Order this document by MJE5740/D SEMICONDUCTOR TECHNICAL DATA *Motorola Preferred Device The MJE5740, 41, 42 Darlington transistors are designed for high–voltage power switching in inductive circuits. They are particularly suited for operation in applications such as: • Small Engine Ignition • Switching Regulators • Inverters • Solenoid and Relay Drivers • Motor Controls POWER DARLINGTON TRANSISTORS 8 AMPERES 300, 350, 400 VOLTS 80 WATTS ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ MAXIMUM RATINGS Rating Collector–Emitter Voltage Collector–Emitter Voltage Symbol MJE5740 MJE5741 MJE5742 Unit VCEO(sus) VCEV 300 350 400 Vdc 600 700 800 Vdc Emitter Base Voltage VEB IC ICM 8 Vdc Collector Current — Continuous — Peak (1) 8 16 Adc Base Current — Continuous — Peak (1) IB IBM 2.5 5 Adc Total Power Dissipation @ TA = 25_C Derate above 25_C PD 2 16 Watts mW/_C Total Power Dissipation @ TC = 25_C Derate above 25_C PD 80 640 Watts mW/_C Operating and Storage Junction Temperature Range TJ, Tstg ≈ 50 _C – 65 to + 150 ā ≈ 100 ā (1) Pulse Test: Pulse Width = 5 ms, Duty Cycle = 10%. THERMAL CHARACTERISTICS Symbol Max Unit Thermal Resistance, Junction to Case Characteristic RθJC 1.56 _C/W Thermal Resistance, Junction to Ambient RθJA 62.5 _C/W TL 275 _C Maximum Lead Temperature for Soldering Purposes: 1/8″ from Case for 5 Seconds CASE 221A–06 TO–220AB ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted) Characteristic Symbol Min Typ Max Unit VCEO(sus) 300 350 400 — — — — — — Vdc Collector Cutoff Current (VCEV = Rated Value, VBE(off) = 1.5 Vdc) (VCEV = Rated Value, VBE(off) = 1.5 Vdc, TC = 100_C) ICEV — — — — 1 5 mAdc Emitter Cutoff Current (VEB = 8 Vdc, IC = 0) IEBO — — 75 mAdc OFF CHARACTERISTICS (2) Collector–Emitter Sustaining Voltage (IC = 50 mA, IB = 0) MJE5740 MJE5741 MJE5742 SECOND BREAKDOWN Second Breakdown Collector Current with Base Forward Biased Clamped Inductive SOA with Base Reverse Biased (2) Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2%. IS/b RBSOA See Figure 6 See Figure 7 (continued) Preferred devices are Motorola recommended choices for future use and best overall value. REV 1 Motorola, Inc. 1995 Motorola Bipolar Power Transistor Device Data 1 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ v ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ELECTRICAL CHARACTERISTICS — continued (TC = 25_C unless otherwise noted) Characteristic Symbol Min Typ Max Unit hFE 50 200 100 400 — — — Collector–Emitter Saturation Voltage (IC = 4 Adc, IB = 0.2 Adc) Collector–Emitter Saturation Voltage (IC = 8 Adc, IB = 0.4 Adc) Collector–Emitter Saturation Voltage (IC = 4 Adc, IB = 0.2 Adc, TC = 100_C) VCE(sat) — — — — — — 2 3 2.2 Vdc Base–Emitter Saturation Voltage (IC = 4 Adc, IB = 0.2 Adc) Base–Emitter Saturation Voltage (IC = 8 Adc, IB = 0.4 Adc) Base–Emitter Saturation Voltage (IC = 4 Adc, IB = 0.2 Adc, TC = 100_C) VBE(sat) — — — — — — 2.5 3.5 2.4 Vdc Vf — — 2.5 Vdc td tr — 0.04 — µs — 0.5 — µs ts tf — 8 — µs — 2 — µs tsv tc — 4 — µs — 2 — µs ON CHARACTERISTICS (1) DC Current Gain (IC = 0.5 Adc, VCE = 5 Vdc) (IC = 4 Adc, VCE = 5 Vdc) Diode Forward Voltage (2) (IF = 5 Adc) SWITCHING CHARACTERISTICS Typical Resistive Load (Table 1) Delay Time (VCC = 250 Vdc, IC(pk) = 6 A IB1 = IB2 = 0.25 A, tp = 25 µs, Duty Cycle 1%) Rise Time Storage Time Fall Time Inductive Load, Clamped (Table 1) Voltage Storage Time Crossover Time (IC(pk) = 6 A, VCE(pk) = 250 Vdc IB1 = 0.06 A, VBE(off) = 5 Vdc) (1) Pulse Test: Pulse Width 300 µs, Duty Cycle = 2%. (2) The internal Collector–to–Emitter diode can eliminate the need for an external diode to clamp inductive loads. Tests have shown that the (2) Forward Recovery Voltage (Vf) of this diode is comparable to that of typical fast recovery rectifiers. TYPICAL CHARACTERISTICS POWER DERATING FACTOR (%) 100 IC(pk) SECOND BREAKDOWN DERATING 80 90% VCE(pk) IC 90% IC trv tsv tfi tti 60 tc THERMAL DERATING VCE IB 40 10% VCE(pk) 90% IB1 10% IC(pk) 2% IC 20 0 0 60 80 100 40 120 TC, CASE TEMPERATURE (°C) 20 140 TIME 160 Figure 2. Inductive Switching Measurements Figure 1. Power Derating 2.4 150°C 1000 hFE , DC CURRENT GAIN VBE, BASE–EMITTER VOLTAGE (VOLTS) 2000 VCE = 5 V + 25°C – 55°C 100 10 0.1 2.2 hFE = 20 2 1.8 – 55°C 1.6 1.4 + 25°C 1.2 +150°C 1 0.8 0.6 0.4 2 1 IC, COLLECTOR CURRENT (AMPS) Figure 3. DC Current Gain 2 VCE(pk) 5 10 0.2 0.5 1 2 5 IC, COLLECTOR CURRENT (AMPS) Figure 4. Base–Emitter Voltage Motorola Bipolar Power Transistor Device Data 10 Table 1. Test Conditions for Dynamic Performance RESISTIVE SWITCHING REVERSE BIAS SAFE OPERATING AREA AND INDUCTIVE SWITCHING +5 V VCC 33 1N4933 +VCC TEST CIRCUITS MJE210 0.001 µF DUTY CYCLE ≤ 10% tr, tf ≤ 10 ns MR826* RC 33 1N4933 2N2222 PW L Vclamp IC RB 1k 68 1k +5 V 5.1 k IB TUT SCOPE RB *SELECTED FOR ≥ 1 kV D1 VCE 51 1k 1N4933 T.U.T. –4 V 2N2905 270 MJE200 CIRCUIT VALUES 0.02 µF NOTE: PW and VCC Adjusted for Desired IC RB Adjusted for Desired IB1 47 100 1/2 W COIL DATA: FERROXCUBE CORE #6656 FULL BOBBIN (~16 TURNS) #16 – VBE(off) GAP FOR 200 µH/20 A Lcoil = 200 µH VCC = 30 V VCE(pk) = 250 Vdc IC(pk) = 6 A TEST WAVEFORMS OUTPUT WAVEFORMS IC tf CLAMPED t t1 VCE Lcoil (ICpk) t1 ≈ VCC tf VCE OR Vclamp TIME t2 ≈ t TEST EQUIPMENT SCOPE–TEKTRONICS 475 OR EQUIVALENT Lcoil (ICpk) Vclamp 0 – 9.2 V tr, tf < 10 ns DUTY CYCLE = 1% RB AND RC ADJUSTED FOR DESIRED IB AND IC t2 VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS) 25 µs +10 V t1 ADJUSTED TO OBTAIN IC IC(pk) VCC = 250 V D1 = 1N5820 OR EQUIV. 