SEMIKRON SKM50GB063D

Absolute Maximum Ratings
Values
Symbol Conditions 1)
VCES
VCGR
IC
ICM
VGES
Ptot
Tj, (Tstg)
Visol
humidity
climate
Units
RGE = 20 kΩ
Tcase = 25/75 °C
Tcase = 25/75 °C; tp = 1 ms
per IGBT, Tcase = 25 °C
AC, 1 min.
DIN 40040
DIN IEC 68 T.1
600
600
70 / 50
140 / 100
± 20
250
–40 ... +150 (125)
2500
Class F
40/125/56
V
V
A
A
V
W
°C
V
75 / 50
140 / 100
440
970
A
A
A
A2s
SEMITRANS® M
Superfast NPT-IGBT
Modules
SKM 50 GB 063 D
Inverse Diode
IF = –IC
IFM = –ICM
IFSM
I 2t
Tcase = 25/80 °C
Tcase = 25/80 °C; tp = 1 ms
tp = 10 ms; sin.; Tj = 150 °C
tp = 10 ms; Tj = 150 °C
SEMITRANS 2
Characteristics
Symbol Conditions 1)
V(BR)CES VGE = 0, IC = 1,5 mA
VGE(th)
VGE = VCE, IC = 1 mA
ICES
Tj = 25 °C
VGE = 0
VCE = VCES Tj = 125 °C
IGES
VGE = 20 V, VCE = 0
VCEsat
VGE = 15 V;
IC = 30 A
IC = 50 A
VCEsat
Tj = 25 (125) °C
gfs
VCE = 20 V, IC = 50 A
CCHC
Cies
Coes
Cres
LCE
td(on)
tr
td(off)
tf
Eon
Eoff
per IGBT
VGE = 0
VCE = 25 V
f = 1 MHz
VCC = 300 V
VGE = –15 V / +15 V3)
IC = 50 A, ind. load
RGon = RGoff = 22 Ω
Tj = 125 °C
min.
typ.
max.
Units
4,5
–
–
–
–
–
20
–
5,5
0,1
3
–
1,8(2,0)
2,1(2,4)
–
–
6,5
1,5
–
100
–
2,5(2,8)
–
V
V
mA
mA
nA
V
V
S
–
–
–
–
–
–
2800
300
200
–
350
–
–
–
30
pF
pF
pF
pF
nH
–
–
–
–
–
–
50
40
300
30
2,5
1,8
–
–
–
–
–
–
ns
ns
ns
ns
mWs
mWs
–
1,45(1,35)
1,7
V
–
–
–
–
–
10
31
3,2
0,9
15
–
–
V
mΩ
A
µC
–
–
–
–
–
–
0,5
1,0
0,05
°C/W
°C/W
°C/W
≥ VCES
Inverse Diode 8)
VF = VEC IF = 50 A
VTO
rt
IRRM
Qrr
VGE = 0 V;
Tj = 25 (125 °C)
Tj = 125 °C
Tj = 125 °C
IF = 50 A; Tj = 125 °C2)
IF = 50 A; Tj = 125 °C2)
Thermal characteristics
Rthjc
Rthjc
Rthch
per IGBT
per diode
per module
GB
Features
• N channel, homogeneous Silicon
structure (NPT- Non punchthrough IGBT)
• Low tail current with low
temperature dependence
• High short circuit capability, self
limiting if term. G is clamped to E
• Pos. temp.-coeff. of VCEsat
• 50 % less turn off losses 9)
• 30 % less short circuit current 9)
• Very low Cies, Coes, Cres 9)
• Latch-up free
• Fast & soft inverse CAL diodes 8)
• Isolated copper baseplate using
DCB Direct Copper Bonding
Technology without hard mould
• Large clearance (10 mm) and
creepage distances (20 mm)
Typical Applications
• Switching (not for linear use)
• Switched mode power supplies
• UPS
• Three phase inverters for servo /
AC motor speed control
• Pulse frequencies also above
10 kHz
1)
Tcase = 25 °C, unless otherwise
specified
2)
IF = – IC, VR = 300 V,
–diF/dt = 800 A/µs, VGE = 0 V
3)
Use VGEoff = –5... –15 V
8)
CAL = Controlled Axial Lifetime
Technology
9)
Compared to PT-IGBT
Cases and mech. data → B 6 – 12
© by SEMIKRON
0898
B6–7
SKM 50 GB 063 D
M50GB 06.X LS -1
300
M50GB 06.X LS -2
8
mWs
7
W
Tj = 125 °C
VCE = 300 V
VGE = ± 15 V
RG = 22 Ω
E on
250
6
