FAIRCHILD N302AP

ISL9N302AP3
N-Channel Logic Level PWM Optimized UltraFET® Trench Power MOSFETs
General Description
Features
This device employs a new advanced trench MOSFET
technology and features low gate charge while maintaining
low on-resistance.
• Fast switching
Optimized for switching applications, this device improves
the overall efficiency of DC/DC converters and allows
operation to higher switching frequencies.
• rDS(ON) = 0.0027Ω (Typ), VGS = 4.5V
Applications
• Qgd (Typ) = 31nC
• DC/DC converters
• CISS (Typ) = 11000pF
• rDS(ON) = 0.0019Ω (Typ), VGS = 10V
• Qg (Typ) = 110nC, VGS = 5V
SOURCE
DRAIN
GATE
D
G
DRAIN
(FLANGE)
S
TO-220AB
MOSFET Maximum Ratings TA = 25°C unless otherwise noted
Symbol
VDSS
VGS
ID
PD
TJ, TSTG
Parameter
Drain to Source Voltage
Gate to Source Voltage
Drain Current
Continuous (TC = 25oC, VGS = 10V)
Continuous (TC = 100oC, VGS = 4.5V)
Pulsed
Power dissipation
Derate above 25oC
Operating and Storage Temperature
Ratings
30
±20
Units
V
V
75
A
75
Figure 4
345
2.3
-55 to 175
A
A
W
W/oC
oC
Thermal Characteristics
RθJC
Thermal Resistance Junction to Case TO-220
RθJA
Thermal Resistance Junction to Ambient TO-220
0.43
oC/W
62
oC/W
Package Marking and Ordering Information
Device Marking
N302AP
©2002 Fairchild Semiconductor Corporation
Device
ISL9N302AP3
Package
TO-220AB
Reel Size
Tube
Tape Width
N/A
Quantity
50
Rev. B January 2002
ISL9N302AP3
January 2002
Symbol
Parameter
Test Conditions
Min
Typ
Max
Units
30
-
-
1
250
±100
V
Off Characteristics
BVDSS
Drain to Source Breakdown Voltage
IDSS
Zero Gate Voltage Drain Current
IGSS
Gate to Source Leakage Current
ID = 250µA, VGS = 0V
VDS = 25V
VGS = 0V
TC = 150o
VGS = ±20V
µA
nA
On Characteristics
VGS(TH)
Gate to Source Threshold Voltage
rDS(ON)
Drain to Source On Resistance
VGS = VDS, ID = 250µA
ID = 75A, VGS = 10V
ID = 75A, VGS = 4.5V
1
-
3
0.0019 0.0025
0.0027 0.0033
V
-
11000
2000
-
900
-
pF
-
200
110
12
25
31
300
165
18
-
nC
nC
nC
nC
nC
VDD = 15V, ID = 28A
VGS = 4.5V, RGS = 1.5Ω
-
29
120
45
34
-
224
119
ns
ns
ns
ns
ns
ns
VDD = 15V, ID = 28A
VGS = 10V, RGS = 1.5Ω
-
16
120
70
30
-
204
150
ns
ns
ns
ns
ns
ns
480
-
-
µs
-
-
1.25
1.0
42
34
V
V
ns
nC
Ω
Dynamic Characteristics
CISS
COSS
Input Capacitance
Output Capacitance
CRSS
Qg(TOT)
Reverse Transfer Capacitance
Total Gate Charge at 10V
Total Gate Charge at 5V
Threshold Gate Charge
Gate to Source Gate Charge
Gate to Drain “Miller” Charge
Qg(5)
Qg(TH)
Qgs
Qgd
Switching Characteristics
tON
td(ON)
tr
td(OFF)
tf
tOFF
tON
td(ON)
tr
td(OFF)
tf
tOFF
VGS = 0V to 10V
VGS = 0V to 5V V = 15V
DD
VGS = 0V to 1V ID = 75A
Ig = 1.0mA
-
pF
pF
(VGS = 4.5V)
Turn-On Time
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-Off Time
Switching Characteristics
VDS = 15V, VGS = 0V,
f = 1MHz
(VGS = 10V)
Turn-On Time
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-Off Time
