Absolute Maximum Ratings Values Symbol Conditions 1) VCES VCGR IC ICM VGES Ptot Tj, (Tstg) Visol humidity climate Units RGE = 20 kΩ Tcase = 25/85 °C Tcase = 25/85 °C; tp = 1 ms per IGBT, Tcase = 25 °C AC, 1 min. DIN 40040 DIN IEC 68 T.1 1200 1200 290 / 200 580 / 400 ± 20 1350 –40 ... +150 (125) 2500 Class F 40/125/56 V V A A V W °C V 195 / 130 580 / 400 1450 10 500 A A A A2s SEMITRANS® M Low Loss IGBT Modules SKM 200 GB 124 D Inverse Diode IF = –IC IFM = –ICM IFSM I 2t Tcase = 25/80 °C Tcase = 25/80 °C; tp = 1 ms tp = 10 ms; sin.; Tj = 150 °C tp = 10 ms; Tj = 150 °C SEMITRANS 3 Characteristics Symbol Conditions 1) V(BR)CES VGE(th) ICES IGES VCEsat VCEsat gfs CCHC Cies Coes Cres LCE td(on) tr td(off) tf Eon Eoff VGE = 0, IC = 4 mA VGE = VCE, IC = 6 mA Tj = 25 °C VGE = 0 VCE = VCES Tj = 125 °C VGE = 20 V, VCE = 0 IC = 150 A VGE = 15 V; IC = 200 A Tj = 25 (125) °C VCE = 20 V, IC = 150 A per IGBT VGE = 0 VCE = 25 V f = 1 MHz VCC = 600 V VGE = –15 V / +15 V3) IC = 150 A, ind. load RGon = RGoff = 7Ω Tj = 125 °C min. typ. max. Units 4,5 – – – – – 62 – 5,5 0,4 12 – 2,1(2,4) 2,5(3,0) – – 6,5 14 – 0,32 2,45(2,85) – – V V mA mA µA V V S – – – – – – 11 1,6 0,8 – 700 15 2 1 20 pF nF nF nF nH – – – – – – 75 50 520 50 21 19 – – – – – – ns ns ns ns mWs mWs – – – – – – 2,0(1,8) 2,25(2,05) 1,1 – 78 19,5 2,5 – 1,2 7 – – V V V mΩ A µC ≥ VCES Inverse Diode 8) VF = VEC VF = VEC VTO rt IRRM Qrr IF = 150 A VGE = 0 V; IF = 200 A Tj = 25 (125) °C Tj = 125 °C 2) Tj = 125 °C 2) IF = 150 A; Tj = 125 °C2) IF = 150 A; Tj = 125 °C2) Thermal characteristics Rthjc Rthjc Rthch per IGBT per diode per module – – – – – – 0,09 0,25 0,038 °C/W °C/W °C/W GB Features • MOS input (voltage controlled) • N channel, homogeneous Silicon structure NPT-IGBT (Non punch through) • Low saturation voltage • Low inductance case • Low tail current with low temperature dependence • High short circuit capability, self limiting to 6 * Icnom • Latch-up free • Fast & soft inverse CAL diodes 8) • Isolated copper baseplate using DCB Direct Copper Bonding Technology without hard mould • Large clearance (12 mm) and creepage distances (20 mm) Typical Applications → B 6 – 161 • Switching (not for linear use) • Inverter drives • UPS 1) 2) 3) 8) Tcase = 25 °C, unless otherwise specified IF = – IC, VR = 600 V, –diF/dt = 1500 A/µs, VGE = 0 V Use VGEoff = –5... –15 V CAL = Controlled Axial Lifetime Technology Cases and mech. data → B 6 – 162 © by SEMIKRON 0898 B 6 – 157 SKM 200 GB 124 D M200G124.X LS-1 1400 M200G124.X LS -2 70 W 1200 60 1000 50 800 40 600 30 400 20 200 Tj = 125 °C VCE = 600 V VGE = + 15 V RG = 7 Ω E on mWs E off 10 