200
5
150
4
3
100
E off
2
50
1
E
P tot
0
0
0
20
40
60
80
100
120
140
TC
°C
160
0
Fig. 1 Rated power dissipation Ptot = f (TC)
mWs
40
60
80
100
120
A
140
Fig. 2 Turn-on /-off energy = f (IC)
M50GB 06.X LS -3
6
20
IC
M50GB 06.X LS -4
1000
Tj = 125 °C
VCE = 300 V
VGE = ± 15 V
IC = 50 A
E on
5
1 pulse
TC = 25 °C
Tj ≤ 150 °C
A
tp=12µs
100
4
100µs
3
10
E off
1ms
2
1
10ms
1
Not for
linear use
IC
E
0
0,1
0
20
40
60
80
100
RG
Ω
120
1
Fig. 3 Turn-on /-off energy = f (RG)
10
100
1000
10000
V
Fig. 4 Maximum safe operating area (SOA) IC = f (VCE)
M50GB 06.X LS -5
2,5
V CE
VGE = ± 15 V
RGoff = 22 Ω
IC = 50 A
2
M50GB 06.X LS -6
12
Tj ≤ 150 °C
Tj ≤ 150 °C
VGE = ± 15 V
tsc ≤ 10 µs
L < 35 nH
IC = 50 A
10
di/dt= 300 A/µs
900 A/µs
1500 A/µs
8
1,5
6
1
0,5
ICpuls/IC
allowed numbers of
short circuits: <1000
2
time between short
circuits: >1s
ICSC/IC
0
0
0
100
V CE
200
300
400
500
600
0
700
100
V CE
V
Fig. 5 Turn-off safe operating area (RBSOA)
B6–8
4
200
300
400
500
600
700
V
Fig. 6 Safe operating area at short circuit IC = f (VCE)
0796
© by SEMIKRON
M50GB 06.X LS -8
80
Tj = 150 °C
VGE ≥ 15V
A
70
60
50
40
30
20
10
IC
0
0
20
40
60
80
100
120
140
TC
160
°C
Fig. 8 Rated current vs. temperature IC = f (TC)
M50GB 06.X LS -9
100
M 50GB 06.X LS -10
100
A
A
17V
15V
13V
11V
9V
7V
80
60
17V
15V
13V
11V
9V
7V
80
60
40
40
20
20
IC
IC
0
0
0
V CE
1
2
3
4
V
5
Fig. 9 Typ. output characteristic, tp = 250 µs; Tj = 25 °C
0
V CE
1
2
3
4
Fig. 10 Typ. output characteristic, tp = 250 µs; Tj = 125 °C
M50GB 06.X LS -12
100
Pcond(t) = VCEsat(t) · IC(t)
5
V
A
80
VCEsat(t) = VCE(TO)(Tj) + rCE(Tj) · IC(t)
VCE(TO)(Tj) ≤ 1,2 - 0,001 (Tj –25) [V]
typ.: rCE(Tj) = 0,018 + 0,00008 (Tj –25) [Ω]
60
40
max.: rCE(Tj) = 0,026 + 0,00008 (Tj –25) [Ω]
20
valid for VGE = + 15 +2
–1 [V]; IC ≥ 0,3 ICnom
IC
0
0
Fig. 11 Saturation characteristic (IGBT)
Calculation elements and equations
© by SEMIKRON
V GE
2
4
6
8
10
12
V
14
Fig. 12 Typ. transfer characteristic, tp = 80 µs; VCE = 20 V
B6–9
SKM 50 GB 063 D
M 50GB06.XLS-13
20
M 50GB06.XLS-14
10
ICpuls = 50 A
V
18
VGE = 0 V
f = 1 MHz
nF
100V
16
Cies
14
300V
1
12
10
Coes
8
Cres
0,1
6
4
VGE
C
2
0
0,01
0
40
QGate
80
120
160
nC
0
Fig. 13 Typ. gate charge characteristic
VCE
10
20
30
V
40
Fig. 14 Typ. capacitances vs.VCE
M 50GB06.XLS-15
1000
ns
tdoff
M 50GB06.XLS-16
1000
Tj = 125 °C
VCE = 300 V
VGE = ± 15 V
RGon = 22 Ω
RGoff = 22 Ω
induct. load
Tj = 125 °C
VCE = 300 V
VGE = ± 15 V
IC = 50 A
induct. load
t doff
ns
tdon
100
100
tr
tr
tdon
tf
tf
t
t
10
10
0
20
40
60
80
100
IC
120
0
20
40
60
80
100
120
Ω
RG
A
Fig. 15 Typ. switching times vs. IC
Fig. 16 Typ. switching times vs. gate resistor RG
M 50GB06.XLS-17
M 50GB06.XLS-18
80
VCC = 300 V
Tj = 125 °C
VGE = ± 15 V
0,8
RG=
mJ
A
10 Ω
Tj=125°C typ.
