
Characteristics
Trip voltage 1
Note: Toshiba can not test these tables of characteristics for all samples. Therefore Toshiba does not guarantee the
data. Please use the data as reference data for customer’s application.
6
2003-05-14
TB6066FNG
Application Note
C1
1.6 V
C4
15
R2
16
Shock
sensor
Qs (pC/G)
50 MΩ
×5
14
C3
R1
4
5
50 MΩ
6
7
1
C2
2
1.2 V
0.8 V
Figure 1
The Configuration of G-Force Sensor Amplifier
Figure 1 shows the configuration of G-Force sensor amplifier.
The shock sensor is connected between the pins 1 and 16.
< How to output 0 or 1 from the pin 7 to detect whether there is a shock or not. >
– Using a sensor with the sensitivity Qs (pC/G) to detect the shock g (G). –
a. Setting gain: C1 = C2 (pF), R1 (kΩ), R2 (kΩ)
Example: Detecting 5 (G)-shock using a sensor
with Qs = 0.34 (pC/G), R1 = 10 (kΩ), R2 = 100 (kΩ).
Qs × g
R2
×2×5×
= 0.4 (V)
C1
R1
C1 = C2 =
Qs × g R2
×
0.04
R1
C1 = C2 =
0.34 × 5 100
×
= 425 (pF)
0.04
10
b. Setting the frequency (Hz) of HPF: Setting C3 (µF), R1 (kΩ)
fc (Hz) =
Example: Setting the frequency to 20 Hz with
R1 = 10 (kΩ).
1
× 103
2 × π × R1 × C3
C3 =
1
× 103 = 0.8 (µF)
2 × π × 10 × 20
c. Setting the frequency (kHz) of LPF: Setting C4 (pF), R2 (kΩ)
fc (kHz) =
Example: Setting the frequency to 5 kHz with
R2 = 100 (kΩ).
1
× 106
2 × π × R2 × C4
C4 =
1
× 106 = 318 (pF)
2 × π × 100 × 5
< How to output the voltage according to the shock through the pin 5. >
– Using a sensor with the sensitivity Qs (pC/G), and assuming the shock sensitivity of the system is
Vsystem (mV/G). –
a. Setting gain: C1 = C2 (pF), R1 (kΩ), R2 (kΩ)
Example: Designing the system with 200 (mV/G)
by using a sensor that Qs = 0.34 (pC/G),
R1 = 10 (kΩ), R2 = 100 (kΩ).
Qs
R2
×2×5×
= Vsystem × 103 (mV/G)
C1
R1
C1 = C2 =
Qs
R2
×
× 10 4 (pF)
Vsystem R1
C1 = C2 =
7
0.34 100
×
× 10 4 = 170 (pF)
200 10
2003-05-14
TB6066FNG
Equivalent Circuit
100 Ω
VCC
100 Ω
VCC
14
10
DO
A1O
100 Ω
VCC
100 Ω
VCC
12
5
A2O
A3O
1.6 V
27 kΩ
0.8 V
6
CMI
7
CMO
8
2003-05-14
TB6066FNG
Test Circuit
(1)
Supply current: ICC
2 MΩ
1
2
3
4
5 kΩ
5
6
7
8
SIA
SIB
SOA
SOB
VR
DO
A3I
A2I
A3O
A2O
CMI
A1I
CMO
A1O
GND
VCC
16
2 MΩ
15
14
13
12
11
5 kΩ
10
9
3.3 V
A
DIFF-AMP
Gain: GvBuf
Step 1
5
6
7
SOB
VR
DO
A3I
A2I
A3O
A2O
CMI
A1I
CMO
A1O
GND
VCC
15
2 MΩ
14
13
12
M1
V
11
10
2 MΩ
(3)
3
5 kΩ 4
5
6
7
SIA
SIB
SOA
SOB
VR
DO
A3I
A2I
A3O
A2O
CMI
A1I
CMO
A1O
GND
VCC
16
15
2 MΩ
14
13
12
M2
V
11
10
9
DIFF-AMP
Output DC voltage: VoBuf
1000 pF
1
2
3
5 kΩ
2
8
9
3.3 V
8
SOA
1
16
0.47 V 2 MΩ
5 kΩ 4
SIB
4
5
6
7
8
SIA
SIB
SOA
SOB
VR
DO
A3I
A2I
A3O
A2O
CMI
A1I
CMO
A1O
GND
VCC
16
1000 pF
15
14
13
12
V
11
10
9
3.3 V
0.63 V 2 MΩ
3
SIA
3.3 V
2
0.63 V 2 MΩ
1
2 MΩ
Gain = (M2-M1)/(0.63-0.47)
Step 2
0.63 V 2 MΩ
(2)
9
2003-05-14
TB6066FNG
5
6
7
VR
DO
A3I
A2I
A3O
A2O
CMI
A1I
CMO
A1O
GND
VCC
15
2 MΩ
2 MΩ
2
3
14
13
5 kΩ
A
12
11
4
5
6
10
7
9
8
SOA
SOB
VR
DO
A3I
A2I
A3O
A2O
CMI
A1I
CMO
A1O
GND
VCC
16
15
13
11
10
9
2
3
5 kΩ
4
5
6
7
SIB
SOA
SOB
VR
DO
A3I
A2I
A3O
A2O
CMI
A1I
CMO
A1O
GND
VCC
OP-AMP1
Input current: Iin
16
1
15
2
14
3
13
5 kΩ
4
12
5
11
6
10
5 kΩ
9
7
8
V
OP-AMP1
Output source current: IAso
