TB6066FNG TOSHIBA BiCMOS Linear Integrated Circuit Silicon Monolithic TB6066FNG Shock Sensor IC TB6066FNG detects an existence of external shock through the shock sensor and output Low-level signal at 7 pin. It has so excellent characteristic in S/N ratio that user can use Analog signal for mechanical control systems, like servo control. Features • TB6066FNG operates from 2.7 to 5.5 V DC single power supply voltage. • Signal from the shock sensor is amplified according to setting gain, and is detected through the internal window comparator. • Input terminal of sensor signal is designed high impedance. • Three Operatinal-Amplifier is built in for design flexibility. (*Note 1) • Sensitivity of shock detection can be adjusted by external devices. • Small package: SSOP16-P-225-0.65B (0.65 mm pitch) • Excellent S/N ratio: Improved 10dB compared with our TA6038FN/FNG Weight: 0.07 g (typ.) Differential input impedance = 100 MΩ (typ.) *Note 1: LPF (low pass filter) circuitry is not bulit in. User needs to make some filter with one operational-amplifier to cancel the signal of resonant frequency of piezo sensor Block Diagram C1 16 50 MΩ 15 14 13 12 11 10 1V OP2 AMP Diff Amp ×5 OP1 AMP 9 VCC 1.2 V OP3 AMP 0.63 V 8 GND Comparator 50 MΩ 1 C2 2 3 Guard C3 R1 4 R2 C4 1 5 6 7 “L” output when shock detected. 2003-05-14 TB6066FNG Pin Function Pin No. Pin Name Function 1 SIA Connection terminal of shock sensor 2 SOA Amp (A) output terminal 3 VR Guard terminal. Reference voltage to protect (1, 16 pin) 4 A3I OP-AMP (3) input terminal 5 A3O OP-AMP (3) output terminal 6 CMI Comparator Input terminal 7 CMO Comparator Output terminal (output = “L” when shock is detected.) 8 GND Ground terminal 9 VCC Power supply voltage 10 A1O OP-AMP (1) output terminal 11 A1I OP-AMP (1) input terminal 12 A2O OP-AMP (2) output terminal 13 A2I OP-AMP (2) input terminal 14 DO Differential-Amp output terminal 15 SOB Amp (B) output terminal 16 SIB Connection terminal of shock sensor Pin Connection (top view) SIA 1 16 SIB SOA 2 15 SOB VR 3 14 DO A3I 4 13 A2I A3O 5 12 A2O CMI 6 11 A1I CMO 7 10 A1O GND 8 9 VCC 2 2003-05-14 TB6066FNG Maximum Ratings (Ta = 25°C) Characteristics Symbol Rating Unit Power supply voltage VCC 6 V Input voltage VIN −0.3 to VCC + 0.3 V Power dissipation PD 300 mW Storage temperature Tstg −55 to 150 °C Recommend Operating Condition Characteristics Symbol Rating Unit Power supply voltage VCC 2.7 to 5.5 V Operating temperature Topr −25 to 85 °C Note: The IC may be destroyed due to short circuit between adjacent pins, incorrect orientation of device’s mounting, connecting positive and negative power supply pins wrong way round, air contamination fault, or fault by improper grounding. 