Tj=25°C typ.
60
0,6
15 Ω
Tj=125°C max.
25 Ω
Tj=25°C max.
40
0,4
20
0,2
40 Ω
80 Ω
EoffD
IF
0
0
0
VF
0,4
0,8
1,2
1,6
V
Fig. 17 Typ. CAL diode forward characteristic
B 6 – 10
0
2
20
IF
40
60
80
100
A
Fig. 18 Diode turn-off energy dissipation per pulse
0898
© by SEMIKRON
M 50GB 06.X LS -19
M 50GB 06.X LS -20
1
1
K/W
K/W
0,1
0,1
D=0,50
0,20
0,10
0,05
0,02
0,01
0,01
0,01
single pulse
single pulse
ZthJC
0,001
0,00001
0,0001
D=0,5
0,2
0,1
0,05
0,02
0,01
ZthJC
0,001
0,01
0,1
0,001
0,00001
1
Fig. 19 Transient thermal impedance of IGBT
ZthJC = f (tp); D = tp / tc = tp · f
A
0,001
0,01
0,1
M50GB 06.X LS -23
80
VCC = 300 V
Tj = 125 °C
VGE = ± 15 V
RG=
10 Ω
1
s
Fig. 20 Transient thermal impedance of
inverse CAL diodes ZthJC = f (tp); D = tp / tc = tp · f
M50GB 06.X LS -22
80
0,0001
tp
s
tp
VCC = 300 V
Tj = 125 °C
VGE = ± 15 V
IF = 50 A
A
RG=
10 Ω
60
60
15 Ω
15 Ω
40
40
25 Ω
25 Ω
40 Ω
80 Ω
20
80 Ω
20
IRR
40 Ω
IRR
0
0
0
20
40
60
80
100
0
A
IF
1000
diF/dt
Fig. 22 Typ. CAL diode peak reverse recovery
current IRR = f (IF; RG)
2000
3000
4000
A/µs
Fig. 23 Typ. CAL diode peak reverse recovery
current IRR = f (di/dt)
M 50GB 06.X LS -24
6
VCC = 300 V
Tj = 125 °C
VGE = ± 15 V
RG=
µC
5
25 Ω
80 Ω
4
15 Ω
10 Ω
40 Ω
IF=
75 A
50 A
38 A
3
25 A
2
13 A
1
Qrr
0
0
diF/dt
1000
2000
3000
4000
5000
A/µs
Fig. 24 Typ. CAL diode recovered charge
© by SEMIKRON
0898
B 6 – 11
SKM 50 GB 063 D
SEMITRANS 2
Case D 61
UL Recognized
File no. E 63 532
SKM 50 GB 063 D
Dimensions in mm
Case outline and circuit diagram
Mechanical Data
Symbol Conditions
M1
M2
a
w
B 6 – 12
to heatsink, SI Units(M6)
to heatsink, US Units
for terminals, SI Units(M5)
for terminals, US Units
Values
Units
min.
typ.
max.
3
27
2,5
22
–
–
–
–
–
–
–
–
5
44
5
44
5x9,81
160
0898
Nm
lb.in.
Nm
lb.in.
m/s2
g
This is an electrostatic discharge
sensitive device (ESDS).
Please observe the international
standard IEC 747-1, Chapter IX.
Eight devices are supplied in one
SEMIBOX A without mounting hardware, which can be ordered separately under Ident No. 33321100 (for
10 SEMITRANS 2)
Larger packing units of 20 or 42 pieces are used if suitable
Accessories → B 6 – 4
SEMIBOX → C – 1.
© by SEMIKRON