FAIRCHILD ISL9N322AD3ST

PWM Optimized
ISL9N322AD3ST
N-Channel Logic Level UltraFET® Trench MOSFET
30V, 20A, 0.022Ω
General Description
Features
This device employs a new advanced trench MOSFET
technology and features low gate charge while maintaining
low on-resistance.
• Fast switching
Optimized for switching applications, this device improves
the overall efficiency of DC/DC converters and allows
operation to higher switching frequencies.
• rDS(ON) = 0.028Ω (Typ), VGS = 4.5V
Applications
• Qgd (Typ) =3nC
• DC/DC converters
• CISS (Typ) =970pF
• rDS(ON) = 0.018Ω (Typ), VGS = 10V
• Qg (Typ) = 9nC, VGS = 5V
D
DRAIN (FLANGE)
G
GATE
SOURCE
S
TO-252
MOSFET Maximum Ratings TA=25°C unless otherwise noted
Symbol
VDSS
VGS
ID
PD
TJ, TSTG
Parameter
Drain to Source Voltage
Gate to Source Voltage
Drain Current
Continuous (TC = 25oC, VGS = 10V)
Continuous (TC = 100oC, VGS = 4.5V)
Continuous (TC = 25oC, VGS = 10V, RθJA=52oC)
Pulsed
Power dissipation
Derate above 25oC
Operating and Storage Temperature
Ratings
30
±20
Units
V
V
20
A
20
8
Figure 4
50
0.33
-55 to 175
A
A
A
W
W/oC
oC
Thermal Characteristics
3
oC/W
Thermal Resistance Junction to Ambient TO-252
100
oC/W
Thermal Resistance Junction to Ambient TO-252, 1in2 copper pad area
52
oC/W
RθJC
Thermal Resistance Junction to Case TO-252
RθJA
RθJA
Package Marking and Ordering Information
Device Marking
N322AD
©2002 Fairchild Semiconductor Corporation
Device
ISL9N322AD3ST
Package
TO-252AA
Reel Size
330mm
Tape Width
16mm
Quantity
2500 units
Rev.B, January 2002
ISL9N322AD3ST
January 2002
Symbol
Parameter
Test Conditions
Min
Typ
Max
Units
30
-
-
1
250
±100
V
Off Characteristics
BVDSS
Drain to Source Breakdown Voltage
IDSS
Zero Gate Voltage Drain Current
IGSS
Gate to Source Leakage Current
ID = 250µA, VGS = 0V
VDS = 25V
VGS = 0V
TC = 150o
VGS = ±20V
µA
nA
On Characteristics
VGS(TH)
Gate to Source Threshold Voltage
rDS(ON)
Drain to Source On Resistance
VGS = VDS, ID = 250µA
ID = 20A, VGS = 10V
ID = 18A, VGS = 4.5V
1
-
0.018
0.028
3
0.022
0.033
V
-
970
205
-
-
80
-
pF
-
18
9
1.0
3.5
3.0
27
14
1.5
-
nC
nC
nC
nC
nC
VDD = 15V, ID = 8A
VGS = 4.5V, RGS = 16Ω
-
11
47
24
28
-
87
78
ns
ns
ns
ns
ns
ns
VDD = 15V, ID = 8A
VGS = 10V, RGS = 16Ω
-
7
29
45
27
-
54
108
ns
ns
ns
ns
ns
ns
180
-
-
µs
-
-
1.25
1.0
25
17
V
V
ns
nC
Ω
Dynamic Characteristics
CISS
COSS
Input Capacitance
Output Capacitance
CRSS
Qg(TOT)
Reverse Transfer Capacitance
Total Gate Charge at 10V
Total Gate Charge at 5V
Threshold Gate Charge
Gate to Source Gate Charge
Gate to Drain “Miller” Charge
Qg(5)
Qg(TH)
Qgs
Qgd
Switching Characteristics
tON
td(ON)
tr
td(OFF)
tf
tOFF
tON
td(ON)
tr
td(OFF)
tf
tOFF
VGS = 0V to 10V
VGS = 0V to 5V V = 15V
DD
VGS = 0V to 1V ID = 18A
Ig = 1.0mA
pF
pF
(VGS = 4.5V)
Turn-On Time
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-Off Time
Switching Characteristics
VDS = 15V, VGS = 0V,
f = 1MHz
(VGS = 10V)
Turn-On Time
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-Off Time
Unclamped Inductive Switching
tav
Avalanche Time
ID = 2.7A, L = 3mH
Drain-Source Diode Characteristics
VSD
Source to Drain Diode Voltage
trr
QRR
Reverse Recovery Time
Reverse Recovered Charge
©2002 Fairchild Semiconductor Corporation
ISD = 18A
ISD = 9A
ISD = 18A, dISD/dt = 100A/µs
ISD = 18A, dISD/dt = 100A/µs
Rev. B, January 2002
ISL9N322AD3ST