3 2003-05-14 TB6066FNG Electrical Characteristics (1) --- Guaranteed data (unless otherwise specified, VCC = 3.3 V, Ta = 25°C) Symbol Test Circuit Test Condition Min Typ. Max Unit Supply voltage VCC 2.7 3.3 5.5 V Supply current ICC 1 VCC = 3.3 V 3.5 5 VCC = 5.0 V 3.6 5 Symbol Test Circuit Test Condition Min Typ. Max Unit Gain GvBuf 2 13.6 14 14.4 dB Output DC voltage VoBuf 3 Connect C = 1000 pF between 1 pin and 2 pin, 15 pin and 16 pin, 0.7 1 1.3 V Output source current IBso 4 Voh = VCC − 1 V 0.6 1.9 mA Output sink current IBsi 5 Vol = 0.3 V 70 150 µA Symbol Test Circuit Test Condition Min Typ. Max Unit Characteristics mA (DIFF-AMP) Characteristics (OP-AMP1) Characteristics Vin1 6 1.135 1.2 1.265 V Input current Iin 7 40 100 nA Output voltage range (Low side) Vol 0.3 V Output voltage range (High side) Voh VCC − 1 V Output source current IAso 8 Voh = VCC − 1 V 200 800 µA Output sink current IAsi 9 Vol = 0.3 V 100 200 µA Symbol Test Circuit Test Condition Min Typ. Max Unit Input voltage range (Low side) Vil 0 V Input voltage range (High side) Vih VCC − 1 V Input current Iin 10 −100 100 nA Output voltage range (Low side) Vol 0.3 V Output voltage range (High side) Voh VCC − 1 V Output source current IAso 11 Voh = VCC − 1 V 200 800 µA Output sink current IAsi 12 Vol = 0.3 V 100 200 µA Input voltage 1 (OP-AMP2) Characteristics Input voltage 1.0 V 4 2003-05-14 TB6066FNG (OP-AMP3) Characteristics Symbol Test Circuit Test Condition Min Typ. Max Unit Vin1 13 1.135 1.2 1.265 V Input current Iin 14 40 100 nA Output voltage range (Low side) Vol 0.3 V Input voltage 1 Output voltage range (High side) Voh VCC − 1 V Output source current IAso 15 Voh = VCC − 1 V 200 800 µA Output sink current IAsi 16 Vol = 0.3 V 100 200 µA Symbol Test Circuit Test Condition Min Typ. Max Unit Output pull-up resistance RWu 17 21 27 33 kΩ Output sink current IWsi 18 1.0 3.0 mA Symbol Test Circuit Test Condition Min Typ. Max Unit Vref 0.50 0.63 0.80 V (Window-Comparator) Characteristics Vol = 0.3 V (Guard Terminal) Characteristics Reference Voltage Note: This terminal should be used to make guard ring for (1, 16 pin). Please don’t use for any other usage. 5 2003-05-14 TB6066FNG Electrical Characteristics (2) --- Reference data for application (Note) (DIFF-AMP) Symbol Test Circuit Test Condition Min Typ. Max Unit Zin 30 100 MΩ Symbol Test Circuit Test Condition Min Typ. Max Unit fT 500 kHz Openloop gain Gvo 80 90 dB Offset voltage (OP-AMP1/3) Voff −5 0 5 mV Offset voltage (OP-AMP2) Voff −15 0 15 mV Symbol Test Circuit Test Condition Min Typ. Max Unit Vtrp1 Vin1 ±0.37 Vin1 ±0.4 Vin1 ±0.43 V Characteristics Input impedance (OP-AMP1/2/3) Characteristics Cut-off frequency (Window-Comparator) Characteristics Trip voltage 1 Note: Toshiba can not test these tables of characteristics for all samples. Therefore Toshiba does not guarantee the data. Please use the data as reference data for customer’s application. 