FAIRCHILD FDP8880_08

May 2008
FDP8880 / FDB8880
N-Channel PowerTrench® MOSFET
tmM
30V, 54A, 11.6mΩ
Features
rDS(ON) = 14.5mΩ, VGS = 4.5V, ID = 40A
rDS(ON) = 11.6mΩ, VGS = 10V, ID = 40A
High performance trench technology for extremely low
General Description
This N-Channel MOSFET has been designed specifically to
improve the overall efficiency of DC/DC converters using
either synchronous or conventional switching PWM
controllers. It has been optimized for low gate charge, low
r DS(ON) and fast switching speed.
r DS(ON)
Low gate charge
High power and current handling capability
RoHS Complicant
DRAIN
(FLANGE)
GATE
Application
„ DC / DC Converters
(FLANGE)
DRAIN
D
SOURCE
DRAIN
GATE
SOURCE
TO-263AB
TO-220AB
FDB SERIES
FDP SERIES
©2008 Fairchild Semiconductor Corporation
FDP8880 / FDB8880 Rev. A1
1
G
S
www.fairchildsemicom
FDP8880 / FDB8880
0
Symbol
VDSS
Drain to Source Voltage
Parameter
Ratings
30
Units
V
VGS
Gate to Source Voltage
±20
V
54
A
Drain Current
Continuous (TC = 25oC, VGS = 10V)
o
ID
Continuous (TC = 25 C, VGS = 4.5V)
48
A
Continuous (Tamb = 25oC, VGS = 10V, with RθJA = 43oC/W)
11
A
Pulsed
E AS
Figure 4
A
31
mJ
Single Pulse Avalanche Energy (Note 1)
Power dissipation
PD
Derate above 25oC
TJ, TSTG
Operating and Storage Temperature
55
W
0.37
W/oC
o
-55 to 175
C
Thermal Characteristics
RθJC
Thermal Resistance Junction to Case TO-220,TO-263
RθJA
Thermal Resistance Junction to Ambient TO-220,TO-262 ( Note 2)
2
RθJA
oC/W
2.73
Thermal Resistance Junction to Ambient TO-263, 1in copper pad area
62
o
C/W
43
o
C/W
Package Marking and Ordering Information
Device Marking
FDP8880
Device
FDP8880
Package
TO-220AB
Reel Size
Tube
Tape Width
N/A
Quantity
50 units
FDB8880
FDB8880
TO-263AB
330mm
24mm
800 units
F
F
Electrical Characteristics TC = 25°C unless otherwise noted
Symbol
Parameter
Test Conditions
Min
Typ
Max
Units
30
-
-
-
V
-
1
-
-
250
µA
-
-
±100
nA
-
2.5
V
Off Characteristics
BVDSS
Drain to Source Breakdown Voltage
IDSS
Zero Gate Voltage Drain Current
IGSS
Gate to Source Leakage Current
ID = 250µA, VGS = 0V
V DS = 24V
VGS = 0V
TC = 150oC
VGS = ±20V
On Characteristics
VGS(TH)
rDS(ON)
Gate to Source Threshold Voltage
Drain to Source On Resistance
©2008 Fairchild Semiconductor Corporation
FDP8880 / FDB8880 Rev. A1
V GS = VDS, ID = 250µA
1.2
ID = 40A, VGS = 10V
-
0.0095 0.0116
ID = 40A, VGS = 4.5V
-
0.012
0.0145
ID = 40A, VGS = 10V,
TJ = 175oC
-
0.015
0.019
2
Ω
www.fairchildsemicom
FDP8880 / FDB8880
MOSFET Maximum Ratings TC = 25°C unless otherwise noted
CISS
Input Capacitance
COSS
Output Capacitance
CRSS
Reverse Transfer Capacitance
RG
Gate Resistance
Qg(TOT)
Total Gate Charge at 10V
-
1240
-
-
255
-
pF
-
147
-
pF
VGS = 0.5V, f = 1MHz
-
2.7
-
Ω
VGS = 0V to 10V
-
22
29
nC
V DS = 15V, VGS = 0V,
f = 1MHz
Qg(5)
Total Gate Charge at 5V
VGS = 0V to 5V
Qg(TH)
Threshold Gate Charge
VGS = 0V to 1V
Qgs
Gate to Source Gate Charge
Qgs2
Gate Charge Threshold to Plateau
Qgd
Gate to Drain “Miller” Charge
VDD = 15V
ID = 40A
Ig = 1.0mA
pF
-
12
16
nC
-
1.6
2.1
nC
-
3.2
-
nC
-
2.0
-
nC
-
4.8
-
nC
Switching Characteristics (VGS = 10V)
tON
Turn-On Time
-
-
171
ns
td(ON)
Turn-On Delay Time
-
8
-
ns
tr
Rise Time
td(OFF)
Turn-Off Delay Time
tf
tOFF
-
107
-
ns
-
47
-
ns
Fall Time
-
51
-
ns
Turn-Off Time
-
-
147
ns
V
V DD = 15V, ID = 40A
V GS = 10V, RGS = 13.6Ω
Drain-Source Diode Characteristics
ISD = 40A
-
-
1.25
ISD = 3.5A
-
-
1.0
V
Reverse Recovery Time
ISD = 40A, dISD/dt = 100A/µs
-
-
27
ns
Reverse Recovered Charge
ISD = 40A, dISD/dt = 100A/µs
-
-
18
nC
V SD
Source to Drain Diode Voltage
trr
QRR
Notes:
1: Starting T J = 25°C, L = 34uH, IAS = 43A,Vdd = 27V, Vgs = 10V.