Electrical Characteristics TA = 25°C unless otherwise noted
ISL9N322AD3ST
Typical Characteristic
25
1.0
20
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
1.2
0.8
0.6
0.4
VGS = 10V
15
VGS = 4.5V
10
5
0.2
0
0
0
25
50
75
100
150
125
TC , CASE TEMPERATURE
25
175
50
75
(oC)
100
125
TC, CASE TEMPERATURE
Figure 1. Normalized Power Dissipation vs
Ambient Temperature
150
175
(oC)
Figure 2. Maximum Continuous Drain Current vs
Case Temperature
2
ZθJC, NORMALIZED
THERMAL IMPEDANCE
1
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
PDM
0.1
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
0.01
10-5
10-4
10-3
10-2
10-1
100
101
t, RECTANGULAR PULSE DURATION (s)
Figure 3. Normalized Maximum Transient Thermal Impedance
1000
TC = 25oC
IDM, PEAK CURRENT (A)
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
175 - TC
I = I25
150
VGS = 10V
100
VGS = 5V
10
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
10-5
10-4
10-3
10-2
10-1
100
101
t, PULSE WIDTH (s)
Figure 4. Peak Current Capability
©2002 Fairchild Semiconductor Corporation
Rev. B, January 2002
ISL9N322AD3ST
Typical Characteristic (Continued)
50
50
PULSE DURATION = 80µs
40
ID, DRAIN CURRENT (A)
40
ID , DRAIN CURRENT (A)
VGS = 10V
DUTY CYCLE = 0.5% MAX
VDD = 15V
30
20
TJ = 175oC
TJ =
10
TJ = -55oC
25oC
VGS = 4.5V
30
VGS = 3.5V
20
VGS = 3V
10
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TC = 25oC
0
0
1
2
3
4
0
5
0.5
VGS , GATE TO SOURCE VOLTAGE (V)
Figure 5. Transfer Characteristics
1.5
2.0
Figure 6. Saturation Characteristics
40
2.0
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
rDS(ON), DRAIN TO SOURCE
ON RESISTANCE (mΩ)
1.0
VDS , DRAIN TO SOURCE VOLTAGE (V)
ID = 20A
ID = 10A
30
20
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
1.5
1.0
VGS = 10V, ID =20A
0.5
10
2
4
6
8
10
-80
-40
Figure 7. Drain To Source On Resistance vs Gate
Voltage And Drain Current
40
80
120
160
200
Figure 8. Normalized Drain To Source On
Resistance vs Junction Temperatrue
1.2
1.2
ID = 250µA
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
VGS = VDS, ID = 250µA
NORMALIZED GATE
THRESHOLD VOLTAGE
0
TJ, JUNCTION TEMPERATURE (oC)
VGS, GATE TO SOURCE VOLTAGE (V)
1.0
0.8
0.6
0.4
1.1
1.0
0.9
-80
-40
0
40
80
120
TJ, JUNCTION TEMPERATURE
160
200
(oC)
Figure 9. Normalized Gate Threshold Voltage vs
Junction Temperature
©2002 Fairchild Semiconductor Corporation
-80
-40
0
40
80
120
TJ , JUNCTION TEMPERATURE
160
200
(oC)
Figure 10. Normalized Drain To Source
Breakdown Voltage vs Junction Temperature
Rev. B, January 2002
ISL9N322AD3ST
Typical Characteristic (Continued)
2000
10
VGS , GATE TO SOURCE VOLTAGE (V)
CISS = CGS + CGD
C, CAPACITANCE (pF)
1000
COSS ≅ CDS + CGD
CRSS = CGD
100
VGS = 0V, f = 1MHz
40
0.1
VDD = 15V
8
6
4
WAVEFORMS IN
DESCENDING ORDER:
ID = 20A
ID = 10A
2
0
1
10
30
0
5
VDS , DRAIN TO SOURCE VOLTAGE (V)
10
15
20
Qg, GATE CHARGE (nC)
Figure 11. Capacitance vs Drain To Source
Voltage
Figure 12. Gate Charge Waveforms For Constant
Gate Current
150
100
VGS = 10V, VDD = 15V, ID = 8A
VGS = 4.5V, VDD = 15V, ID = 8A
td(OFF)
80
60
SWITCHING TIME (ns)
SWITCHING TIME (ns)
tr
tf
40
td(OFF)
td(ON)
20
100
tf
50
tr
td(ON)
0
0
0
10
20
30
40
50
0
RGS, GATE TO SOURCE RESISTANCE (Ω)
10
20
30
40
50
RGS, GATE TO SOURCE RESISTANCE (Ω)
Figure 13. Switching Time vs Gate Resistance
Figure 14. Switching Time vs Gate Resistance