Unclamped Inductive Switching
tAV
Avalanche Time
ID = 7.2A, L = 3.0mH
Drain-Source Diode Characteristics
VSD
Source to Drain Diode Voltage
trr
QRR
Reverse Recovery Time
Reverse Recovered Charge
©2002 Fairchild Semiconductor Corporation
ISD = 75A
ISD = 40A
ISD = 75A, dISD/dt = 100A/µs
ISD = 75A, dISD/dt = 100A/µs
Rev. B January 2002
ISL9N302AP3
Electrical Characteristics TA = 25°C unless otherwise noted
ISL9N302AP3
Typical Characteristic
1.2
80
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
1.0
0.8
0.6
0.4
VGS = 10V
60
VGS = 4.5V
40
20
0.2
0
0
0
25
50
75
100
150
125
175
25
50
75
TC , CASE TEMPERATURE (oC)
100
125
150
175
TC, CASE TEMPERATURE (oC)
Figure 1. Normalized Power Dissipation vs
Ambient Temperature
Figure 2. Maximum Continuous Drain Current vs
Case Temperature
2
ZθJC, NORMALIZED
THERMAL IMPEDANCE
1
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
PDM
0.1
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
0.01
10-5
10-4
10-3
10-2
10-1
100
101
t, RECTANGULAR PULSE DURATION (s)
Figure 3. Normalized Maximum Transient Thermal Impedance
IDM , PEAK CURRENT (A)
5000
1000
TC = 25oC
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
175 - TC
I = I25
VGS = 10V
150
VGS = 5V
100
50
10-5
10-4
10-3
10-2
10-1
100
101
t, PULSE WIDTH (s)
Figure 4. Peak Current Capability
©2002 Fairchild Semiconductor Corporation
Rev. B January 2002
ISL9N302AP3
Typical Characteristic (Continued)
150
150
PULSE DURATION = 80µs
125
ID, DRAIN CURRENT (A)
ID , DRAIN CURRENT (A)
VGS = 3.5V
DUTY CYCLE = 0.5% MAX
VDD = 15V
125
100
75
TJ = 25oC
50
TJ = 175oC
VGS = 3V
100
75
VGS = 4.5V
50
TC = 25oC
VGS = 10V
25
25
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TJ = -55oC
0
0
1.5
2.0
2.5
3.0
0
3.5
0.5
VGS , GATE TO SOURCE VOLTAGE (V)
Figure 5. Transfer Characteristics
2.0
1.8
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
8
rDS(ON), DRAIN TO SOURCE
ON RESISTANCE (mΩ)
1.5
Figure 6. Saturation Characteristics
10
ID = 75A
6
ID = 10A
4
2
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
1.6
1.4
1.2
1.0
0.8
VGS = 10V, ID = 75A
0.6
0
2
4
6
8
-80
10
-40
0
40
80
120
160
200
TJ, JUNCTION TEMPERATURE (oC)
VGS, GATE TO SOURCE VOLTAGE (V)
Figure 7. Drain to Source On Resistance vs Gate
Voltage and Drain Current
Figure 8. Normalized Drain to Source On
Resistance vs Junction Temperature
1.2
1.4
VGS = VDS, ID = 250µA
ID = 250µA
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
1.2
NORMALIZED GATE
THRESHOLD VOLTAGE
1.0
VDS , DRAIN TO SOURCE VOLTAGE (V)
1.0
0.8
0.6
0.4
1.1
1.0
0.9
0.2
-80
-40
0
40
80
120
TJ, JUNCTION TEMPERATURE
160
200
(oC)
Figure 9. Normalized Gate Threshold Voltage vs
Junction Temperature
©2002 Fairchild Semiconductor Corporation
-80
-40
0
40
80
120
TJ , JUNCTION TEMPERATURE
160
200
(oC)
Figure 10. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
Rev. B January 2002
ISL9N302AP3