E Ptot 0 0 0 20 40 60 80 100 TC 120 140 160 °C 0 Fig. 1 Rated power dissipation Ptot = f (TC) 100 150 200 250 300 A 350 Fig. 2 Turn-on /-off energy = f (IC) M200G124.X LS-3 90 mWs 80 50 IC M200G124.X LS -4 1000 Tj = 125 °C VCE = 600 V VGE = + 15 V IC = 150 A E on 70 A 100 60 1 pulse TC = 25 °C Tj ≤ 150 °C t p=10µs 100µs 50 40 E off 30 1ms 10 Not for linear use 20 10ms IC 10 E 0 1 0 R G 10 20 30 40 50 Ω 1 60 Fig. 3 Turn-on /-off energy = f (RG) 100 1000 10000 V Fig. 4 Maximum safe operating area (SOA) IC = f (VCE) M200G124.X LS -5 2,5 VCE 10 VGE = 15 V RGoff = 7 Ω IC = 150 A 2 M200G124.X LS -6 12 Tj ≤ 150 °C 10 di/dt= 1000 A/µs 3000 A/µs 5000 A/µs 8 1,5 Tj ≤ 150 °C VGE = ± 15 V tsc ≤ 10 µs L < 25 nH IC = 150 A 6 1 0,5 ICpuls/IC 4 allowed numbers of short circuits: <1000 2 time between short circuits: >1s ICSC/IC 0 0 0 200 V CE 400 600 800 1000 1200 1400 V Fig. 5 Turn-off safe operating area (RBSOA) B 6 – 158 0 200 VCE 400 600 800 1000 1200 1400 V Fig. 6 Safe operating area at short circuit IC = f (VCE) 0898 © by SEMIKRON M2 0 0G1 24 .X LS -8 300 Tj = 150 °C VGE ≥ 15V A 250 200 150 100 50 IC 0 0 40 80 120 160 °C TC Fig. 8 Rated current vs. temperature IC = f (TC) M2 0 0G1 24 .X LS -9 M 20 0G1 24 .X LS -1 0 300 300 A A 17V 15V 13V 11V 9V 7V 250 200 250 17V 15V 13V 11V 9V 7V 200 150 150 100 100 50 50 IC IC 0 0 0 V CE 1 2 3 4 V 5 Fig. 9 Typ. output characteristic, tp = 80 µs; 25 °C 0 VCE 1 2 3 4 5 V Fig. 10 Typ. output characteristic, tp = 80 µs; 125 °C M200G124.X LS-12 300 Pcond(t) = VCEsat(t) · IC(t) A 250 VCEsat(t) = VCE(TO)(Tj) + rCE(Tj) · IC(t) 200 VCE(TO)(Tj) ≤ 1,3 + 0,0005 (Tj –25) [V] 150 typ.: rCE(Tj) = 0,0053 + 0,000017 (Tj –25) [Ω] 100 max.: rCE(Tj) = 0,0077 + 0,000023 (Tj –25) [Ω] +2 valid for VGE = + 15 –1 50 IC [V]; IC > 0,3 ICnom 0 0 Fig. 11 Saturation characteristic (IGBT) Calculation elements and equations © by SEMIKRON V GE 2 4 6 8 10 12 V 14 Fig. 12 Typ. transfer characteristic, tp = 80 µs; VCE = 20 V 0898 B 6 – 159 SKM 200 GB 124 D M200G124.X LS-13 20 V 18 600V 16 M200G124.X LS -14 100 Rthjc = 0,005 ICpuls = 150 A VGE = 0 V f = 1 MHz nF 800V Cies 14 10 12 10 Coes 8 1 6 Cres 4 V GE C 2 0 0,1 0 200 400 600 800 1000 1200 0 nC QGate Fig. 13 Typ. gate charge characteristic ns tdoff 100 10 20 30 V Fig. 14 Typ. capacitances vs.VCE M200G124.X LS-15 1000 VCE Tj = 125 °C VCE = 600 V VGE = ± 15 V RGon = 7 Ω RGoff = 7 Ω induct. load M200G124.X LS -16 10000 ns tdoff Tj = 125 °C VCE = 600 V VGE = ± 15 V IC = 150 A induct. load 1000 tdon t don tr 100 tf tr tf t t 10 10 0 50 100 150 200 250 300 IC 0 350 A 20 30 40 50 M200GB 124.X LS -17 M200G124.X LS -18 10 mJ A