2: Pulse width = 100s.
3
©2008 Fairchild Semiconductor Corporation
FDP8880 / FDB8880 Rev. A1
3
www.fairchildsemicom
FDP8880 / FDB8880
Dynamic Characteristics
FDP8880 / FDB8880
Typical Characteristics TC = 25°C unless otherwise noted
60
1.0
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
1.2
0.8
0.6
0.4
40
20
0.2
0
0
0
25
50
75
100
150
125
175
25
TC , CASE TEMPERATURE (o C)
Figure 1. Normalized Power Dissipation vs Case
Temperature
50
75
100
125
150
TC, CASE TEMPERATURE (oC)
175
Figure 2. Maximum Continuous Drain Current vs
Case Temperature
2
ZθJC, NORMALIZED
THERMAL IMPEDANCE
1
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
PDM
0.1
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
0.01
10-5
10-4
10-3
10-2
10-1
100
101
t, RECTANGULAR PULSE DURATION (s)
Figure 3. Normalized Maximum Transient Thermal Impedance
600
TC = 25o C
IDM, PEAK CURRENT (A)
FOR TEMPERATURES
ABOVE 25o C DERATE PEAK
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
CURRENT AS FOLLOWS:
175 - TC
I = I25
150
VGS = 10V
VGS = 4.5V
100
50
10-5
10-4
10-3
10-2
10-1
100
101
t, PULSE WIDTH (s)
Figure 4. Peak Current Capability
©2008 Fairchild Semiconductor Corporation
FDP8880 / FDB8880 Rev. A1
4
www.fairchildsemicom
FDP8880 / FDB8880
Typical Characteristics TC = 25°C unless otherwise noted
400
500
IAS, AVALANCHE CURRENT (A)
100
ID, DRAIN CURRENT (A)
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
10µs
100µs
10
1ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
10ms
1
SINGLE PULSE
TJ = MAX RATED
TC = 25oC
100
STARTING T J = 25o C
10
STARTING TJ = 150oC
DC
0.1
1
10
VDS, DRAIN TO SOURCE VOLTAGE (V)
1
0.001
40
10
100
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
Figure 5. Forward Bias Safe Operating Area
Figure 6. Unclamped Inductive Switching
Capability
80
160
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
VGS = 4.5V
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
0.01
0.1
1
tAV, TIME IN AVALANCHE (ms)
60
40
TJ = 175oC
TJ = 25oC
20
TJ = -55 oC
VGS = 3.5V
120
VGS = 10V
VGS = 3V
80
TC = 25 oC
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
40
VGS = 2.5V
0
0
1.5
2.0
2.5
3.0
3.5
VGS, GATE TO SOURCE VOLTAGE (V)
0
4.0
Figure 7. Transfer Characteristics
1.7
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
rDS(ON), DRAIN TO SOURCE
ON RESISTANCE (mΩ)
0.5
0.75
1.0
Figure 8. Saturation Characteristics
20
ID = 54A
0.25
VDS , DRAIN TO SOURCE VOLTAGE (V)
16
12
ID = 5A
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
1.53
1.36
1.19
1.02
0.85
VGS = 10V, ID = 54A
8
2
4
6
8
0.7
-80
10
VGS, GATE TO SOURCE VOLTAGE (V)
Figure 9. Drain to Source On Resistance vs Gate
Voltage and Drain Current
©2008 Fairchild Semiconductor Corporation
FDP8880 / FDB8880 Rev. A1
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (o C)
200
Figure 10. Normalized Drain to Source On
Resistance vs Junction Temperature
5
www.fairchildsemicom
FDP8880 / FDB8880
Typical Characteristics TC = 25°C unless otherwise noted
1.1
1.5
ID = 250µA
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
NORMALIZED GATE
THRESHOLD VOLTAGE
VGS = VDS, ID = 250µA
1.2
0.9
0.6
0.3
-80
-40
0
40
80
120
160
1.0
0.9
-80
200
-40