Typical Characteristic (Continued)
20000
10
VGS , GATE TO SOURCE VOLTAGE (V)
VDD = 15V
10000
C, CAPACITANCE (pF)
CISS = CGS + CGD
COSS ≅ CDS + CGD
CRSS = CGD
1000
VGS = 0V, f = 1MHz
500
0.1
1
6
4
WAVEFORMS IN
DESCENDING ORDER:
ID = 75A
ID = 28A
2
0
0
30
10
8
50
100
VDS , DRAIN TO SOURCE VOLTAGE (V)
150
200
250
Qg, GATE CHARGE (nC)
Figure 11. Capacitance vs Drain to Source
Voltage
Figure 12. Gate Charge Waveforms for Constant
Gate Currents
1000
1400
VGS = 10V, VDD = 15V, ID = 28A
VGS = 4.5V, VDD = 15V, ID = 28A
1200
600
tr
SWITCHING TIME (ns)
SWITCHING TIME (ns)
800
tf
400
td(OFF)
1000
800
td(OFF)
600
tf
400
tr
200
200
td(ON)
td(ON)
0
0
0
10
20
30
40
0
50
RGS, GATE TO SOURCE RESISTANCE (Ω)
10
20
30
40
50
RGS, GATE TO SOURCE RESISTANCE (Ω)
Figure 13. Switching Time vs Gate Resistance
Figure 14. Switching Time vs Gate Resistance
Test Circuits and Waveforms
BVDSS
VDS
tP
VDS
L
IAS
VDD
VARY tP TO OBTAIN
REQUIRED PEAK IAS
+
RG
VDD
-
VGS
DUT
tP
0V
IAS
0
0.01Ω
tAV
Figure 15. Unclamped Energy Test Circuit
©2002 Fairchild Semiconductor Corporation
Figure 16. Unclamped Energy Waveforms
Rev. B January 2002
VDS
VDD
Qg(TOT)
RL
VDS
VGS = 10V
VGS
Qg(5)
+
VDD
VGS = 5V
VGS
-
VGS = 1V
DUT
0
Ig(REF)
Qg(TH)
Qgs
Qgd
Ig(REF)
0
Figure 17. Gate Charge Test Circuit
Figure 18. Gate Charge Waveforms
VDS
tON
tOFF
td(ON)
td(OFF)
tr
RL
VDS
tf
90%
90%
+
VGS
VDD
-
10%
0
10%
DUT
90%
RGS
VGS
50%
50%
PULSE WIDTH
VGS
0
Figure 19. Switching Time Test Circuit
©2002 Fairchild Semiconductor Corporation
10%
Figure 20. Switching Time Waveforms
Rev. B January 2002
ISL9N302AP3
Test Circuits and Waveforms (Continued)
SUBCKT ISL9N302AP3 2 1 3 ;
rev Nov 2001
CA 12 8 9e-9
Cb 15 14 5.5e-9
Cin 6 8 1e-8
LDRAIN
Dbody 7 5 DbodyMOD
Dbreak 5 11 DbreakMOD
Dplcap 10 5 DplcapMOD
DPLCAP
10
5
51
-
GATE
1
11
+
50
17
EBREAK 18
-
EVTHRES
16
21
+ 19 8
+
LGATE
ESLC
RDRAIN
6
8
ESG
DBREAK
+
RSLC2
It 8 17 1
EVTEMP
RGATE +
18 22
9
20
6
DBODY
MWEAK
MMED
MSTRO
RLGATE
LSOURCE
CIN
RLgate 1 9 56.1
RLdrain 2 5 15
RLsource 3 7 19.8
8
SOURCE
3
7
RSOURCE
RLSOURCE
S1A
12
13
Mmed 16 6 8 8 MmedMOD
Mstro 16 6 8 8 MstroMOD
Mweak 16 21 8 8 MweakMOD
Rbreak 17 18 RbreakMOD 1
Rdrain 50 16 RdrainMOD 4e-4
Rgate 9 20 5.93e-1
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
Rsource 8 7 RsourceMOD 1.3e-3
Rvthres 22 8 RvthresMOD 1
Rvtemp 18 19 RvtempMOD 1
S1a 6 12 13 8 S1AMOD
S1b 13 12 13 8 S1BMOD
S2a 6 15 14 13 S2AMOD
S2b 13 15 14 13 S2BMOD
RLDRAIN
RSLC1
51
Ebreak 11 7 17 18 30.4
Eds 14 8 5 8 1
Egs 13 8 6 8 1
Esg 6 10 6 8 1
Evthres 6 21 19 8 1
Evtemp 20 6 18 22 1
Lgate 1 9 5.618e-9
Ldrain 2 5 1e-9
Lsource 3 7 1.98e-9
DRAIN
2
5
S2A
S1B
CA
15
14
13
8
RBREAK
17
18
RVTEMP
S2B
13
CB
6
8
VBAT
5
8
EDS
-
IT
14
+
+
EGS
19
-
+
8
22
RVTHRES
Vbat 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),3))}
.MODEL DbodyMOD D (IS=2e-10 N=1.05 RS=1.8e-3 TRS1=9e-4 TRS2=1e-6 + CJO=4.9e-9 M=4.9e-1 TT=1e-13 XTI=0)
