ROHM MP6Z3

MP6Z3
Transistors
Medium Power Transistor (60V, 3A)
MP6Z3
zFeatures
1) High speed switching. (tf : Typ. : 30ns at Ic= 3A)
2) Low saturation voltage, typically
(Typ. : 200mV at Ic = 2A, IB = 200mA)
3) Strong discharge power for inductive load and
capacitance load.
4) Contains 2SC5824-die and 2SA2071-die in a
package.
zDimensions (Unit : mm)
MPT6
(6)
(5)
(4)
(1)
(2)
(3)
zApplications
Low frequency amplifier
High speed switching
zStructure
Silicon epitaxial planar transistor
zPackaging specifications
Package
Type
zInner circuit
Taping
Code
(6)
TR
Basic ordering unit(pieces)
(5)
(4)
1000
MP6Z3
<Tr2>
<Tr1>
(1)
(2)
(1) Emitter <Tr1>
(2) Base <Tr1>
(3) Collector <Tr2>
(4) Emitter <Tr2>
(5) Base <Tr2>
(6) Collector <Tr1>
(3)
zAbsolute maximum ratings (Ta=25qC)
Parameter
Symbol
VCBO
VCEO
VEBO
Collector-base voltage
Collector-emitter voltage
Emitter-base voltage
Collector current
Continuous
Pulsed
Power dissipation
Junction temperature
Range of storage temperature
∗1 Pw=10ms 1 Pulse
∗2 Mounted on a ceramic board
IC
ICP
∗1
PD
∗2
Tj
Tstg
Limits
Tr1
60
60
6
Tr2
−60
−60
−6
3
6
−3
−6
2.0
1.4
150
−55 to 150
Unit
V
V
V
A
A
W / TOTAL
W / ELEMENT
°C
°C
Rev.A
1/6
MP6Z3
Transistors
zElectrical characteristics (Ta=25qC)
<Tr1>
Symbol
Min.
Typ.
Max.
Collector-Emitter breakdown voltage
BVCEO
60
−
−
V
IC=1mA
Collector-base breakdown voltage
BVCBO
60
−
−
V
IC=100μA
Emitter-base breakdown voltage
BVEBO
6
−
−
V
IE=100μA
ICBO
−
−
1.0
μA
VCB=40V
Parameter
Collector cut off current
Emitter cut off current
Collector-emitter saturation voltage
DC current gain
Transition frequency
Collector output capacitance
Unit
Conditions
IEBO
−
−
1.0
μA
VEB=4V
VCE(sat)∗1
−
200
500
mV
IC=2.0A, IB=0.2A
hFE
120
−
270
−
−
200
−
MHz
−
20
−
pF
VCB=10V, IE=0A, f=1MHz
IC=3A
IB1=300mA
IB2= −300mA
VCC ∼
− 25V
fT
∗1
Cob
VCE=2V, IC=100mA
VCE=10V, IE=−100mA, f=10MHz
Turn-on time
ton
∗2
−
50
−
ns
Storage time
tstg
∗2
−
150
−
ns
∗2
−
30
−
ns
Symbol
Min.
Typ.
Max.
Unit
Collector-Emitter breakdown voltage
BVCEO
−60
−
−
V
IC= −1mA
Collector-base breakdown voltage
BVCBO
−60
−
−
V
IC= −100μA
Emitter-base breakdown voltage
BVEBO
−6
−
−
V
IE= −100μA
ICBO
−
−
−1.0
μA
VCB= −40V
tf
Fall time
∗1
∗2
Pulsed
See switching time test circuit
<Tr2>
Parameter
Collector cut off current
Emitter cut off current
Collector-emitter saturation voltage
DC current gain
Transition frequency
Collector output capacitance
IEBO
−
−
−1.0
μA
VEB= −4V
VCE(sat)∗1
−
−200
−500
mV
IC= −2.0A, IB= −0.2A
hFE
120
−
270
−
−
180
−
MHz
−
50
−
pF
VCB= −10V, IE=0A, f=1MHz
IC= −3A
IB1= −300mA
IB2= 300mA
VCC ∼
− −25V
fT
∗1
Cob
Turn-on time
ton
∗2
−
20
−
ns
Storage time
tstg
∗2
−
150
−
ns
tf
∗2
−
20
−
ns
Fall time
∗1
∗2
Conditions
VCE= −2V, IC= −100mA
VCE= −10V, IE=100mA, f=10MHz
Pulsed
See switching time test circuit
Rev.A
2/6
MP6Z3
Transistors
zElectrical characteristics curves
=Us2?
