MP6Z3 Transistors Medium Power Transistor (60V, 3A) MP6Z3 zFeatures 1) High speed switching. (tf : Typ. : 30ns at Ic= 3A) 2) Low saturation voltage, typically (Typ. : 200mV at Ic = 2A, IB = 200mA) 3) Strong discharge power for inductive load and capacitance load. 4) Contains 2SC5824-die and 2SA2071-die in a package. zDimensions (Unit : mm) MPT6 (6) (5) (4) (1) (2) (3) zApplications Low frequency amplifier High speed switching zStructure Silicon epitaxial planar transistor zPackaging specifications Package Type zInner circuit Taping Code (6) TR Basic ordering unit(pieces) (5) (4) 1000 MP6Z3 <Tr2> <Tr1> (1) (2) (1) Emitter <Tr1> (2) Base <Tr1> (3) Collector <Tr2> (4) Emitter <Tr2> (5) Base <Tr2> (6) Collector <Tr1> (3) zAbsolute maximum ratings (Ta=25qC) Parameter Symbol VCBO VCEO VEBO Collector-base voltage Collector-emitter voltage Emitter-base voltage Collector current Continuous Pulsed Power dissipation Junction temperature Range of storage temperature ∗1 Pw=10ms 1 Pulse ∗2 Mounted on a ceramic board IC ICP ∗1 PD ∗2 Tj Tstg Limits Tr1 60 60 6 Tr2 −60 −60 −6 3 6 −3 −6 2.0 1.4 150 −55 to 150 Unit V V V A A W / TOTAL W / ELEMENT °C °C Rev.A 1/6 MP6Z3 Transistors zElectrical characteristics (Ta=25qC) <Tr1> Symbol Min. Typ. Max. Collector-Emitter breakdown voltage BVCEO 60 − − V IC=1mA Collector-base breakdown voltage BVCBO 60 − − V IC=100μA Emitter-base breakdown voltage BVEBO 6 − − V IE=100μA ICBO − − 1.0 μA VCB=40V Parameter Collector cut off current Emitter cut off current Collector-emitter saturation voltage DC current gain Transition frequency Collector output capacitance Unit Conditions IEBO − − 1.0 μA VEB=4V VCE(sat)∗1 − 200 500 mV IC=2.0A, IB=0.2A hFE 120 − 270 − − 200 − MHz − 20 − pF VCB=10V, IE=0A, f=1MHz IC=3A IB1=300mA IB2= −300mA VCC ∼ − 25V fT ∗1 Cob VCE=2V, IC=100mA VCE=10V, IE=−100mA, f=10MHz Turn-on time ton ∗2 − 50 − ns Storage time tstg ∗2 − 150 − ns ∗2 − 30 − ns Symbol Min. Typ. Max. Unit Collector-Emitter breakdown voltage BVCEO −60 − − V IC= −1mA Collector-base breakdown voltage BVCBO −60 − − V IC= −100μA Emitter-base breakdown voltage BVEBO −6 − − V IE= −100μA ICBO − − −1.0 μA VCB= −40V tf Fall time ∗1 ∗2 Pulsed See switching time test circuit <Tr2> Parameter Collector cut off current Emitter cut off current Collector-emitter saturation voltage DC current gain Transition frequency Collector output capacitance IEBO − − −1.0 μA VEB= −4V VCE(sat)∗1 − −200 −500 mV IC= −2.0A, IB= −0.2A hFE 120 − 270 − − 180 − MHz − 50 − pF VCB= −10V, IE=0A, f=1MHz IC= −3A IB1= −300mA IB2= 300mA VCC ∼ − −25V fT ∗1 Cob Turn-on time ton ∗2 − 20 − ns Storage time tstg ∗2 − 150 − ns tf ∗2 − 20 − ns Fall time ∗1 ∗2 Conditions VCE= −2V, IC= −100mA VCE= −10V, IE=100mA, f=10MHz Pulsed See switching time test circuit Rev.A 2/6 MP6Z3 Transistors zElectrical characteristics