Test Circuits and Waveforms
BVDSS
VDS
tP
VDS
L
IAS
VDD
VARY tP TO OBTAIN
REQUIRED PEAK IAS
+
RG
VDD
-
VGS
DUT
tP
0V
IAS
0
0.01Ω
tAV
Figure 15. Unclamped Energy Test Circuit
©2002 Fairchild Semiconductor Corporation
Figure 16. Unclamped Energy Waveforms
Rev. B, January 2002
VDS
VDD
Qg(TOT)
RL
VDS
VGS = 10V
VGS
Qg(5)
+
VDD
VGS = 5V
VGS
-
VGS = 1V
DUT
0
Ig(REF)
Qg(TH)
Qgs
Qgd
Ig(REF)
0
Figure 17. Gate Charge Test Circuit
Figure 18. Gate Charge Waveforms
VDS
tON
tOFF
td(ON)
td(OFF)
tr
RL
VDS
tf
90%
90%
+
VGS
VDD
-
10%
0
10%
DUT
90%
RGS
VGS
50%
50%
PULSE WIDTH
VGS
0
Figure 19. Switching Time Test Circuit
©2002 Fairchild Semiconductor Corporation
10%
Figure 20. Switching Time Waveform
Rev. B, January 2002
ISL9N322AD3ST
Test Circuits and Waveforms (Continued)
ISL9N322AD3ST
Thermal Resistance vs. Mounting Pad Area
( T JM – T A )
P DM = ------------------------------Z θJA
125
RθJA = 33.32 + 23.84/(0.268+Area)
100
RθJA (oC/W)
The maximum rated junction temperature, TJM, and the
thermal resistance of the heat dissipating path determines
the maximum allowable device power dissipation, PDM, in an
application.
Therefore the application’s ambient
temperature, TA (oC), and thermal resistance RθJA (oC/W)
must be reviewed to ensure that TJM is never exceeded.
Equation 1 mathematically represents the relationship and
serves as the basis for establishing the rating of the part.
75
(EQ. 1)
50
In using surface mount devices such as the TO-252
package, the environment in which it is applied will have a
significant influence on the part’s current and maximum
power dissipation ratings. Precise determination of PDM is
complex and influenced by many factors:
1. Mounting pad area onto which the device is attached and
whether there is copper on one side or both sides of the
board.
25
0.01
0.1
1
10
AREA, TOP COPPER AREA (in2)
Figure 21. Thermal Resistance vs Mounting
Pad Area
2. The number of copper layers and the thickness of the
board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board orientation.
6. For non steady state applications, the pulse width, the
duty cycle and the transient thermal response of the part,
the board and the environment they are in.
Fairchild provides thermal information to assist the
designer’s preliminary application evaluation. Figure 21
defines the RθJA for the device as a function of the top
copper (component side) area. This is for a horizontally
positioned FR-4 board with 1oz copper after 1000 seconds
of steady state power with no air flow. This graph provides
the necessary information for calculation of the steady state
junction temperature or power dissipation. Pulse
applications can be evaluated using the Fairchild device
Spice thermal model or manually utilizing the normalized
maximum transient thermal impedance curve.
Displayed on the curve are RθJA values listed in the
Electrical Specifications table. The points were chosen to
depict the compromise between the copper board area, the
thermal resistance and ultimately the power dissipation,
PDM.
Thermal resistances corresponding to other copper areas
can be obtained from Figure 21 or by calculation using
Equation 2. RθJA is defined as the natural log of the area
times a coefficient added to a constant. The area, in square
inches is the top copper area including the gate and source
pads.