.MODEL DbreakMOD D (RS=2.5e-1 TRS1=1e-3 TRS2=-8.9e-6)
.MODEL DplcapMOD D (CJO=3.5e-9 IS=1e-30 N=10 M=4.7e-1)
.MODEL MstroMOD NMOS (VTO=2.1 KP=550 IS=1e-25 N=10 TOX=1 L=1u W=1u)
.MODEL MmedMOD NMOS (VTO=1.6 KP=30 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=5.93e-1)
.MODEL MweakMOD NMOS (VTO=1.22 KP=1e-1 IS=1e-40 N=10 TOX=1 L=1u W=1u RG=5.93 RS=1e-1)
.MODEL RbreakMOD RES (TC1=1e-3 TC2=-7e-7)
.MODEL RdrainMOD RES (TC1=1.2e-2 TC2=2.5e-5)
.MODEL RSLCMOD RES (TC1=3.5e-9 TC2=5e-6)
.MODEL RsourceMOD RES (TC1=1e-3 TC2=1e-6)
.MODEL RvthresMOD RES (TC1=-2.9e-3 TC2=-9e-6)
.MODEL RvtempMOD RES (TC1=-1.8e-3 TC2=1e-6)
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3.5 VOFF=-1.5)
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.5 VOFF=-3.5)
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.4 VOFF=0.1)
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.1 VOFF=-0.4)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank
Wheatley.
©2002 Fairchild Semiconductor Corporation
Rev. B January 2002
ISL9N302AP3
PSPICE Electrical Model
REV Nov 2001
template ISL9N302AP3 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
dp..model dbodymod = (isl=2e-10,nl=1.05,rs=1.8e-3,trs1=9e-4,trs2=1e-6,cjo=4.9e-9,m=4.9e-1,tt=1e-13,xti=0)
dp..model dbreakmod = (rs=2.5e-1,trs1=1e-3,trs2=-8.9e-6)
dp..model dplcapmod = (cjo=3.5e-9,isl=10e-30,nl=10,m=4.7e-1)
m..model mstrongmod = (type=_n,vto=2.1,kp=550,is=1e-25, tox=1)
m..model mmedmod = (type=_n,vto=1.6,kp=30,is=1e-30, tox=1)
m..model mweakmod = (type=_n,vto=1.22,kp=1e-1,is=1e-40, tox=1,rs=1e-1)
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-3.5,voff=-1.5)
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-1.5,voff=-3.5)
LDRAIN
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-0.4,voff=0.1)
DPLCAP 5
DRAIN
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.1,voff=-0.4)
2
c.ca n12 n8 = 5e-9
10
c.cb n15 n14 = 5.5e-9
RLDRAIN
RSLC1
c.cin n6 n8 = 1e-8
51
RSLC2
dp.dbody n7 n5 = model=dbodymod
dp.dbreak n5 n11 = model=dbreakmod
dp.dplcap n10 n5 = model=dplcapmod
spe.ebreak n11 n7 n17 n18 = 30.4
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evthres n6 n21 n19 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
ISCL
RDRAIN
6
8
ESG
LGATE
EVTEMP
RGATE +
18 22
9
20
6
MWEAK
EBREAK
+
MMED
RLGATE
res.rlgate n1 n9 = 56.1
res.rldrain n2 n5 = 15
res.rlsource n3 n7 = 19.8
DBODY
MSTRO
i.it n8 n17 = 1
CIN
l.lgate n1 n9 = 5.618e-9
l.ldrain n2 n5 = 1e-9
l.lsource n3 n7 = 1.98e-9
11
EVTHRES
16
21
+ 19 8
+
GATE
1
DBREAK
50
-
17
18
-
8
LSOURCE
SOURCE
3
7
RSOURCE
RLSOURCE
S1A
12
13
S2A
S1B
CA
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
15
14
13
8
RBREAK
17
18
RVTEMP
S2B
13
CB
6
8
EGS
-
19
IT
14
+
+
VBAT
5
8
EDS
-
+
8
22
res.rbreak n17 n18 = 1, tc1=1e-3,tc2=-7e-7
res.rdrain n50 n16 = 4e-4, tc1=1.2e-2,tc2=2.5e-5