RG= VCC = 600 V Tj = 125 °C VGE = ± 15 V 4Ω Tj=125°C, typ. 150 60 Ω Fig. 16 Typ. switching times vs. gate resistor RG Fig. 15 Typ. switching times vs. IC 200 10 RG 8 6Ω 6 10 Ω Tj=25°C, typ. Tj=125°C, max. Tj=25°C, max. 100 17 Ω 4 40 Ω 50 2 E offD IF 0 0 0 VF 1 2 40 IF V Fig. 17 Typ. CAL diode forward characteristic B 6 – 160 0 3 80 120 160 200 240 A Fig. 18 Diode turn-off energy dissipation per pulse 0898 © by SEMIKRON M 20 0G1 24 .X LS -1 9 1 M2 0 0G1 24 .X LS -2 0 1 K/W K/W 0,1 0,1 0,01 0,01 D=0,50 0,20 0,10 0,05 0,02 0,01 0,001 0,001 single pulse single pulse ZthJC 0,0001 0,00001 0,0001 D=0,5 0,2 0,1 0,05 0,02 0,01 ZthJC 0,001 0,01 0,1 0,0001 0,00001 1 s tp Fig. 19 Transient thermal impedance of IGBT ZthJC = f (tp); D = tp / tc = tp · f 4Ω 6Ω VCC = 600 V Tj = 125 °C VGE = ± 15 V IF = 150 A RG= 4 Ω 6Ω 160 10 Ω 120 120 10 Ω 17 Ω 80 17 Ω 40 Ω 40 1 M200G124.X LS -23 200 80 0,1 s A 240 200 160 0,01 280 VCC = 600 V Tj = 125 °C VGE = ± 15 V RG= A 240 0,001 Fig. 20 Transient thermal impedance of inverse CAL diodes ZthJC = f (tp); D = tp / tc = tp · f M200G124.X LS-22 280 0,0001 tp 40 Ω 40 IRR IRR 0 0 0 40 80 120 160 200 IF 240 0 1000 diF/dt A Fig. 22 Typ. CAL diode peak reverse recovery current IRR = f (IF; RG) 2000 3000 4000 5000 6000 7000 A/µs Fig. 23 Typ. CAL diode peak reverse recovery current IRR = f (di/dt) M2 0 0G1 24 .X LS -2 4 35 µC 30 Typical Applications include Switched mode power supplies 10 Ω 25 DC servo and robot drives Inverters 20 DC choppers 15 RG= 4 Ω IF = 200 A 17 Ω 150 A 40 Ω 110 A 75 A AC motor speed control 40 A 10 UPS Uninterruptable power supplies General power switching applications 6Ω VCC = 600 V Tj = 125 °C VGE = ± 15 V 5 Qrr Electronic (also portable) welders 0 0 2000 diF/dt 4000 6000 A/µs 8000 Fig. 24 Typ. CAL diode recovered charge © by SEMIKRON 0898 B 6 – 161 SKM 200 GB 124 D SEMITRANS 3 Case D 56 UL Recognized File no. E 63 532 SKM 200 GB 124 D Dimensions in mm Case outline and circuit diagram Mechanical Data Symbol Conditions M1 M2 a w B 6 – 162 to heatsink, SI Units to heatsink, US Units for terminals, SI Units for terminals, US Units Values (M6) (M6) Units min. typ. max. 3 27 2,5 22 – – – – – – – – 5 44 5 44 5x9,81 325 0898 Nm lb.in. Nm lb.in. m/s2 g This is an electrostatic discharge sensitive device (ESDS). Please observe the international standard IEC 747-1, Chapter IX. Three devices are supplied in one SEMIBOX A without mounting hardware, which can be ordered separately under Ident No. 33321100 (for 10 SEMITRANS 3). Larger packing units of 12 and 20 pieces are used if suitable Accessories → B 6 – 4. SEMIBOX → C – 1. © by SEMIKRON