3
5 kΩ
4
5
6
7
8
SIA
SIB
SOA
SOB
VR
DO
A3I
A2I
A3O
A2O
CMI
A1I
CMO
A1O
GND
VCC
SOA
SOB
VR
DO
A3I
A2I
A3O
A2O
CMI
A1I
CMO
A1O
GND
VCC
16
15
14
13
12
1
15
2
14
3
13
5 kΩ
4
12
5
11
6
10
7
8
A
IM
11
10
A
9
OP-AMP1
Output sink current: IAsi
16
9
SIB
SIA
SIB
SOA
SOB
VR
DO
A3I
A2I
A3O
A2O
CMI
A1I
CMO
A1O
GND
VCC
16
15
14
13
12
11
10
9
A
3.3 V
2
1.0 V
1
(9)
2.3 V
(8)
SIA
Spec (Iin) = IM/2
3.3 V
8
SIA
(7)
0.6 V
OP-AMP1
Input voltage 1: Vin1
1
A
12
3.3 V
(6)
2 MΩ
14
3.3 V
8
SOB
SIB
2 MΩ
5 kΩ 4
SOA
SIA
10
1.4 V
3
1
16
0.3 V
2
SIB
3.3 V
2 MΩ
2 MΩ
SIA
DIFF-AMP
Output sink current: IBsi
3.3 V
1
(5)
0.3 V
DIFF-AMP
Output source current: IBso
2.3 V
(4)
2003-05-14
TB6066FNG
(10) OP-AMP2
Input current: Iin
4
5
6
7
8
SOB
VR
DO
A3I
A2I
A3O
A2O
CMI
A1I
CMO
A1O
GND
VCC
15
14
13
IM
12
A
11
10
9
3.3 V
Spec (Iin) = IM
(11) OP-AMP2
Output source current: IAso
5 kΩ
4
5
6
7
SOB
VR
DO
A3I
A2I
A3O
A2O
CMI
A1I
CMO
A1O
GND
VCC
1
15
2
14
3
13
5 kΩ
4
12
5
11
6
A
10
9
7
8
SIA
SIB
SOA
SOB
VR
DO
A3I
A2I
A3O
A2O
CMI
A1I
CMO
A1O
GND
VCC
16
15
14
13
12
11
(13) OP-AMP3
Input voltage 1: Vin1
9
3
4
5 kΩ
5
6
V
7
8
SIA
SIB
SOA
SOB
VR
DO
A3I
A2I
A3O
A2O
CMI
A1I
CMO
A1O
GND
VCC
16
1
15
2
14
3
IM
13
4
12
5
11
6
A
10
0.6 V
2
(14) OP-AMP3
Input current: Iin
9
7
8
SIA
SIB
SOA
SOB
VR
DO
A3I
A2I
A3O
A2O
CMI
A1I
CMO
A1O
GND
VCC
Spec (Iin) = IM/2
3.3 V
1
A
10
3.3 V
8
SOA
16
3.3 V
3
SIB
3.3 V
2
SIA
2.3 V
1
(12) OP-AMP2
Output sink current: IAsi
0V
5 kΩ
SOA
16
0.3 V
3
SIB
11
16
15
14
13
12
11
10
9
3.3 V
2
SIA
1.0 V
1
2003-05-14
TB6066FNG
(15) OP-AMP3
Output source current: IAso
4
5
6
7
8
SOB
VR
DO
A3I
A2I
A3O
A2O
CMI
A1I
CMO
A1O
GND
VCC
1
15
2
14
3
13
4
12
5
11
6
A
10
9
7
8
SIA
SIB
SOA
SOB
VR
DO
A3I
A2I
A3O
A2O
CMI
A1I
CMO
A1O
GND
VCC
16
15
14
13
12
11
10
9
3.3 V
2.3 V
1.0 V
A
SOA
16
3.3 V
3
SIB
0.3 V
2
SIA
1.4 V
1
(16) OP-AMP3
Output sink current: IAsi
3
4
5
6
7
8
SOA
SOB
VR
DO
A3I
A2I
A3O
A2O
CMI
A1I
CMO
A1O
GND
VCC
16
1
15
2
14
3
13
4
12
5
11
6
10
7
9
8
A
3.3 V
1.2 V
M3
A
SIB
0.3 V
2
SIA
0.7 V
1
(18) Window comparator
Output sink current: Iwsi
SIA
SIB
SOA
SOB
VR
DO
A3I
A2I
A3O
A2O
CMI
A1I
CMO
A1O
GND
VCC
16
15
14
13
12
11
10
9
3.3 V
(17) Window comparator
Output pull-up resistance: RWu
RWu = 3.3/M3
12
2003-05-14
TB6066FNG
Package Dimensions
Weight: 0.07 g (typ.)
13
2003-05-14
TB6066FNG
RESTRICTIONS ON PRODUCT USE
000707EAA
• TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability
Handbook” etc..
• The TOSHIBA products listed in this document are intended for usage in general electronics applications
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this
document shall be made at the customer’s own risk.
• The information contained herein is presented only as a guide for the applications of our products. No
responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
rights of the third parties which may result from its use. No license is granted by implication or otherwise under
any intellectual property or other rights of TOSHIBA CORPORATION or others.
• The information contained herein is subject to change without notice.
14
2003-05-14