res.rgate n9 n20 = 5.93e-1
res.rslc1 n5 n51 = 1e-6, tc1=3.5e-9,tc2=5e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 1.3e-3, tc1=1e-3,tc2=1e-6
res.rvthres n22 n8 = 1, tc1=-2.9e-3,tc2=-9e-6
res.rvtemp n18 n19 = 1, tc1=-1.8e-3,tc2=1e-6
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
RVTHRES
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 3))
}
©2002 Fairchild Semiconductor Corporation
Rev. B January 2002
ISL9N302AP3
SABER Electrical Model
th
JUNCTION
REV May 2001
TISL9N302AP3
CTHERM1 th 6 4.5e-3
CTHERM2 6 5 2e-2
CTHERM3 5 4 1.5e-2
CTHERM4 4 3 2.5e-2
CTHERM5 3 2 7e-2
CTHERM6 2 tl 2.5e-1
RTHERM1 th 6 2e-3
RTHERM2 6 5 8.5e-3
RTHERM3 5 4 6e-2
RTHERM4 4 3 8e-2
RTHERM5 3 2 9e-2
RTHERM6 2 tl 1e-1
SABER Thermal Model
RTHERM1
CTHERM1
6
RTHERM2
CTHERM2
5
RTHERM3
CTHERM3
SABER thermal model TISL9N302AP3
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 4.5e-3
ctherm.ctherm2 6 5 = 2e-2
ctherm.ctherm3 5 4 = 1.5e-2
ctherm.ctherm4 4 3 = 2.5e-2
ctherm.ctherm5 3 2 = 7e-2
ctherm.ctherm6 2 tl = 2.5e-1
4
RTHERM4
CTHERM4
3
rtherm.rtherm1 th 6 =2e-3
rtherm.rtherm2 6 5 = 8.5e-3
rtherm.rtherm3 5 4 = 6e-2
rtherm.rtherm4 4 3 = 8e-2
rtherm.rtherm5 3 2 = 9e-2
rtherm.rtherm6 2 tl = 1e-1
}
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
©2002 Fairchild Semiconductor Corporation
CASE
Rev. B January 2002
ISL9N302AP3
SPICE Thermal Model
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
ACEx™
Bottomless™
CoolFET™
CROSSVOLT™
DenseTrench™
DOME™
EcoSPARK™
E2CMOSTM
EnSignaTM
FACT™
FACT Quiet Series™
FAST 
FASTr™
FRFET™
GlobalOptoisolator™
GTO™
HiSeC™
ISOPLANAR™
LittleFET™
MicroFET™
MicroPak™
MICROWIRE™
OPTOLOGIC™
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerTrench 
QFET™
QS™
QT Optoelectronics™
Quiet Series™
SILENT SWITCHER 
SMART START™
STAR*POWER™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic™
TruTranslation™
UHC™
UltraFET 
VCX™
STAR*POWER is used under license
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT
RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or
2. A critical component is any component of a life
systems which, (a) are intended for surgical implant into
support device or system whose failure to perform can
the body, or (b) support or sustain life, or (c) whose
be reasonably expected to cause the failure of the life
failure to perform when properly used in accordance
support device or system, or to affect its safety or
with instructions for use provided in the labeling, can be
effectiveness.
reasonably expected to result in significant injury to the
user.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative or
In Design
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
Preliminary
First Production
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
No Identification Needed
Full Production
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Rev. H4