Absolute Maximum Ratings Values Symbol Conditions 1) VCES VCGR IC ICM VGES Ptot Tj, (Tstg) Visol humidity climate Units RGE = 20 kΩ Tcase = 25/75 °C Tcase = 25/75 °C; tp = 1 ms per IGBT, Tcase = 25 °C AC, 1 min. DIN 40040 DIN IEC 68 T.1 600 600 70 / 50 140 / 100 ± 20 250 –40 ... +150 (125) 2500 Class F 40/125/56 V V A A V W °C V 75 / 50 140 / 100 440 970 A A A A2s SEMITRANS® M Superfast NPT-IGBT Modules SKM 50 GB 063 D Inverse Diode IF = –IC IFM = –ICM IFSM I 2t Tcase = 25/80 °C Tcase = 25/80 °C; tp = 1 ms tp = 10 ms; sin.; Tj = 150 °C tp = 10 ms; Tj = 150 °C SEMITRANS 2 Characteristics Symbol Conditions 1) V(BR)CES VGE = 0, IC = 1,5 mA VGE(th) VGE = VCE, IC = 1 mA ICES Tj = 25 °C VGE = 0 VCE = VCES Tj = 125 °C IGES VGE = 20 V, VCE = 0 VCEsat VGE = 15 V; IC = 30 A IC = 50 A VCEsat Tj = 25 (125) °C gfs VCE = 20 V, IC = 50 A CCHC Cies Coes Cres LCE td(on) tr td(off) tf Eon Eoff per IGBT VGE = 0 VCE = 25 V f = 1 MHz VCC = 300 V VGE = –15 V / +15 V3) IC = 50 A, ind. load RGon = RGoff = 22 Ω Tj = 125 °C min. typ. max. Units 4,5 – – – – – 20 – 5,5 0,1 3 – 1,8(2,0) 2,1(2,4) – – 6,5 1,5 – 100 – 2,5(2,8) – V V mA mA nA V V S – – – – – – 2800 300 200 – 350 – – – 30 pF pF pF pF nH – – – – – – 50 40 300 30 2,5 1,8 – – – – – – ns ns ns ns mWs mWs – 1,45(1,35) 1,7 V – – – – – 10 31 3,2 0,9 15 – – V mΩ A µC – – – – – – 0,5 1,0 0,05 °C/W °C/W °C/W ≥ VCES Inverse Diode 8) VF = VEC IF = 50 A VTO rt IRRM Qrr VGE = 0 V; Tj = 25 (125 °C) Tj = 125 °C Tj = 125 °C IF = 50 A; Tj = 125 °C2) IF = 50 A; Tj = 125 °C2) Thermal characteristics Rthjc Rthjc Rthch per IGBT per diode per module GB Features • N channel, homogeneous Silicon structure (NPT- Non punchthrough IGBT) • Low tail current with low temperature dependence • High short circuit capability, self limiting if term. G is clamped to E • Pos. temp.-coeff. of VCEsat • 50 % less turn off losses 9) • 30 % less short circuit current 9) • Very low Cies, Coes, Cres 9) • Latch-up free • Fast & soft inverse CAL diodes 8) • Isolated copper baseplate using DCB Direct Copper Bonding Technology without hard mould • Large clearance (10 mm) and creepage distances (20 mm) Typical Applications • Switching (not for linear use) • Switched mode power supplies • UPS • Three phase inverters for servo / AC motor speed control • Pulse frequencies also above 10 kHz 1) Tcase = 25 °C, unless otherwise specified 2) IF = – IC, VR = 300 V, –diF/dt = 800 A/µs, VGE = 0 V 3) Use VGEoff = –5... –15 V 8) CAL = Controlled Axial Lifetime Technology 9) Compared to PT-IGBT