curves =Us2? IB=7mA Ta=25°C 1 Ta=100°C Ta= −40°C Ta=25°C 0.1 0.01 0 IB=9mA 0.8 COLLECTOR CURRENT 䋺Ic(A) 0.5 1 1.5 IB=8mA IB=10mA 0.7 IB=4mA 0.6 IB=3mA 0.5 0.4 IB=2mA 0.3 0.2 0.0 0.5 1.0 10 0.1 1 10 Fig.3 DC current gain vs. collector current 10 Ta=25°C COLLECTOR SATURATION VOLTAGE : VCE (sat)(V) DC CURRENT GAIN : hFE Ta=125°C 0.01 COLLECTOR CURRENT : IC (A) 10 VCE=2V Ta=100°C 10 1 0.001 IB=0mA 2.0 1.5 Fig.2 Grounded Emitter Output Characteristics 1000 Ta=25°C VCE=2V COLLECT OR TO EMITT ER VOLTAGE 䋺 V CE(V) Fig.1 Ground emitter propagation characteristics Ta= −40°C VCE=3V IB=1mA BASE TO EMITTER VOLTAGE : VBE (V) 100 100 0.1 0.0 2 VCE=5V IB=5mA IC/IB=10/1 COLLECTOR SATURATION VOLTAGE : VCE(sat)(V) COLLECTOR CURRENT : IC (A) 0.9 Ta=125°C 1000 IB=6mA 1.0 VCE=2V DC CURRENT GAIN : hFE 10 1 0.1 IC/IB=20/1 IC/IB=10/1 Ta=125°C 1 Ta=100°C 0.1 Ta=25°C Ta= −40°C 0.01 0.1 1 0.01 0.001 10 0.01 COLLECTOR CURRENT : IC (A) 0.1 1 10 TRANSITION FREQUENCY : FT (MHz) BASE EMITTER SATURATION VOLTAGE : VBE(sat) (V) Ta= −40°C Ta=25°C 1 Ta=125°C Ta=100°C 0.1 1 10 Ta=25°C VCE=10V 100 10 1 −0.001 −0.01 −0.1 0.1 1 10 Fig.6 Collector-emitter saturation voltage vs. Collector Current ( ΙΙ ) 1000 IC/IB=10/1 0.01 0.01 COLLECTOR CURRENT : IC (A) COLLECTOR CURRENT : IC (A) Fig.4 DC current gain vs. collector Fig.5 Collector-emitter saturation voltage current ( ΙΙ ) vs. collector current ( Ι ) 0.1 0.001 0.01 0.001 10 −1 −10 COLLECTOR OUTPUT CAPACITANCE : Cob (pF) 1 0.001 100 Ta=25°C f=1MHz 10 1 0.1 1 10 100 COLLECTOR CURRENT : IC (A) EMITTER CURRENT : IE (A) COLLECTOR TO BASE VOLTAGE : VCB (V) Fig.7 Base-emitter saturation voltage vs. collector current Fig.8 Transition frequency Fig.9 Collector output capacitance Rev.A 3/6 MP6Z3 1000 Ta=25°C VCC=25V IC/IB=10/1 SWITCHING TIME (ns) tstg 100 ton tf 10 0.01 0.1 1 10 COLLECTOR CURRENT : IC (A) 10 10 Ta=25㷄 COLLECTOR CURRENT : IC (A) Normalized Transient Thermal Resistance : r(t) Transistors 1 0.1 0.01 0.001 1ms 100ms 10ms 1 DC 0.1 Ta=25㷄 Single Pulse 0.01 0.1 10 1000 Pulse width : Pw(s) 㪇㪅㪈 㪈 㪈㪇 㪈㪇㪇 COLLECTOR TO EMITTER VOLTAGE : VCE (V) Fig.11 Normalized Thermal Resistance Fig.12 Safe Operating Area Fig.10 Switching Time (Element) zSwitching characteristics measurement circuits <Tr1> RL=8.3Ω VIN IB1 IC VCC 25V IB2 PW PW 50μS Duty cycle 1% IB1 Base current waveform IB2 90% IC 10% Collector current waveform ton tstg tf Rev.A 4/6 MP6Z3 Transistors zElectrical characteristics curves =Us3? −0.1 -0.8 IB=8mA -0.7 IB=9mA IB=4mA IB=3mA -0.4 IB=2mA -0.3 -0.2 −1.5 1000 1 −0.001 0.0 0.0 -0.5 10 1 −0.001 −0.01 −0.1 −1 −10 IC/IB=20/1 IC/IB=10/1 −0.1 −1 Ta= −40°C −0.1 Ta=25°C Ta=125°C −0.1 −1 −1 −10 −10 COLLECTOR CURRENT : IC (A) Fig.7 Base-Emitter Saturation Voltage vs. Collecter Current Fig.5 Collector-Emitter Saturation Voltage vs. Collector Current ( Ι ) TRANSITION