IB=7mA
Ta=25°C
1
Ta=100°C
Ta= −40°C
Ta=25°C
0.1
0.01
0
IB=9mA
0.8
COLLECTOR CURRENT 䋺Ic(A)
0.5
1
1.5
IB=8mA
IB=10mA
0.7
IB=4mA
0.6
IB=3mA
0.5
0.4
IB=2mA
0.3
0.2
0.0
0.5
1.0
10
0.1
1
10
Fig.3 DC current gain vs. collector
current
10
Ta=25°C
COLLECTOR SATURATION
VOLTAGE : VCE (sat)(V)
DC CURRENT GAIN : hFE
Ta=125°C
0.01
COLLECTOR CURRENT : IC (A)
10
VCE=2V
Ta=100°C
10
1
0.001
IB=0mA
2.0
1.5
Fig.2 Grounded Emitter Output Characteristics
1000
Ta=25°C
VCE=2V
COLLECT OR TO EMITT ER VOLTAGE 䋺 V CE(V)
Fig.1 Ground emitter propagation
characteristics
Ta= −40°C
VCE=3V
IB=1mA
BASE TO EMITTER VOLTAGE : VBE (V)
100
100
0.1
0.0
2
VCE=5V
IB=5mA
IC/IB=10/1
COLLECTOR SATURATION
VOLTAGE : VCE(sat)(V)
COLLECTOR CURRENT : IC (A)
0.9
Ta=125°C
1000
IB=6mA
1.0
VCE=2V
DC CURRENT GAIN : hFE
10
1
0.1
IC/IB=20/1
IC/IB=10/1
Ta=125°C
1
Ta=100°C
0.1
Ta=25°C
Ta= −40°C
0.01
0.1
1
0.01
0.001
10
0.01
COLLECTOR CURRENT : IC (A)
0.1
1
10
TRANSITION FREQUENCY : FT (MHz)
BASE EMITTER SATURATION
VOLTAGE : VBE(sat) (V)
Ta= −40°C
Ta=25°C
1
Ta=125°C
Ta=100°C
0.1
1
10
Ta=25°C
VCE=10V
100
10
1
−0.001
−0.01
−0.1
0.1
1
10
Fig.6 Collector-emitter saturation voltage
vs. Collector Current ( ΙΙ )
1000
IC/IB=10/1
0.01
0.01
COLLECTOR CURRENT : IC (A)
COLLECTOR CURRENT : IC (A)
Fig.4 DC current gain vs. collector Fig.5 Collector-emitter saturation voltage
current ( ΙΙ )
vs. collector current ( Ι )
0.1
0.001
0.01
0.001
10
−1
−10
COLLECTOR OUTPUT CAPACITANCE : Cob (pF)
1
0.001
100
Ta=25°C
f=1MHz
10
1
0.1
1
10
100
COLLECTOR CURRENT : IC (A)
EMITTER CURRENT : IE (A)
COLLECTOR TO BASE VOLTAGE : VCB (V)
Fig.7 Base-emitter saturation voltage
vs. collector current
Fig.8 Transition frequency
Fig.9 Collector output capacitance
Rev.A
3/6
MP6Z3
1000
Ta=25°C
VCC=25V
IC/IB=10/1
SWITCHING TIME (ns)
tstg
100
ton
tf
10
0.01
0.1
1
10
COLLECTOR CURRENT : IC (A)
10
10
Ta=25㷄
COLLECTOR CURRENT : IC (A)
Normalized Transient Thermal Resistance : r(t)
Transistors
1
0.1
0.01
0.001
1ms
100ms
10ms
1
DC
0.1
Ta=25㷄
Single Pulse
0.01
0.1
10
1000
Pulse width : Pw(s)
㪇㪅㪈
㪈
㪈㪇
㪈㪇㪇
COLLECTOR TO EMITTER VOLTAGE : VCE
(V)
Fig.11 Normalized Thermal Resistance
Fig.12 Safe Operating Area
Fig.10 Switching Time
(Element)
zSwitching characteristics measurement circuits
<Tr1>
RL=8.3Ω
VIN
IB1
IC
VCC
25V
IB2
PW
PW 50μS
Duty cycle 1%
IB1
Base current
waveform
IB2
90%
IC
10%
Collector current
waveform
ton
tstg tf
Rev.A
4/6
MP6Z3
Transistors
zElectrical characteristics curves
=Us3?