Figure 11. Normalized Gate Threshold Voltage vs
Junction Temperature
80
120
160
200
VGS , GATE TO SOURCE VOLTAGE (V)
10
CISS = CGS + C GD
1000
C, CAPACITANCE (pF)
40
Figure 12. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
2000
COSS ≅ CDS + CGD
C RSS = CGD
VDD = 15V
8
6
4
WAVEFORMS IN
DESCENDING ORDER:
ID = 54A
ID = 5A
2
VGS = 0V, f = 1MHz
100
0.1
0
TJ , JUNCTION TEMPERATURE (oC)
TJ, JUNCTION TEMPERATURE (oC)
0
1
10
VDS , DRAIN TO SOURCE VOLTAGE (V)
0
30
Figure 13. Capacitance vs Drain to Source
Voltage
©2008 Fairchild Semiconductor Corporation
FDP8880 / FDB8880 Rev. A1
5
10
15
Qg , GATE CHARGE (nC)
20
25
Figure 14. Gate Charge Waveforms for Constant
Gate Current
6
www.fairchildsemicom
VDS
BVDSS
tP
L
VDS
VARY tP TO OBTAIN
REQUIRED PEAK IAS
IAS
+
RG
VDD
VDD
-
VGS
DUT
tP
IAS
0V
0
0.01Ω
tAV
Figure 15. Unclamped Energy Test Circuit
Figure 16. Unclamped Energy Waveforms
VDS
VDD
Qg(TOT)
VDS
L
VGS
VGS = 10V
VGS
Qg(5)
+
Qgs2
VDD
VGS = 5V
DUT
VGS = 1V
Ig(REF)
0
Qg(TH)
Qgs
Qgd
Ig(REF)
0
Figure 17. Gate Charge Test Circuit
Figure 18. Gate Charge Waveforms
VDS
tON
tOFF
td(ON)
td(OFF)
RL
tr
VDS
tf
90%
90%
+
VGS
VDD
-
10%
0
10%
DUT
90%
RGS
VGS
50%
50%
PULSE WIDTH
VGS
0
Figure 19. Switching Time Test Circuit
©2008 Fairchild Semiconductor Corporation
FDP8880 / FDB8880 Rev. A1
10%
Figure 20. Switching Time Waveforms
7
www.fairchildsemicom
FDP8880 / FDB8880
Test Circuits and Waveforms
.SUBCKT FDP8880 2 1 3 ; rev October 2004
Ca 12 8 9.5e-10
Cb 15 14 9.5e-10
Cin 6 8 1.15e-9
LDRAIN
DPLCAP
10
Dbody 7 5 DbodyMOD
Dbreak 5 11 DbreakMOD
Dplcap 10 5 DplcapMOD
RLDRAIN
RSLC1
51
5
51
EVTHRES
+ 19 8
+
LGATE
GATE
1
ESLC
11
+
17
EBREAK 18
-
50
RDRAIN
6
8
ESG
DBREAK
+
RSLC2
Ebreak 11 7 17 18 32.88
Eds 14 8 5 8 1
Egs 13 8 6 8 1
Esg 6 10 6 8 1
Evthres 6 21 19 8 1
Evtemp 20 6 18 22 1
It 8 17 1
DRAIN
2
5
EVTEMP
RGATE + 18 22
9
20
21
16
DBODY
MWEAK
6
MMED
MSTRO
RLGATE
Lgate 1 9 5.3e-9
Ldrain 2 5 1.0e-9
Lsource 3 7 1.7e-9
LSOURCE
CIN
8
7
SOURCE
3
RSOURCE
RLSOURCE
RLgate 1 9 53
RLdrain 2 5 10
RLsource 3 7 17
Mmed 16 6 8 8 MmedMOD
Mstro 16 6 8 8 MstroMOD
Mweak 16 21 8 8 MweakMOD
S1A
12
S2A
13
8
14
13
S1B
CA
RBREAK
15
17
18
RVTEMP
S2B
13
CB
6
8
EGS
Rbreak 17 18 RbreakMOD 1
Rdrain 50 16 RdrainMOD 1.0e-3
Rgate 9 20 2.2
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
Rsource 8 7 RsourceMOD 6.8e-3
Rvthres 22 8 RvthresMOD 1
Rvtemp 18 19 RvtempMOD 1
S1a 6 12 13 8 S1AMOD
S1b 13 12 13 8 S1BMOD
S2a 6 15 14 13 S2AMOD
S2b 13 15 14 13 S2BMOD
5
8
EDS
-
19
VBAT
+
IT
14
+
+
-
8
22
RVTHRES
Vbat 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*170),5))}
.MODEL DbodyMOD D (IS=3E-12 IKF=10 N=1.01 RS=5e-3 TRS1=8e-4 TRS2=2e-7
+ CJO=4.8e-10 M=0.55 TT=1e-11 XTI=2)
.MODEL DbreakMOD D (RS=0.2 TRS1=1e-3 TRS2=-8.8e-6)
.MODEL DplcapMOD D (CJO=5.5e-10 IS=1e-30 N=10 M=0.45)
.MODEL MstroMOD NMOS (VTO=2.10 KP=170 IS=1e-30 N=10 TOX=1 L=1u W=1u)
.MODEL MmedMOD NMOS (VTO=1.75 KP=10 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.2)
.MODEL MweakMOD NMOS (VTO=1.39 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=22 RS=0.1)
.MODEL RbreakMOD RES (TC1=8.0e-4 TC2=-8e-7)
.MODEL RdrainMOD RES (TC1=-12e-3 TC2=.35e-4)
.MODEL RSLCMOD RES (TC1=9e-4 TC2=1e-6)