FREQUENCY : fT (MHz) IC/IB=10/1 −0.01 −0.1 1000 Ta=25°C VCE= −10V 100 10 1 0.001 0.01 0.1 1 −10 IC/IB=10/1 −1 Ta=125°C Ta=25°C Ta= −40°C −0.1 −0.01 −0.001 COLLECTOR CURRENT : IC (A) Fig.4 DC Current Gain vs. Collector Current ( ΙΙ ) −0.01 −0.001 −0.01 −1 −10 Ta=25°C −0.01 −0.001 −10 −0.1 Fig.3 DC Current Gain vs. Collector Current ( Ι ) −1 COLLECTOR CURRENT : IC (A) −10 -2.0 Fig.2 Grounded Emitter Output Characteristics COLLECTOR SATURATION VOLTAGE : VCE (sat) (V) Ta=125°C Ta=25°C Ta= −40°C -1.5 COLLECTOR T O EMIT TER VOLTAGE 䋺 V CE(V) VCE= −2V 100 -1.0 −0.01 COLLECTOR CURRENT : IC (A) COLLECTOR SATURATION VOLTAGE : VCE (sat) (V) −1 10 10 −0.01 −0.1 −1 −10 COLLECTOR CURRENT : IC (A) Fig.6 Collector-Emitter Saturation Voltage vs. Collector Current ( ΙΙ ) 1000 COLLECTOR OUTPUT CAPACITANCE : Cob (pF) −0.5 0 VCE= −5V VCE= −3V VCE= −2V 100 IB=1mA -0.1 Fig.1 Grounded Emitter Propagation Characteristics BASE EMITTER SATURATION VOLTAGE : VBE (sat) (V) IB=5mA IB=10mA -0.5 Ta=25°C IB=6mA -0.6 BASE TO EMITTER VOLTAGE : VBE (V) DC CURRENT GAIN : hFE 1000 IB=7mA -0.9 DC CURRENT GAIN : hFE Ta=125°C Ta=25°C −1 Ta= −40°C −0.01 -1.0 VCE= −2V COLLECTOR CURRENT 䋺Ic(A) COLLECTOR CURRENT : IC (A) −10 Ta=25°C f=1MHz 100 10 1 −0.1 −1 −10 −100 EMITTER CURRENT : IE (A) COLLECTOR TO BASE VOLTAGE : VCB (V) Fig.8 Transition Frequency Fig.9 Collector Output Capacitance Rev.A 5/6 MP6Z3 Ta=25°C VCC= −25V IC/IB=10/1 Tstg 100 10 −0.01 Tf Ton −0.1 −1 −10 COLLECTOR CURRENT : IC (A) -10 10 Ta=25㷄 COLLECTOR CURRENT : IC (A) SWITCHING TIME : (ns) 1000 Normalized Transient Thermal Resistance : r(t) Transistors 1 0.1 0.01 0.001 100ms 1ms 10ms -1 DC - 0.1 Ta=25㷄 Single Pulse - 0.01 0.1 10 1000 - 0.1 -1 -- 10 - 100 Pulse width : Pw(s) Fig.10 Switching Time COLLECTOR TO EMITTER VOLTAGE : VCE (-V) Fig.11 Normalized Thermal Resistance Fig.12 Safe Operating Area (Element) zSwitching characteristics measurement circuits <Tr2> RL=8.3Ω VIN IB1 PW IC VCC IB2 −25V PW 50μs DUTY CYCLE 1% IB2 Base current waveform IB1 ton tstg tf Collector current 90% waveform IC 10% Rev.A 6/6 Appendix Notes No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD. The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered. Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set. Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices. Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer. Products listed in this document are no antiradiation design. The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance. It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office. ROHM Customer Support System www.rohm.com Copyright © 2008 ROHM CO.,LTD. THE AMERICAS / EUROPE / ASIA / JAPAN Contact us : webmaster@ rohm.co. jp 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL : +81-75-311-2121 FAX : +81-75-315-0172 Appendix1-Rev2.0