DTV1500Mxx ® (CRT HORIZONTAL DEFLECTION) HIGH VOLTAGE DAMPER DIODE MAIN PRODUCTS CHARACTERISTICS IF(AV) 6A VRRM 1500 V VF (max) 1.65 V trr (max) 135 ns K A FEATURES AND BENEFITS ■ ■ ■ ■ ■ ■ ■ High breakdown voltage capability High frequency operation Specified turn on switching characteristics Very fast recovery diode Low static and peak forward voltage drop for low dissipation Insulated package (ISOWATT220AC, TO-220FPAC): Insulating voltage = 2000V DC Capacitance = 12pF Planar technology allowing high quality and best electrical characteristics A K TO-220FPAC DTV1500MFP A K ISOWATT220AC DTV1500MF DESCRIPTION High voltage diode especially designed for horizontal deflection stage in standard and high resolution displays for TV’s and monitors. This device is packaged in TO-220AC, ISOWATT220AC and TO-220FPAC (insulated package). A K TO-220AC DTV1500MD ABSOLUTE MAXIMUM RATINGS Symbol Parameter VRRM Repetitive peak reverse voltage IF(RMS) RMS forward current IFSM Surge non repetitive forward current Tstg Storage temperature Tj Maximum operating junction temperature January 2002 - Ed: 3B tp = 10ms sinusoidal Value Unit 1500 V 15 A 75 A - 65 to 150 °C 150 °C 1/8 DTV1500Mxx THERMAL RESISTANCE Symbol Rth(j-c) Parameter Junction to Case thermal resistance Value Unit TO-220FPAC 5.4 °C/W ISOWATT220AC 4.75 TO-220AC 2.5 STATIC ELECTRICAL CHARACTERISTICS Value Symbol Parameter Test Conditions Unit Typ IR * VF ** Reverse leakage current Forward voltage drop VR = 1500V IF =6A Tj = 25°C Max 100 µA Tj = 125°C 100 1000 µA Tj = 25°C 1.4 2.2 V Tj = 125°C 1.20 1.65 pulse test : * tp = 5 ms , δ < 2% ** tp = 380 µs, δ < 2% RECOVERY CHARACTERISTICS Value Symbol Parameter Test Conditions Unit Typ Max 135 trr Reverse recovery time Tj = 25°C IF = 1 A dIF/dt = -50A/µs VR = 30V 110 trr Reverse recovery time Tj = 25°C IF = 100mA IR = 100mA IRR = 10mA 750 ns ns TURN-ON SWITCHING CHARACTERISTICS Value Symbol Parameter Test Conditions Unit Typ tfr Forward recovery time Tj = 100°C IF = 6 A dIF/dt = 80 A/µs VFR = 3 V 570 VFp Peak forward voltage Tj = 100°C IF = 6A 21 dIF/dt = 80 A/µs To evaluate the maximum conduction losses use the following equation : P = 1.37 x IF(AV) + 0.047 x IF2(RMS) 2/8 Max ns 28 V DTV1500Mxx Fig. 1: Power dissipation versus peak forward current (triangular waveform, δ = 0.45) Fig. 2-1: Average current versus case temperature (δ = 0.5) (TO-220FPAC) PF(av)(W) IF(av)(A) 2.5 12 2.0 10 8 1.5 6 1.0 4 0.5 T 2 Ip(A) 0.0 0 1 2 3 4 5 6 Fig. 2-2: Average current versus case temperature (δ = 0.5) (ISOWATT220AC) 0 IF(av)(A) 25 50 75 100 125 150 IF(av)(A) 12 