6 2003-05-14 TB6066FNG Application Note C1 1.6 V C4 15 R2 16 Shock sensor Qs (pC/G) 50 MΩ ×5 14 C3 R1 4 5 50 MΩ 6 7 1 C2 2 1.2 V 0.8 V Figure 1 The Configuration of G-Force Sensor Amplifier Figure 1 shows the configuration of G-Force sensor amplifier. The shock sensor is connected between the pins 1 and 16. < How to output 0 or 1 from the pin 7 to detect whether there is a shock or not. > – Using a sensor with the sensitivity Qs (pC/G) to detect the shock g (G). – a. Setting gain: C1 = C2 (pF), R1 (kΩ), R2 (kΩ) Example: Detecting 5 (G)-shock using a sensor with Qs = 0.34 (pC/G), R1 = 10 (kΩ), R2 = 100 (kΩ). Qs × g R2 ×2×5× = 0.4 (V) C1 R1 C1 = C2 = Qs × g R2 × 0.04 R1 C1 = C2 = 0.34 × 5 100 × = 425 (pF) 0.04 10 b. Setting the frequency (Hz) of HPF: Setting C3 (µF), R1 (kΩ) fc (Hz) = Example: Setting the frequency to 20 Hz with R1 = 10 (kΩ). 1 × 103 2 × π × R1 × C3 C3 = 1 × 103 = 0.8 (µF) 2 × π × 10 × 20 c. Setting the frequency (kHz) of LPF: Setting C4 (pF), R2 (kΩ) fc (kHz) = Example: Setting the frequency to 5 kHz with R2 = 100 (kΩ). 1 × 106 2 × π × R2 × C4 C4 = 1 × 106 = 318 (pF) 2 × π × 100 × 5 < How to output the voltage according to the shock through the pin 5. > – Using a sensor with the sensitivity Qs (pC/G), and assuming the shock sensitivity of the system is Vsystem (mV/G). – a. Setting gain: C1 = C2 (pF), R1 (kΩ), R2 (kΩ) Example: Designing the system with 200 (mV/G) by using a sensor that Qs = 0.34 (pC/G), R1 = 10 (kΩ), R2 = 100 (kΩ). Qs R2 ×2×5× = Vsystem × 103 (mV/G) C1 R1 C1 = C2 = Qs R2 × × 10 4 (pF) Vsystem R1 C1 = C2 = 7 0.34 100 × × 10 4 = 170 (pF) 200 10 2003-05-14 TB6066FNG Equivalent Circuit 100 Ω VCC 100 Ω VCC 14 10 DO A1O 100 Ω VCC 100 Ω VCC 12 5 A2O A3O 1.6 V 27 kΩ 0.8 V 6 CMI 7 CMO 8 2003-05-14 TB6066FNG Test Circuit (1) Supply current: ICC 2 MΩ 1 2 3 4 5 kΩ 5 6 7 8 SIA SIB SOA SOB VR DO A3I A2I A3O A2O CMI A1I CMO A1O GND VCC 16 2 MΩ 15 14 13 12 11 5 kΩ 10 9 3.3 V A DIFF-AMP Gain: GvBuf Step 1 5 6 7 SOB VR DO A3I A2I A3O A2O CMI A1I CMO A1O GND VCC 15 2 MΩ 14 13 12 M1 V 11 10 2 MΩ (3) 3 5 kΩ 4 5 6 7 SIA SIB SOA SOB VR DO A3I A2I A3O A2O CMI A1I CMO A1O GND VCC 16 15 2 MΩ 14 13 12 M2 V 11 10 9 DIFF-AMP Output DC voltage: VoBuf 1000 pF 1 2 3 5 kΩ 2 8 9 3.3 V 8 SOA 1 16 0.47 V 2 MΩ 5 kΩ 4 SIB 4 5 6 7 8 SIA SIB SOA SOB VR DO A3I A2I A3O A2O CMI A1I CMO A1O GND VCC 16 1000 pF 15 14 13 12 V 11 10 9 3.3 V 0.63 V 2 MΩ 3 SIA 3.3 V 2 0.63 V 2 MΩ 1 2 MΩ Gain = (M2-M1)/(0.63-0.47) Step 2 0.63 V 2 MΩ (2) 9 2003-05-14 TB6066FNG 5 6 7 VR DO A3I A2I A3O A2O CMI A1I CMO A1O GND VCC 15 2 MΩ 2 MΩ 2 3 14 13 5 kΩ A 12 11 4 5 6 10 7 9 8 SOA SOB VR DO A3I A2I A3O A2O CMI A1I CMO A1O GND VCC 16 15 13 11 10 9 2 3 5 kΩ 4 5 