23.84
( 0.268 + Area )
R θJA = 33.32 + -------------------------------------
©2002 Fairchild Semiconductor Corporation
(EQ. 2)
Rev. B, January 2002
rev January 2001
LDRAIN
DPLCAP
10
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
RSLC2
5
51
-
LGATE
EVTEMP
RGATE +
18 22
9
20
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 2e-3
RGATE 9 20 2.65
RLDRAIN 2 5 10
RLGATE 1 9 44.1
RLSOURCE 3 7 39.9
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 1e-2
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
ESLC
11
+
50
21
EBREAK
16
17
18
-
DBODY
MWEAK
6
MMED
MSTRO
RLGATE
LSOURCE
CIN
8
SOURCE
3
7
RSOURCE
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
S1A
S1B
S2A
S2B
EVTHRES
+ 19 8
+
GATE
1
DBREAK
RDRAIN
6
8
ESG
LDRAIN 2 5 1e-9
LGATE 1 9 4.41e-9
LSOURCE 3 7 3.99e-9
RLDRAIN
RSLC1
51
EBREAK 11 7 17 18 31.4
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
IT 8 17 1
DRAIN
2
5
+
.SUBCKT ISL9N322AD3 2 1 3 ;
CA 12 8 8e-10
CB 15 14 9e-10
CIN 6 8 8.9e-10
RLSOURCE
S1A
12
S2A
13
8
14
13
S1B
CA
RBREAK
15
17
18
RVTEMP
S2B
13
CB
6
8
VBAT
5
8
EDS
-
IT
14
+
+
EGS
19
-
+
8
22
RVTHRES
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*75),5))}
.MODEL DBODYMOD D (IS = 1.28e-11 RS = 8.48e-3 TRS1 = 1.6e-3 TRS2 = 3e-6 XTI=2 CJO = 5.7e-10 TT = 9.5e-9 M = 0.57)
.MODEL DBREAKMOD D (RS = 0.22 TRS1 = 8e-4 TRS2 = -8.9e-6)
.MODEL DPLCAPMOD D (CJO = 3.7e-10 IS = 1e-30 N = 10 M = 0.48)
.MODEL MMEDMOD NMOS (VTO = 1.99 KP = 8 IS=1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.65)
.MODEL MSTROMOD NMOS (VTO = 2.4 KP = 32 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 1.62 KP = 0.05 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 26.5 RS = 0.1)
.MODEL RBREAKMOD RES (TC1 = 9e-4 TC2 = 0)
.MODEL RDRAINMOD RES (TC1 = 2e-2 TC2 = 4e-5)
.MODEL RSLCMOD RES (TC1 = 1e-3 TC2 = 1e-7)
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)
.MODEL RVTHRESMOD RES (TC1 = -1.6e-3 TC2 = -8e-6)
.MODEL RVTEMPMOD RES (TC1 = -2.6e-3 TC2 = 1e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5
.MODEL S1BMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
.MODEL S2BMOD VSWITCH (RON = 1e-5
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
VON = -3.0 VOFF= -2.0)
VON = -2.0 VOFF= -3.0)
VON = -0.5 VOFF= 0.2)
VON = 0.2 VOFF= -0.5)
.ENDS
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank
Wheatley.
©2002 Fairchild Semiconductor Corporation
Rev. B, January 2002
ISL9N322AD3ST
PSPICE Electrical Model
ISL9N322AD3ST
SABER Electrical Model
REV January 20001
template isl9n322AD3 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
dp..model dbodymod = (isl = 1.28e-11, rs = 8.48e-3, trs1 = 1.6e-3, trs2 = 3e-6, xti=2, cjo = 5.7e-10, tt = 9.5e-9, m = 0.57)
dp..model dbreakmod = (rs = 0.22, trs1 = 8e-4, trs2 = -8.9e-6)
dp..model dplcapmod = (cjo = 3.7e-10, isl=10e-30, nl=10, m=0.48)
m..model mmedmod = (type=_n, vto = 1.99, kp=8, is=1e-30, tox=1)
m..model mstrongmod = (type=_n, vto = 2.4, kp = 32, is = 1e-30, tox = 1)
m..model mweakmod = (type=_n, vto = 1.62, kp = 0.05, is = 1e-30, tox = 1, rs=0.1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -3.0, voff = -2.0)
sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.0, voff = -3.0)
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.5, voff = 0.2)
LDRAIN
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.2, voff = -0.5) DPLCAP 5
10
c.ca n12 n8 = 8e-10
c.cb n15 n14 = 9e-10
c.cin n6 n8 = 8.9e-9
RLDRAIN
RSLC1
51
RSLC2
ISCL
dp.dbody n7 n5 = model=dbodymod
dp.dbreak n5 n11 = model=dbreakmod