Cases and mech. data → B 6 – 12 © by SEMIKRON 0898 B6–7 SKM 50 GB 063 D M50GB 06.X LS -1 300 M50GB 06.X LS -2 8 mWs 7 W Tj = 125 °C VCE = 300 V VGE = ± 15 V RG = 22 Ω E on 250 6 200 5 150 4 3 100 E off 2 50 1 E P tot 0 0 0 20 40 60 80 100 120 140 TC °C 160 0 Fig. 1 Rated power dissipation Ptot = f (TC) mWs 40 60 80 100 120 A 140 Fig. 2 Turn-on /-off energy = f (IC) M50GB 06.X LS -3 6 20 IC M50GB 06.X LS -4 1000 Tj = 125 °C VCE = 300 V VGE = ± 15 V IC = 50 A E on 5 1 pulse TC = 25 °C Tj ≤ 150 °C A tp=12µs 100 4 100µs 3 10 E off 1ms 2 1 10ms 1 Not for linear use IC E 0 0,1 0 20 40 60 80 100 RG Ω 120 1 Fig. 3 Turn-on /-off energy = f (RG) 10 100 1000 10000 V Fig. 4 Maximum safe operating area (SOA) IC = f (VCE) M50GB 06.X LS -5 2,5 V CE VGE = ± 15 V RGoff = 22 Ω IC = 50 A 2 M50GB 06.X LS -6 12 Tj ≤ 150 °C Tj ≤ 150 °C VGE = ± 15 V tsc ≤ 10 µs L < 35 nH IC = 50 A 10 di/dt= 300 A/µs 900 A/µs 1500 A/µs 8 1,5 6 1 0,5 ICpuls/IC allowed numbers of short circuits: <1000 2 time between short circuits: >1s ICSC/IC 0 0 0 100 V CE 200 300 400 500 600 0 700 100 V CE V Fig. 5 Turn-off safe operating area (RBSOA) B6–8 4 200 300 400 500 600 700 V Fig. 6 Safe operating area at short circuit IC = f (VCE) 0796 © by SEMIKRON M50GB 06.X LS -8 80 Tj = 150 °C VGE ≥ 15V A 70 60 50 40 30 20 10 IC 0 0 20 40 60 80 100 120 140 TC 160 °C Fig. 8 Rated current vs. temperature IC = f (TC) M50GB 06.X LS -9 100 M 50GB 06.X LS -10 100 A A 17V 15V 13V 11V 9V 7V 80 60 17V 15V 13V 11V 9V 7V 80 60 40 40 20 20 IC IC 0 0 0 V CE 1 2 3 4 V 5 Fig. 9 Typ. output characteristic, tp = 250 µs; Tj = 25 °C 0 V CE 1 2 3 4 Fig. 10 Typ. output characteristic, tp = 250 µs; Tj = 125 °C M50GB 06.X LS -12 100 Pcond(t) = VCEsat(t) · IC(t) 5 V A 80 VCEsat(t) = VCE(TO)(Tj) + rCE(Tj) · IC(t) VCE(TO)(Tj) ≤ 1,2 - 0,001 (Tj –25) [V] typ.: rCE(Tj) = 0,018 + 0,00008 (Tj –25) [Ω] 60 40 max.: rCE(Tj) = 0,026 + 0,00008 (Tj –25) [Ω] 20 valid for VGE = + 15 +2 –1 [V]; IC ≥ 0,3 ICnom IC 0 0 Fig. 11 Saturation characteristic (IGBT) Calculation elements and equations © by SEMIKRON V GE 2 4 6 8 10 12 V 14 Fig. 12 Typ. transfer characteristic, tp = 80 µs; VCE = 20 V B6–9 SKM 50 GB 063 D M 50GB06.XLS-13 20 M 50GB06.XLS-14 10 ICpuls = 50 A V 18 VGE = 0 V f = 1 MHz nF 100V 16 Cies 14 300V 1 12 10 Coes 8 Cres 0,1 6 4 VGE C 2 0 0,01 0 40 QGate 80 120 160 nC 0 Fig. 13 Typ. gate charge characteristic VCE 10 20 30 V 40 Fig. 14 Typ. capacitances vs.VCE M 50GB06.XLS-15 1000 ns tdoff M 50GB06.XLS-16 1000 Tj = 125 °C VCE = 300 V VGE = ± 15 V RGon = 22 Ω RGoff = 22 Ω induct. load Tj = 125 °C VCE = 300 V VGE = ± 15 V IC = 50 A induct. load t doff ns tdon 100 100 tr tr tdon tf tf t t 10 10 0 20 40 60 80 100 IC 120 0 20 40 60 80 100 120 Ω RG A Fig. 15 Typ. switching times vs. IC Fig. 16 Typ. switching times vs. gate resistor RG M 50GB06.XLS-17 M 50GB06.XLS-18 80 VCC = 300 V Tj = 125 °C VGE = ± 15 V 0,8 RG= mJ A 10 Ω Tj=125°C typ. Tj=25°C typ. 60 0,6 15 Ω Tj=125°C max. 25 Ω Tj=25°C max. 40 0,4 20 0,2 40 Ω 80 Ω EoffD IF 0 0 0 VF 0,4 0,8 1,2 1,6 V Fig. 17 Typ. CAL diode forward characteristic B 6 – 10 0 2 20 IF 40 60 80 100 A Fig. 18 Diode turn-off energy dissipation per pulse 0898 © by SEMIKRON M 50GB 06.X LS -19 M 50GB 06.X LS -20 1 1 K/W K/W 0,1 0,1 D=0,50 0,20 0,10 0,05 0,02 0,01 0,01 0,01 single pulse single pulse ZthJC 0,001 0,00001 0,0001 D=0,5 0,2 0,1 0,05 0,02 0,01 ZthJC 0,001 0,01 0,1 0,001 0,00001 1 Fig. 19 Transient thermal impedance of IGBT ZthJC = f (tp); D = tp / tc = tp · f A 0,001 0,01 0,1 M50GB 06.X LS -23 80 VCC = 300 V Tj = 125 °C VGE = ± 15 V RG= 10 Ω 1 s Fig. 20 Transient thermal impedance of inverse CAL diodes ZthJC = f (tp); D = tp / tc = tp · f M50GB 06.X LS -22 80 0,0001 tp s tp VCC = 300 V Tj = 125 °C VGE = ± 15 V IF = 50 A A RG= 10 Ω 60 60 15 Ω 15 Ω 40 40 25 Ω 25 Ω 40 Ω 80 Ω 20 80 Ω 20 IRR 40 Ω IRR 0 0 0 20 40 60 80 100 0 A IF 1000 diF/dt Fig. 22 Typ. CAL diode peak reverse recovery current IRR = f (IF; RG) 2000 3000 4000 A/µs Fig. 23 Typ. CAL diode peak reverse recovery current IRR = f (di/dt) M 50GB 06.X LS -24 6 VCC = 300 V Tj = 125 °C VGE = ± 15 V RG= µC 5 25 Ω 80 Ω 4 15 Ω 10 Ω 40 Ω IF= 75 A 50 A 38 A 3 25 A 2 13 A 1 Qrr 0 0 diF/dt 1000 2000 3000 4000 5000 A/µs Fig. 24 Typ. CAL diode recovered charge © by SEMIKRON 0898 B 6 – 11 SKM 50 GB 063 D SEMITRANS 2 Case D 61 UL Recognized File no. E 63 532 SKM 50 GB 063 D Dimensions in mm Case outline and circuit diagram Mechanical Data Symbol Conditions M1 M2 a w B 6 – 12 to heatsink, SI Units(M6) to heatsink, US Units for terminals, SI Units(M5) for terminals, US Units Values Units min. typ. max. 3 27 2,5 22 – – – – – – – – 5 44 5 44 5x9,81 160 0898 Nm lb.in. Nm lb.in. m/s2 g This is an electrostatic discharge sensitive device (ESDS). Please observe the international standard IEC 747-1, Chapter IX. Eight devices are supplied in one SEMIBOX A without mounting hardware, which can be ordered separately under Ident No. 33321100 (for 10 SEMITRANS 2) Larger packing units of 20 or 42 pieces are used if suitable Accessories → B 6 – 4 SEMIBOX → C – 1. © by SEMIKRON