.MODEL RsourceMOD RES (TC1=5e-3 TC2=1e-6)
.MODEL RvtempMOD RES (TC1=-2.78e-3 TC2=1.5e-6)
.MODEL RvthresMOD RES (TC1=-1e-3 TC2=-8.2e-6)
MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-3.5)
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3.5 VOFF=-4)
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.3 VOFF=-0.8)
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.8 VOFF=-1.3)
.ENDS
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank
Wheatley.
©2008 Fairchild Semiconductor Corporation
FDP8880 / FDB8880 Rev. A1
8
www.fairchildsemicom
FDP8880 / FDB8880
PSPICE Electrical Model
rev October 2004
template FDP8880 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
dp..model dbodymod = (isl=3e-12,ikf=10,nl=1.01,rs=5e-3,trs1=8e-4,trs2=2e-7,cjo=4.8e-10,m=0.55,tt=1e-11,xti=2)
dp..model dbreakmod = (rs=0.2,trs1=1e-3,trs2=-8.8e-6)
dp..model dplcapmod = (cjo=5.5e-10,isl=10e-30,nl=10,m=0.45)
m..model mstrongmod = (type=_n,vto=2.10,kp=170,is=1e-30, tox=1)
m..model mmedmod = (type=_n,vto=1.75,kp=10,is=1e-30, tox=1)
m..model mweakmod = (type=_n,vto=1.39,kp=0.05,is=1e-30, tox=1,rs=0.1)
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-3.5)
LDRAIN
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3.5,voff=-4)
DPLCAP 5
DRAIN
2
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1.3,voff=-0.8)
10
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-0.8,voff=-1.3)
RLDRAIN
RSLC1
c.ca n12 n8 = 9.5e-10
51
c.cb n15 n14 = 9.5e-10
RSLC2
c.cin n6 n8 = 1.15e-9
ISCL
dp.dbody n7 n5 = model=dbodymod
dp.dbreak n5 n11 = model=dbreakmod
dp.dplcap n10 n5 = model=dplcapmod
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
spe.ebreak n11 n7 n17 n18 = 32.88
spe.eds n14 n8 n5 n8 = 1
GATE
spe.egs n13 n8 n6 n8 = 1
1
spe.esg n6 n10 n6 n8 = 1
spe.evthres n6 n21 n19 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
LGATE
EVTEMP
RGATE + 18 22
9
20
21
11
DBODY
16
MWEAK
6
EBREAK
+
17
18
-
MMED
MSTRO
RLGATE
CIN
8
LSOURCE
SOURCE
3
7
RSOURCE
i.it n8 n17 = 1
RLSOURCE
S1A
l.lgate n1 n9 = 5.3e-9
l.ldrain n2 n5 = 1.0e-9
l.lsource n3 n7 = 1.7e-9
res.rlgate n1 n9 = 53
res.rldrain n2 n5 = 10
res.rlsource n3 n7 = 17
DBREAK
50
-
12
S2A
13
8
15
14
13
S1B
18
RVTEMP
CB
6
8
EGS
-
19
IT
14
+
+
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
17
S2B
13
CA
RBREAK
VBAT
5
8
EDS
-
+
8
22
RVTHRES
res.rbreak n17 n18 = 1, tc1=8.0e-4,tc2=-8e-7
res.rdrain n50 n16 = 1.0e-3, tc1=-12e-3,tc2=.35e-4
res.rgate n9 n20 = 2.2
res.rslc1 n5 n51 = 1e-6, tc1=9e-4,tc2=1e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 6.8e-3, tc1=5e-3,tc2=1e-6
res.rvthres n22 n8 = 1, tc1=-1e-3,tc2=-8.2e-6
res.rvtemp n18 n19 = 1, tc1=-2.78e-3,tc2=1.5e-6
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/170))** 5))}
}
©2008 Fairchild Semiconductor Corporation
FDP8880 / FDB8880 Rev. A1
9
www.fairchildsemicom
FDP8880 / FDB8880
SABER Electrical Model
th
JUNCTION
REV 23 December 2003
FDP8880T
CTHERM1 TH 6 8e-4
CTHERM2 6 5 1e-3
CTHERM3 5 4 2.5e-3
CTHERM4 4 3 2.6e-3
CTHERM5 3 2 8e-3
CTHERM6 2 TL 1.5e-2
RTHERM1
CTHERM1
6
RTHERM1 TH 6 1.44e-1
RTHERM2 6 5 1.9e-1
RTHERM3 5 4 3.0e-1
RTHERM4 4 3 4.0e-1
RTHERM5 3 2 5.7e-1
RTHERM6 2 TL 5.8e-1
