SKM 500 GA 174 D Absolute Maximum Ratings Values Symbol Conditions 1) VCES VCGR IC; ICN ICM VGES Ptot Tj, (Tstg) Visol humidity climate Units RGE = 20 kΩ Tcase = 25/80 °C Tcase = 25/80 °C; tp = 1 ms per IGBT, Tcase = 25 °C AC, 1 min. 4) IEC 60721-3-3 IEC 68 T.1 1700 1700 600 / 440 5) 1200 / 880 ± 20 3100 –40 ... +150 (125) 3400 class 3K7/IE32 40/125/56 V V A A V W °C V 600 / 440 1200 / 880 4400 96800 A A A A2s SEMITRANS® M Low Loss IGBT Modules SKM 500 GA 174 D Inverse Diode 8) IF = –IC IFM = –ICM IFSM I 2t Tcase = 25/80 °C Tcase = 25/80 °C; tp = 1 ms tp = 10 ms; sin.; Tj = 150 °C tp = 10 ms; Tj = 150 °C SEMITRANS 4 Characteristics Symbol Conditions 1) V(BR)CES VGE = 0, IC = 8 mA VGE(th) VGE = VCE, IC = 18 mA ICES Tj = 25 °C VGE = 0 VCE = VCES Tj = 125 °C IGES VGE = 20 V, VCE = 0 VCEsat IC = 400 A VGE = 15 V; IC = 500 A Tj = 25 (125) °C gfs VCE = 20 V, IC = 400 A CCHC Cies Coes Cres LCE td(on) tr td(off) tf Eon Eoff per IGBT VGE = 0 VCE = 25 V f = 1 MHz VCC = 1200 V VGE = –15 V / +15 V 3) IC = 400 A, ind. load RGon = RGoff = 3 Ω Tj = 125 °C (VCC = 900 V/1200 V) LS = 60 nH (VCC = 900 V/1200 V) min. typ. max. Units 4,5 – – – – – – – 5,5 0,1 16 – 2,8(3,2) 3,1(3,7) 220 – 6,5 1 – 0,3 3,3(3,6) – – V V mA mA µA V V S – – – – – – 27 3,8 1,3 – 1,4 – – – 20 nF nF nF nF nH – – – – – – 350 100 1100 100 170/300 135/210 – – – – – – ns ns ns ns mWs mWs – – – – – – 2,15(1,8) 2,3(2,0) 1,3 1,6 270(550) 70(117) 2,4(2,2) – 1,5 2,1 – – V V V mΩ A µC ≥ VCES Inverse Diode 8) VF = VEC VF = VEC VTO rt IRRM Qrr IF = 400 A VGE = 0 V; IF = 500 A Tj = 25 (125) °C Tj = 125 °C Tj = 125 °C IF = 400 A; Tj = 25 (125) °C2) IF = 400 A; Tj = 25 (125) °C2) Thermal characteristics Rthjc Rthjc Rthch per IGBT per diode D per module GA Features • N channel, homogeneous Silicon structure (NPT- Non punchthrough IGBT) • Low inductance case • High short circuit capability, self limiting • Fast & soft inverse CAL diodes 8) • Without hard mould • Large clearance (13 mm) and creepage distances (20 mm) Typical Applications • AC inverter drives on mains 575 - 750 VAC • DC bus voltage 750 - 1200 VDC • Public transport (auxiliary syst.) • Switching (not for linear use) 1) – – – – – – 0,040 0,070 0,038 °C/W °C/W °C/W 2) 3) 4) 5) 8) © by SEMIKRON 000828 Tcase = 25 °C, unless otherwise specified IF = – IC, VR = 1200 V, –diF/dt = 5000 A/µs, VGE = 0 V Use VGEoff = – 5 ... – 15 V Option Visol = 4000V/1 min add suffix „H4“ - on request Limited by terminals to IC(DC) = 500 A at Tc = Tterminal ≤ 100 °C CAL = Controlled Axial Lifetime Technology B 6 – 73 SKM 500 GA 174 D m500ga17.xls - 1 4000 m500ga17.xls - 2 800 W 3000 600 