1.8 1.6 hFE = 20 1.4 1.2 1 – 55°C 0.8 + 25°C 0.6 +150°C 0.4 0.2 0.1 0.2 0.5 1 2 5 IC, COLLECTOR CURRENT (AMPS) 10 Figure 5. Inductive Switching Measurements Motorola Bipolar Power Transistor Device Data 3 SAFE OPERATING AREA INFORMATION FORWARD BIAS REVERSE BIAS There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC – VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 6 is based on TC = 25_C; T J(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC ≥ 25_C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 6 may be found at any case temperature by using the appropriate curve on Figure 1. For inductive loads, high voltage and high current must be sustained simultaneously during turn–off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage–current condition allowable during reverse biased turnoff. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 7 gives the complete RBSOA characteristics. 16 16 10 8 IC, COLLECTOR CURRENT (AMPS) IC, COLLECTOR CURRENT (AMPS) The Safe Operating Area figures shown in Figures 6 and 7 are specified ratings for these devices under the test conditions shown. 100 µs 3 10 µs 5 ms 1 0.5 0.3 BONDING WIRE LIMIT 1 ms dc THERMAL LIMIT (SINGLE PULSE) 0.1 SECOND BREAKDOWN LIMIT MJE5742 0.05 CURVES APPLY BELOW RATED VCEO MJE5741 MJE5740 0.02 5 100 10 20 50 200 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) 14 12 10 8 VBE(off) ≤ 5 V TJ = 100°C 6 4 MJE5742 MJE5741 MJE5740 2 0 0 400 Figure 6. Forward Bias Safe Operating Area 100 200 300 400 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 7. Reverse Bias Safe Operating Area RESISTIVE SWITCHING PERFORMANCE 10 tr 7 0.3 0.2 VCC = 250 V IB1 = IB2 IC/IB = 20 td 0.1 4 ts 5 t, TIME ( µs) t, TIME ( µs) 1 0.7 0.5 3 2 1 0.07 0.05 0.7 0.5 0.03 0.02 0.2 0.3 0.2 0.2 0.3 0.3 0.5 0.7 1 2 3 5 7 10 VCC = 250 V IB1 = IB2 IC/IB = 20 tf 0.5 0.7 1 2 3 5 7 IC, COLLECTOR CURRENT (AMPS) IC, COLLECTOR CURRENT (AMPS) Figure 8. Turn–On Time Figure 9. Turn–Off Time 10 Motorola Bipolar Power Transistor Device Data 500 PACKAGE DIMENSIONS –T– B SEATING PLANE C F T S 4 DIM A B C D F G H J K L N Q R S T U V Z A Q 1 2 3 U H K Z L R V J G D N CASE 221A–06 TO–220AB ISSUE Y Motorola Bipolar Power Transistor Device Data NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. INCHES MIN MAX 0.570 0.620 0.380 0.405 0.160 0.190 0.025 0.035 0.142 0.147 0.095 0.105 0.110 0.155 0.018 0.025 0.500 0.562 0.045 0.060 0.190 0.210 0.100 0.120 0.080 0.110 0.045 0.055 0.235 0.255 0.000 0.050 0.045 ––– ––– 0.080 STYLE 1: PIN 1. 2. 3. 4. MILLIMETERS MIN MAX 14.48 15.75 9.66 10.28 4.07 4.82 0.64 0.88 3.61 3.73 2.42 2.66 2.80 3.93 0.46 0.64 12.70 14.27 1.15 1.52 4.83 5.33 2.54 3.04 2.04 2.79 1.15 1.39 5.97 6.47 0.00 1.27 1.15 ––– ––– 2.04 BASE COLLECTOR EMITTER COLLECTOR 5 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us: USA / EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315 MFAX: [email protected] – TOUCHTONE (602) 244–6609 INTERNET: http://Design–NET.com HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 6 ◊ Motorola Bipolar Power Transistor Device Data *MJE5740/D* MJE5740/D