dp.dplcap n10 n5 = model=dplcapmod
RDRAIN
6
8
ESG
GATE
1
EVTEMP
RGATE + 18 22
9
20
6
EBREAK
+
17
18
-
MMED
CIN
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
8
LSOURCE
7
RSOURCE
S1A
12
13
8
S2A
14
13
S1B
CA
DBODY
MWEAK
MSTRO
RLGATE
res.rbreak n17 n18 = 1, tc1 = 9e-4, tc2 = 0
res.rdrain n50 n16 = 2e-3, tc1 = 2e-2, tc2 = 4e-5
res.rgate n9 n20 = 2.65
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 44.1
res.rlsource n3 n7 = 39.9
res.rslc1 n5 n51= 1e-6, tc1 = 1e-3, tc2 = 1e-7
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 1e-2, tc1 = 1e-3, tc2 =1e-6
res.rvtemp n18 n19 = 1, tc1 = -2.6e-3, tc2 = 1e-6
res.rvthres n22 n8 = 1, tc1 = -1.6e-3, tc2 = -8e-6
11
EVTHRES
16
21
+ 19 8
+
LGATE
DBREAK
50
-
i.it n8 n17 = 1
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 4.41e-9
l.lsource n3 n7 = 3.99e-9
DRAIN
2
RLSOURCE
RBREAK
15
17
18
RVTEMP
S2B
13
CB
+
+
6
8
EGS
-
SOURCE
3
19
IT
14
VBAT
5
8
EDS
-
+
8
22
RVTHRES
spe.ebreak n11 n7 n17 n18 = 31.4
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/75))** 5))
}
}
©2002 Fairchild Semiconductor Corporation
Rev. B, January 2002
th
ISL9N322AD3ST
SPICE Thermal Model
JUNCTION
REV 23 Sept 2000
ISL9N322AT
CTHERM1 th 6 1.3e-3
CTHERM2 6 5 1.5e-3
CTHERM3 5 4 1.6e-3
CTHERM4 4 3 1.7e-3
CTHERM5 3 2 5.8e-3
CTHERM6 2 tl 2e-2
RTHERM1
CTHERM1
6
RTHERM1 th 6 3.5e-3
RTHERM2 6 5 4.5e-3
RTHERM3 5 4 6.2e-2
RTHERM4 4 3 6.8e-1
RTHERM5 3 2 8.1e-1
RTHERM6 2 tl 8.3e-1
RTHERM2
CTHERM2
5
SABER Thermal Model
SABER thermal model ISL9N322AT
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 1.3e-3
ctherm.ctherm2 6 5 = 1.5e-3
ctherm.ctherm3 5 4 = 1.6e-3
ctherm.ctherm4 4 3 = 1.7e-3
ctherm.ctherm5 3 2 = 5.8e-3
ctherm.ctherm6 2 tl = 2e-2
rtherm.rtherm1 th 6 = 3.5e-3
rtherm.rtherm2 6 5 = 4.5e-3
rtherm.rtherm3 5 4 = 6.2e-2
rtherm.rtherm4 4 3 = 6.8e-1
rtherm.rtherm5 3 2 = 8.1e-1
rtherm.rtherm6 2 tl = 8.3e-1
}
RTHERM3
CTHERM3
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
©2002 Fairchild Semiconductor Corporation
CASE
Rev. B, January 2002
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
ACEx™
Bottomless™
CoolFET™
CROSSVOLT™
DenseTrench™
DOME™
EcoSPARK™
E2CMOSTM
EnSignaTM
FACT™
FACT Quiet Series™
FAST 
FASTr™
FRFET™
GlobalOptoisolator™
GTO™
HiSeC™
ISOPLANAR™
LittleFET™
MicroFET™
MicroPak™
MICROWIRE™
OPTOLOGIC™
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerTrench 
QFET™
QS™
QT Optoelectronics™
Quiet Series™
SILENT SWITCHER 
SMART START™
STAR*POWER™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic™
TruTranslation™
UHC™
UltraFET 
VCX™
STAR*POWER is used under license
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT
RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or
2. A critical component is any component of a life
systems which, (a) are intended for surgical implant into
support device or system whose failure to perform can
the body, or (b) support or sustain life, or (c) whose
be reasonably expected to cause the failure of the life
failure to perform when properly used in accordance
support device or system, or to affect its safety or
with instructions for use provided in the labeling, can be
effectiveness.
reasonably expected to result in significant injury to the
user.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative or
In Design
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
Preliminary
First Production
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
No Identification Needed
Full Production
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Rev. H4