ONSEMI SN74LS390N

SN54/74LS390
SN54/74LS393
DUAL DECADE COUNTER;
DUAL 4-STAGE
BINARY COUNTER
The SN54 / 74LS390 and SN54 / 74LS393 each contain a pair of high-speed
4-stage ripple counters. Each half of the LS390 is partitioned into a
divide-by-two section and a divide-by five section, with a separate clock input
for each section. The two sections can be connected to count in the 8.4.2.1
BCD code or they can count in a biquinary sequence to provide a square wave
(50% duty cycle) at the final output.
Each half of the LS393 operates as a Modulo-16 binary divider, with the last
three stages triggered in a ripple fashion. In both the LS390 and the LS393,
the flip-flops are triggered by a HIGH-to-LOW transition of their CP inputs.
Each half of each circuit type has a Master Reset input which responds to a
HIGH signal by forcing all four outputs to the LOW state.
•
•
•
•
•
Dual Versions of LS290 and LS293
LS390 has Separate Clocks Allowing ÷ 2, ÷ 2.5, ÷ 5
Individual Asynchronous Clear for Each Counter
Typical Max Count Frequency of 50 MHz
Input Clamp Diodes Minimize High Speed Termination Effects
DUAL DECADE COUNTER;
DUAL 4-STAGE
BINARY COUNTER
LOW POWER SCHOTTKY
J SUFFIX
CERAMIC
CASE 620-09
16
1
N SUFFIX
PLASTIC
CASE 648-08
16
1
CONNECTION DIAGRAM DIP (TOP VIEW)
SN54 / 74LS390
16
VCC
CP0
MR
Q0
CP1
Q1
Q2
Q3
16
15
14
13
12
11
10
9
1
D SUFFIX
SOIC
CASE 751B-03
J SUFFIX
CERAMIC
CASE 632-08
14
1
1
2
3
4
5
6
7
8
CP0
MR
Q0
CP1
Q1
Q2
Q3
GND
SN54 / 74LS393
VCC
CP
MR
Q0
Q1
Q2
Q3
14
13
12
11
10
9
8
NOTE:
The Flatpak version
has the same pinouts
(Connection Diagram) as
the Dual In-Line Package.
N SUFFIX
PLASTIC
CASE 646-06
14
1
14
1
D SUFFIX
SOIC
CASE 751A-02
ORDERING INFORMATION
1
2
3
4
5
6
7
CP
MR
Q0
Q1
Q2
Q3
GND
SN54LSXXXJ
SN74LSXXXN
SN74LSXXXD
FAST AND LS TTL DATA
5-1
Ceramic
Plastic
SOIC
SN54/74LS390 • SN54/74LS393
PIN NAMES
LOADING (Note a)
LOW
HIGH
CP
CP0
CP1
MR
Q0 – Q3
Clock (Active LOW going edge)
Input to +16 (LS393)
Clock (Active LOW going edge)
Input to ÷ 2 (LS390)
Clock (Active LOW going edge)
Input to ÷ 5 (LS390)
Master Reset (Active HIGH) Input
Flip-Flop outputs (Note b)
0.5 U.L.
1.0 U.L.
0.5 U.L.
1.0 U.L.
0.5 U.L.
0.5 U.L.
10 U.L.
1.5 U.L.
0.25 U.L.
5 (2.5) U.L.
NOTES:
a) 1 TTL Unit Load (U.L.) = 40 µA HIGH/1.6 mA LOW.
b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74)
b) Temperature Ranges.
FUNCTIONAL DESCRIPTION
Each half of the SN54 / 74LS393 operates in the Modulo 16
binary sequence, as indicated in the ÷ 16 Truth Table. The first
flip-flop is triggered by HIGH-to-LOW transitions of the CP
input signal. Each of the other flip-flops is triggered by a
HIGH-to-LOW transition of the Q output of the preceding
flip-flop. Thus state changes of the Q outputs do not occur
simultaneously. This means that logic signals derived from
combinations of these outputs will be subject to decoding
spikes and, therefore, should not be used as clocks for other
counters, registers or flip-flops. A HIGH signal on MR forces
all outputs to the LOW state and prevents counting.
Each half of the LS390 contains a ÷ 5 section that is
independent except for the common MR function. The ÷ 5
section operates in 4.2.1 binary sequence, as shown in the ÷ 5
Truth Table, with the third stage output exhibiting a 20% duty
cycle when the input frequency is constant. To obtain a ÷10
function having a 50% duty cycle output, connect the input
signal to CP1 and connect the Q3 output to the CP0 input; the
Q0 output provides the desired 50% duty cycle output. If the
input frequency is connected to CP0 and the Q0 output is
connected to CP1, a decade divider operating in the 8.4.2.1
BCD code is obtained, as shown in the BCD Truth Table. Since
the flip-flops change state asynchronously, logic signals
derived from combinations of LS390 outputs are also subject
to decoding spikes. A HIGH signal on MR forces all outputs
LOW and prevents counting.