2000 400 Tj = 125 °C VCE = 1200 V VGE = + 15 V RG = 3 Ω Eon mWs Eoff 200 1000 E Ptot 0 0 0 TC 20 40 60 80 100 120 0 140 160 °C Fig. 1 Rated power dissipation Ptot = f (TC) IC 200 400 600 Fig. 2 Turn-on /-off energy = f (IC) m500ga17.xls - 3 800 Tj = 125 °C VCE = 1200 V VGE = + 15 V IC = 400 A Eon mWs A 800 600 m500ga17.xls - 4 10000 A tp = 20µs 100µs 1000 400 1 pulse TC = 25 °C Tj ≤ 150 °C 100 Eoff 1ms 200 10 E IC Not for linear use 10ms (DC) 0 1 0 RG 5 10 20 Ω 15 25 1 Fig. 3 Turn-on /-off energy = f (RG) Tj ≤ 150 °C 2 1000 V 10000 m500ga17.xls - 6 Tj ≤ 150 °C VGE = ± 15 V tsc ≤ 10 µs 10 8 di/dt=1000A/µs 3000 A/µs 5000 A/µs Lext < 50 nH IC = 400 A di/dt=1000A/µs 3000 A/µs 5000 A/µs 6 4 allowed numbers of short circuits: <1000 2 time between short circuits: >1s 1 0,5 ICpuls/IC ICSC/IC 0 0 0 VCE 500 1000 1500 0 2000 V Fig. 5 Turn-off safe operating area (RBSOA) B 6 – 74 100 12 VGE = ± 15 V RGoff = 3 Ω IC = 400 A 1,5 10 Fig. 4 Maximum safe operating area (SOA) IC = f (VCE) m500ga17.xls - 5 2,5 VCE VCE 400 800 1200 1600 2000 V Fig. 6 Safe operating area at short circuit IC = f (VCE) 000828 © by SEMIKRON SKM 500 GA 174 D FIGUR7.XLS-V1 10 VC = 1200 V IC = 400 A RG = 3 Ω Lext ≤ 50 nH self-limiting ICSC/ICN 8 25°C m500ga17.xls - 8 800 A Tj = 150 °C VGE ≥ 15V 600 see rem. 5) 6 400 125°C 4 200 2 IC 0 0 10 VGE 12 14 16 18 V Fig. 7 Short circuit current vs. turn-on gate voltage m500ga17.xls - 9 1000 0 T 20 C 20 40 60 80 100 120 140 160 °C Fig. 8 Rated current vs. temperature IC = f (TC) m500ga17.xls - 10 1000 A A VGE = 17V 15V 13V 11V 9V 800 600 VGE= 17V 15V 13V 11V 800 600 9V 400 400 200 200 IC IC 0 0 0 VCE 1 2 3 4 V 0 5 Fig. 9 Typ. output characteristic, tp = 80 µs; 25 °C VCE 1 2 3 4 5 Fig. 10 Typ. output characteristic, tp = 80 µs; 125 °C m500ga17.xls - 12 1000 Pcond(t) = VCEsat(t) · IC(t) V A 800 VCEsat(t) = VCE(TO)(Tj) + rCE(Tj) · IC(t) VCE(TO)(Tj) ≤ 1,6 + 0,001 (Tj –25) [V] typ.: rCE(Tj) = 0,003 + 0,000008 (Tj –25) [Ω] max.: rCE(Tj) = 0,0041 + 0,000006 (Tj –25) [Ω] +2 valid for VGE = + 15 –1 600 400 200 IC [V]; IC > 0,3 ICnom 0 0 VG 2 Fig. 11 Saturation characteristic (IGBT) Calculation elements and equations © by SEMIKRON 4 6 8 10 12 V 14 Fig. 12 Typ. transfer characteristic, tp = 80 µs; VCE = 20 V 000828 B 6 – 75 SKM 500 GA 174 D m500ga17.xls - 13 20 ICpuls = 400 A m500ga17.xls - 14 100,00 800 16 VGE = 0 V f = 1 MHz Cies V nF 1200V 10,00 Coes 12 8 1,00 Cres 4 C VGE 0,10 0 0 QGate 1000 2000 3000 0 nC 4000 Fig. 13 Typ. gate charge characteristic VCE 10 20 30 V Fig. 14 Typ. capacitances vs.VCE m500ga17.xls - 15 10000 Tj = 125 °C VCE = 1200 V VGE = ± 15 V RG = 3 Ω