RTHERM2
CTHERM2
5
SABER Thermal Model
SABER thermal model FDP8880T
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 =8e-4
ctherm.ctherm2 6 5 =1e-3
ctherm.ctherm3 5 4 =2.5e-3
ctherm.ctherm4 4 3 =2.6e-3
ctherm.ctherm5 3 2 =8e-3
ctherm.ctherm6 2 tl =1.5e-2
RTHERM3
CTHERM3
4
RTHERM4
rtherm.rtherm1 th 6 =1.44e-1
rtherm.rtherm2 6 5 =1.9e-1
rtherm.rtherm3 5 4 =3.0e-1
rtherm.rtherm4 4 3 =4.0e-1
rtherm.rtherm5 3 2 =5.7e-1
rtherm.rtherm6 2 tl =5.8e-1
}
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
©2008 Fairchild Semiconductor Corporation
FDP8880 / FDB8880 Rev. A1
10
CASE
www.fairchildsemicom
FDP8880 / FDB8880
PSPICE Thermal Model
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global
subsidianries, and is not intended to be an exhaustive list of all such trademarks.
ACEx®
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
EcoSPARK®
EfficentMax™
EZSWITCH™ *
FPS™
F-PFS™
FRFET®
Global Power ResourceSM
Green FPS™
Green FPS™ e-Series™
GTO™
IntelliMAX™
ISOPLANAR™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MillerDrive™
MotionMax™
Motion-SPM™
OPTOLOGIC®
OPTOPLANAR®
™
®
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®
FastvCore™
FlashWriter® *
®
PDP-SPM™
Power-SPM™
PowerTrench®
Programmable Active Droop™
QFET®
QS™
Quiet Series™
RapidConfigure™
Saving our world 1mW at a time™
SmartMax™
SMART START™
SPM®
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SuperMOS™
®
The Power Franchise®
tm
TinyBoost™
TinyBuck™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
µSerDes™
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
tm
* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS
HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE
APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER
ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S
WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1.
Life support devices or systems are devices or systems which,
(a) are intended for surgical implant into the body or (b)
support or sustain life, and (c) whose failure to perform when
properly used in accordance with instructions for use provided
in the labeling, can be reasonably expected to result in a
significant injury of the user.
2.
A critical component in any component of a life support,
device, or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or
system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative or In Design
This datasheet contains the design specifications for product development.
Specifications may change in any manner without notice.
Preliminary
First Production
This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make
changes at any time without notice to improve design.
No Identification Needed
Full Production
This datasheet contains final specifications. Fairchild Semiconductor reserves
the right to make changes at any time without notice to improve the design.
Obsolete
Not In Production
This datasheet contains specifications on a product that is discontinued by
Fairchild Semiconductor. The datasheet is for reference information only.
Rev. I34
@2008 Fairchild Semiconductor Corporation
FDP8880 / FDB8880 Rev.A1
WWW. fairchildsemicom