SN54 / 74LS390 LOGIC DIAGRAM (one half shown)
CP1
CP0
K CP
CD
J
K CP
Q
CD
J
K CP
Q
CD
J
K CP
Q
CD
J
Q
MR
Q0
Q1
Q2
Q3
SN54 / 74LS393 LOGIC DIAGRAM (one half shown)
CP
K CP
CD
J
Q
K CP
CD
J
K CP
Q
CD
J
K CP
Q
CD
J
Q
MR
Q0
Q1
FAST AND LS TTL DATA
5-2
Q2
Q3
SN54/74LS390 • SN54/74LS393
SN54/ 74LS390 ÷ 5
TRUTH TABLE
(Input on CP1)
SN54 / 74LS390 BCD
TRUTH TABLE
(Input on CP0; Q0 CP1)
OUTPUTS
COUNT
Q3
Q2 Q1
SN54 / 74LS393
TRUTH TABLE
OUTPUTS
COUNT
Q0
0
1
2
L
L
L
L
L
L
L
L
H
L
H
L
3
4
5
L
L
L
L
H
H
H
L
L
H
L
H
6
7
8
9
L
L
H
H
H
H
L
L
H
H
L
L
L
H
L
H
OUTPUTS
Q3
Q2 Q1
L
L
L
L
H
L
L
H
H
L
0
1
2
3
4
COUNT
L
H
L
H
L
SN54 / 74LS390 ÷ 10 (50% @ Q0)
TRUTH TABLE
(Input on CP1, Q3 to CP0)
OUTPUTS
COUNT
Q3
Q2 Q1
Q0
0
1
2
L
L
L
L
L
H
L
H
L
L
L
L
3
4
5
L
H
L
H
L
L
H
L
L
L
L
H
6
7
8
9
L
L
L
H
L
H
H
L
H
L
H
L
H
H
H
H
Q3
Q2 Q1
Q0
0
1
2
3
L
L
L
L
L
L
L
L
L
L
H
H
L
H
L
H
4
5
6
7
L
L
L
L
H
H
H
H
L
L
H
H
L
H
L
H
8
9
10
11
H
H
H
H
L
L
L
L
L
L
H
H
L
H
L
H
12
13
14
15
H
H
H
H
H
H
H
H
L
L
H
H
L
H
L
H
H = HIGH Voltage Level
L = LOW Voltage Level
GUARANTEED OPERATING RANGES
Symbol
Parameter
Min
Typ
Max
Unit
VCC
Supply Voltage
54
74
4.5
4.75
5.0
5.0
5.5
5.25
V
TA
Operating Ambient Temperature Range
54
74
– 55
0
25
25
125
70
°C
IOH
Output Current — High
54, 74
– 0.4
mA
IOL
Output Current — Low
54
74
4.0
8.0
mA
FAST AND LS TTL DATA
5-3
SN54/74LS390 • SN54/74LS393
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)
Limits
S b l
Symbol
Min
P
Parameter
VIH
Input HIGH Voltage
VIL
Input LOW Voltage
VIK
Input Clamp Diode Voltage
VOH
Output HIGH Voltage
VOL
Output LOW Voltage
IIH
Input HIGH Current
IIL
I
Input
LOW C
Current
Typ
Max
U i
Unit
2.0
54
0.7
74
0.8
– 0.65
– 1.5
T
Test
C
Conditions
di i
V
Guaranteed Input HIGH Voltage for
All Inputs
V
Guaranteed Input
p LOW Voltage
g for
All Inputs
V
VCC = MIN, IIN = – 18 mA
54
2.5
3.5
V
74
2.7
3.5
V
VCC = MIN,, IOH = MAX,, VIN = VIH
or VIL per Truth Table
54, 74
0.25
0.4
V
IOL = 4.0 mA
74
0.35
0.5
V
IOL = 8.0 mA
VCC = VCC MIN,
VIN = VIL or VIH
per Truth Table
20
µA
VCC = MAX, VIN = 2.7 V
0.1
mA
VCC = MAX, VIN = 7.0 V
MR
– 0.4
mA
CP, CP0
– 1.6
mA
CP1
– 2.4
mA
– 100
mA
VCC = MAX
26
mA
VCC = MAX
IOS
Short Circuit Current (Note 1)
ICC
Power Supply Current
– 20
VCC = MAX
MAX, VIN = 0.4
04V
Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.
AC CHARACTERISTICS (TA = 25°C, VCC = 5.0 V)
Limits
S b l
Symbol
P
Parameter
Min
Typ
35
fMAX
Maximum Clock Frequency
CP0 to Q0
25
fMAX
Maximum Clock Frequency
CP1 to Q1
20
tPLH
tPHL
Propagation Delay,
CP to Q0
LS393
Max
U i
Unit
MHz
MHz
12
13
20
20
ns
tPLH
tPHL
CP0 to Q0
LS390
12
13
20
20
ns
tPLH
tPHL
CP to Q3
LS393
40
40
60
60
ns
60
60
ns
tPLH
tPHL
CP0 to Q2
LS390
37
39
tPLH
tPHL
CP1 to Q1
LS390
13
14
21
21
ns
tPLH
tPHL
CP1 to Q2
LS390
24
26
39
39
ns
tPLH
tPHL
CP1 to Q3
LS390
13
14
21
21
ns
LS390/393
24
39
ns
tPHL
MR to Any Output
T
Test
C
Conditions
di i
FAST AND LS TTL DATA
5-4
F
CL = 15 p
pF
SN54/74LS390 • SN54/74LS393
AC SETUP REQUIREMENTS (TA = 25°C, VCC = 5.0 V)
Limits
S b l
Symbol
Min
P
Parameter
Typ
Max
U i
Unit
tW
Clock Pulse Width
LS393
20
ns
tW
CP0 Pulse Width
LS390
20
ns
tW
CP1 Pulse Width
LS390
40
ns
tW
MR Pulse Width
LS390/393
20
ns
trec
Recovery Time
LS390/393
25
ns
T
Test
C
Conditions
di i
VCC = 5.0
50V
AC WAVEFORMS
*CP
1.3 V
1.3 V
tW
tPLH
tPHL
Q
1.3 V
1.3 V
Figure 1
MR & MS
1.3 V
1.3 V
tW
trec
CP
1.3 V
tPHL
Q
1.3 V
Figure 2
*The number of Clock Pulses required between tPHL and tPLH measurements can be determined from the appropriate Truth Table.
FAST AND LS TTL DATA
5-5