6 7 SIB SOA SOB VR DO A3I A2I A3O A2O CMI A1I CMO A1O GND VCC OP-AMP1 Input current: Iin 16 1 15 2 14 3 13 5 kΩ 4 12 5 11 6 10 5 kΩ 9 7 8 V OP-AMP1 Output source current: IAso 3 5 kΩ 4 5 6 7 8 SIA SIB SOA SOB VR DO A3I A2I A3O A2O CMI A1I CMO A1O GND VCC SOA SOB VR DO A3I A2I A3O A2O CMI A1I CMO A1O GND VCC 16 15 14 13 12 1 15 2 14 3 13 5 kΩ 4 12 5 11 6 10 7 8 A IM 11 10 A 9 OP-AMP1 Output sink current: IAsi 16 9 SIB SIA SIB SOA SOB VR DO A3I A2I A3O A2O CMI A1I CMO A1O GND VCC 16 15 14 13 12 11 10 9 A 3.3 V 2 1.0 V 1 (9) 2.3 V (8) SIA Spec (Iin) = IM/2 3.3 V 8 SIA (7) 0.6 V OP-AMP1 Input voltage 1: Vin1 1 A 12 3.3 V (6) 2 MΩ 14 3.3 V 8 SOB SIB 2 MΩ 5 kΩ 4 SOA SIA 10 1.4 V 3 1 16 0.3 V 2 SIB 3.3 V 2 MΩ 2 MΩ SIA DIFF-AMP Output sink current: IBsi 3.3 V 1 (5) 0.3 V DIFF-AMP Output source current: IBso 2.3 V (4) 2003-05-14 TB6066FNG (10) OP-AMP2 Input current: Iin 4 5 6 7 8 SOB VR DO A3I A2I A3O A2O CMI A1I CMO A1O GND VCC 15 14 13 IM 12 A 11 10 9 3.3 V Spec (Iin) = IM (11) OP-AMP2 Output source current: IAso 5 kΩ 4 5 6 7 SOB VR DO A3I A2I A3O A2O CMI A1I CMO A1O GND VCC 1 15 2 14 3 13 5 kΩ 4 12 5 11 6 A 10 9 7 8 SIA SIB SOA SOB VR DO A3I A2I A3O A2O CMI A1I CMO A1O GND VCC 16 15 14 13 12 11 (13) OP-AMP3 Input voltage 1: Vin1 9 3 4 5 kΩ 5 6 V 7 8 SIA SIB SOA SOB VR DO A3I A2I A3O A2O CMI A1I CMO A1O GND VCC 16 1 15 2 14 3 IM 13 4 12 5 11 6 A 10 0.6 V 2 (14) OP-AMP3 Input current: Iin 9 7 8 SIA SIB SOA SOB VR DO A3I A2I A3O A2O CMI A1I CMO A1O GND VCC Spec (Iin) = IM/2 3.3 V 1 A 10 3.3 V 8 SOA 16 3.3 V 3 SIB 3.3 V 2 SIA 2.3 V 1 (12) OP-AMP2 Output sink current: IAsi 0V 5 kΩ SOA 16 0.3 V 3 SIB 11 16 15 14 13 12 11 10 9 3.3 V 2 SIA 1.0 V 1 2003-05-14 TB6066FNG (15) OP-AMP3 Output source current: IAso 4 5 6 7 8 SOB VR DO A3I A2I A3O A2O CMI A1I CMO A1O GND VCC 1 15 2 14 3 13 4 12 5 11 6 A 10 9 7 8 SIA SIB SOA SOB VR DO A3I A2I A3O A2O CMI A1I CMO A1O GND VCC 16 15 14 13 12 11 10 9 3.3 V 2.3 V 1.0 V A SOA 16 3.3 V 3 SIB 0.3 V 2 SIA 1.4 V 1 (16) OP-AMP3 Output sink current: IAsi 3 4 5 6 7 8 SOA SOB VR DO A3I A2I A3O A2O CMI A1I CMO A1O GND VCC 16 1 15 2 14 3 13 4 12 5 11 6 10 7 9 8 A 3.3 V 1.2 V M3 A SIB 0.3 V 2 SIA 0.7 V 1 (18) Window comparator Output sink current: Iwsi SIA SIB SOA SOB VR DO A3I A2I A3O A2O CMI A1I CMO A1O GND VCC 16 15 14 13 12 11 10 9 3.3 V (17) Window comparator Output pull-up resistance: RWu RWu = 3.3/M3 12 2003-05-14 TB6066FNG Package Dimensions Weight: 0.07 g (typ.) 13 2003-05-14 TB6066FNG RESTRICTIONS ON PRODUCT USE 000707EAA • TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc.. • The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer’s own risk. • The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. • The information contained herein is subject to change without notice. 14 2003-05-14