−0.1
-0.8
IB=8mA
-0.7
IB=9mA
IB=4mA
IB=3mA
-0.4
IB=2mA
-0.3
-0.2
−1.5
1000
1
−0.001
0.0
0.0
-0.5
10
1
−0.001
−0.01
−0.1
−1
−10
IC/IB=20/1
IC/IB=10/1
−0.1
−1
Ta= −40°C
−0.1 Ta=25°C
Ta=125°C
−0.1
−1
−1
−10
−10
COLLECTOR CURRENT : IC (A)
Fig.7 Base-Emitter Saturation
Voltage vs. Collecter Current
Fig.5 Collector-Emitter Saturation
Voltage vs. Collector Current ( Ι )
TRANSITION FREQUENCY : fT (MHz)
IC/IB=10/1
−0.01
−0.1
1000
Ta=25°C
VCE= −10V
100
10
1
0.001
0.01
0.1
1
−10
IC/IB=10/1
−1
Ta=125°C
Ta=25°C
Ta= −40°C
−0.1
−0.01
−0.001
COLLECTOR CURRENT : IC (A)
Fig.4 DC Current Gain vs. Collector Current ( ΙΙ )
−0.01
−0.001
−0.01
−1
−10
Ta=25°C
−0.01
−0.001
−10
−0.1
Fig.3 DC Current Gain vs. Collector Current ( Ι )
−1
COLLECTOR CURRENT : IC (A)
−10
-2.0
Fig.2 Grounded Emitter Output Characteristics
COLLECTOR SATURATION
VOLTAGE : VCE (sat) (V)
Ta=125°C
Ta=25°C
Ta= −40°C
-1.5
COLLECTOR T O EMIT TER VOLTAGE 䋺 V CE(V)
VCE= −2V
100
-1.0
−0.01
COLLECTOR CURRENT : IC (A)
COLLECTOR SATURATION
VOLTAGE : VCE (sat) (V)
−1
10
10
−0.01
−0.1
−1
−10
COLLECTOR CURRENT : IC (A)
Fig.6 Collector-Emitter Saturation
Voltage vs. Collector Current ( ΙΙ )
1000
COLLECTOR OUTPUT
CAPACITANCE : Cob (pF)
−0.5
0
VCE= −5V
VCE= −3V
VCE= −2V
100
IB=1mA
-0.1
Fig.1 Grounded Emitter
Propagation Characteristics
BASE EMITTER SATURATION
VOLTAGE : VBE (sat) (V)
IB=5mA
IB=10mA
-0.5
Ta=25°C
IB=6mA
-0.6
BASE TO EMITTER VOLTAGE : VBE (V)
DC CURRENT GAIN : hFE
1000
IB=7mA
-0.9
DC CURRENT GAIN : hFE
Ta=125°C
Ta=25°C
−1 Ta= −40°C
−0.01
-1.0
VCE= −2V
COLLECTOR CURRENT 䋺Ic(A)
COLLECTOR CURRENT : IC (A)
−10
Ta=25°C
f=1MHz
100
10
1
−0.1
−1
−10
−100
EMITTER CURRENT : IE (A)
COLLECTOR TO BASE VOLTAGE : VCB (V)
Fig.8 Transition Frequency
Fig.9 Collector Output Capacitance
Rev.A
5/6
MP6Z3
Ta=25°C
VCC= −25V
IC/IB=10/1
Tstg
100
10
−0.01
Tf
Ton
−0.1
−1
−10
COLLECTOR CURRENT : IC (A)
-10
10
Ta=25㷄
COLLECTOR CURRENT : IC (A)
SWITCHING TIME : (ns)
1000
Normalized Transient Thermal Resistance : r(t)
Transistors
1
0.1
0.01
0.001
100ms
1ms
10ms
-1
DC
- 0.1
Ta=25㷄
Single Pulse
- 0.01
0.1
10
1000
- 0.1
-1
-- 10
- 100
Pulse width : Pw(s)
Fig.10 Switching Time
COLLECTOR TO EMITTER VOLTAGE : VCE
(-V)
Fig.11 Normalized Thermal Resistance
Fig.12 Safe Operating Area
(Element)
zSwitching characteristics measurement circuits
<Tr2>
RL=8.3Ω
VIN
IB1
PW
IC
VCC
IB2
−25V
PW 50μs
DUTY CYCLE 1%
IB2
Base current
waveform
IB1
ton
tstg
tf
Collector current
90%
waveform
IC
10%
Rev.A
6/6
Appendix
Notes
No technical content pages of this document may be reproduced in any form or transmitted by any
means without prior permission of ROHM CO.,LTD.
The contents described herein are subject to change without notice. The specifications for the
product described in this document are for reference only. Upon actual use, therefore, please request
that specifications to be separately delivered.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard
use and operation. Please pay careful attention to the peripheral conditions when designing circuits
and deciding upon circuit constants in the set.
Any data, including, but not limited to application circuit diagrams information, described herein
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of
whatsoever nature in the event of any such infringement, or arising from or connected with or related
to the use of such devices.
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
otherwise dispose of the same, no express or implied right or license to practice or commercially
exploit any intellectual property rights or other proprietary rights owned or controlled by
ROHM CO., LTD. is granted to any such buyer.
Products listed in this document are no antiradiation design.
The products listed in this document are designed to be used with ordinary electronic equipment or devices
(such as audio visual equipment, office-automation equipment, communications devices, electrical
appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level
of reliability and the malfunction of which would directly endanger human life (such as medical
instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers
and other safety devices), please be sure to consult with our sales representative in advance.
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance
of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow
for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in
order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM
cannot be held responsible for any damages arising from the use of the products under conditions out of the
range of the specifications or due to non-compliance with the NOTES specified in this catalog.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact your nearest sales office.
ROHM Customer Support System
www.rohm.com
Copyright © 2008 ROHM CO.,LTD.
THE AMERICAS / EUROPE / ASIA / JAPAN
Contact us : webmaster@ rohm.co. jp
21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
TEL : +81-75-311-2121
FAX : +81-75-315-0172
Appendix1-Rev2.0