ind. load ns tdoff 1000 m500ga17.xls - 16 10000 Tj = 125 °C VCE = 1200 V VGE = ± 15 V IC = 400 A ind. load ns tdoff 1000 tdon tdon tf tr 100 100 tf tr t t 10 10 0 IC 200 400 600 A 800 Fig. 15 Typ. switching times vs. IC 0 RG 10 15 Ω 20 25 Fig. 16 Typ. switching times vs. gate resistor RG M500GA17.XLS-18 m500ga17.xls - 17 800 5 100 VCC = 1200 V Tj = 125 °C VGE = ± 15 V RG= Tj = 125°C typ. A Tj = 25°C typ. Tj =125°C max. Tj= 25°C max. 600 1,5Ω mJ 80 2,7Ω 60 4Ω 400 7Ω 40 15 Ω 200 20 IF EoffD 0 0 0 VF 1 2 3 Fig. 17 Typ. CAL diode forward characteristic B 6 – 76 0 V IF 200 400 600 800 1000 A Fig. 18 Diode turn-off energy dissipation per pulse 000828 © by SEMIKRON SKM 500 GA 174 D m500ga17.xls - 19 0,1 m500ga17.xls - 20 0,1 K/W K/W 0,01 0,01 0,001 D=0,50 0,20 0,10 0,05 0,02 0,01 single pulse 0,0001 ZthJC 0,00001 0,00001 0,0001 tp 0,001 0,01 0,1 D=0,5 0,2 0,1 0,05 0,02 0,01 0,001 single pulse ZthJC 0,0001 0,00001 1 s Fig. 19 Transient thermal impedance of IGBT ZthJC = f (tp); D = tp / tc = tp · f tp 0,0001 0,001 0,01 A RG= 800 600 1 s Fig. 20 Transient thermal impedance of inverse CAL diodes ZthJC = f (tp); D = tp / tc = tp · f M500GA17.XLS-22 1000 0,1 VCC = 1200 V Tj = 125 °C VGE = ± 15 V M500GA17.XLS-23 800 A 700 RG= 1,5Ω 2,7Ω 1,5Ω 600 2,7Ω 500 4Ω 400 4Ω 400 7Ω 300 7Ω 15 Ω VCC = 1200 V Tj = 125 °C VGE = ± 15 V IF = 400 A 15 Ω 200 200 100 IRR 0 IRR 0 0 IF 200 400 600 800 A 1000 0 2000 diF/dt Fig. 22 Typ. CAL diode peak reverse recovery current IRR = f (IF; RG) 4000 6000 8000 10000 A/us Fig. 23 Typ. CAL diode peak reverse recovery current IRR = f (di/dt) M500GA17.XLS-24 µC 200 IF RG 1,5 180 800 A 2,7 160 4Ω VCC = 1200 V Tj = 125 °C VGE = ± 15 V 600 A 7Ω 140 15 400 A 120 100 80 200 A 60 100 A 40 20 Qrr 0 0 2000 diF/dt 4000 6000 8000 10000 A/us Fig. 24 Typ. CAL diode recovered charge © by SEMIKRON 000828 B 6 – 77 SKM 500 GA 174 D SEMITRANS 4 Case D 59 UL Recognition File no. E 63 532 SKM 500 GA 174 D Dimensions in mm Case outline and circuit diagram Units This is an electrostatic discharge sensitive device (ESDS). Please observe the international standard IEC 747-1, Chapter IX. Nm lb.in. Nm lb.in. m/s2 g Twelve devices are supplied in one SEMIBOX D without mounting hardware, which can be ordered separately under Ident No. 33321100 (for 10 SEMITRANS 4) Mechanical Data Symbol Conditions M1 M2 a w to heatsink, SI Units to heatsink, US Units for terminals, SI Units for terminals, US Units Values (M6) (M6/M4) min. typ. max. 3 27 2,5/1,1 22/10 – – – – – – – – 5 44 5/2 44/18 5x9,81 330 This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability. B 6 – 78 000828 © by SEMIKRON