10 10 8 8 6 6 4 4 T T 2 δ=tp/T 0 0 Tcase(°C) tp Fig. 2-3: Average current versus case temperature (δ = 0.5) (TO-220AC) 12 0 δ=tp/T Tcase(°C) tp 25 2 50 75 100 125 150 Fig. 3: Forward voltage drop versus forward current (DTV1500MFP/F/D) 0 δ=tp/T 0 Tcase(°C) tp 25 50 75 100 125 150 Fig. 4-1: Non repetitive surge peak forward current versus overload duration (TO-220FPAC) IFM(A) IM(A) 15.0 50 Tc=100°C Typical Tj=125°C 40 10.0 Maximum Tj=25°C Maximum Tj=125°C 30 20 5.0 10 IM VFM(V) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 t(s) t 0 1E-3 δ=0.5 1E-2 1E-1 1E+0 3/8 DTV1500Mxx Fig. 4-2: Non repetitive surge peak forward current versus overload duration (ISOWATT220AC) Fig. 4-3: Non repetitive surge peak forward current versus overload duration (TO-220AC) IM(A) IM(A) 60 80 Tc=100°C Tc=100°C 70 50 60 40 50 30 40 30 20 20 IM 10 δ=0.5 0 1E-3 1E-2 1E-1 1E+0 Fig. 5: Reverse recovery charges versus dIF/dt. Qrr(nc) IF= 6A 90% confidence Tj=125°C 800 600 400 200 dIF/dt(A/µs) 0 0.1 0.2 0.5 1.0 2.0 5.0 Fig. 7: Transient peak forward voltage versus dIF/dt. 30 25 20 15 10 5 0 dIF/dt(A/µs) 0 4/8 20 1E-2 1E-1 1E+0 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.1 IF= 6A 90% confidence Tj=125°C dIF/dt(A/µs) 0.2 0.5 1.0 2.0 5.0 Fig. 8: Forward recovery time versus dIF/dt tfr(ns) IF= 6A 90% confidence Tj=125°C 35 δ=0.5 Fig. 6: Reverse recovery current versus dIF/dt. VFP(V) 40 t(s) t 0 1E-3 IRM(A) 1200 1000 IM 10 t(s) t 40 60 80 100 120 140 800 750 700 650 600 550 500 450 400 350 300 IF= 6A 90% confidence Tj=125°C VFR=3V dIF/dt(A/µs) 0 20 40 60 80 100 120 140 DTV1500Mxx Fig. 9: Dynamic parameters versus junction temperature Fig. 10: Junction capacitance versus reverse voltage applied (typical values) C(pF) 1.2 100 Tj=25°C F=1MHz 1.0 0.8 50 IRM 0.6 VFP 0.4 20 Qrr 0.2 Tj(°C) 0.0 0 20 40 60 80 VR(V) 100 120 140 Fig. 11-1: Relative variation of thermal impedance junction to case versus pulse duration (ISOWATT220AC & TO-220FPAC) 10 1 10 100 200 Fig. 11-2: Relative variation of thermal impedance junction to case versus pulse duration (TO-220AC) K=[Zth(j-c)/Rth(j-c)] K=[Zth(j-c)/Rth(j-c)] 1.0 1.0 δ = 0.5 δ = 0.5 0.5 0.5 δ = 0.2 δ = 0.2 δ = 0.1 δ = 0.1 0.2 0.2 T Single pulse T Single pulse t(s) 0.1 1E-2 1E-1 δ=tp/T 1E+0 tp(s) tp 1E+1 0.1 1E-3 1E-2 δ=tp/T 1E-1 tp 1E+0 5/8 DTV1500Mxx PACKAGE DATA TO-220FPAC DIMENSIONS REF. Millimeters Inches A B D E F F1 G G1 H L2 L3 L4 L5 L6 L7 Dia. Min. Max. 4.4 4.6 2.5 2.7 2.5 2.75 0.45 0.70 0.75 1 1.15 1.70 4.95 5.20 2.4 2.7 10 10.4 16 Typ. 28.6 30.6 9.8 10.6 2.9 3.6 15.9 16.4 9.00 9.30 3.00 3.20 Min. Max. 0.173 0.181 0.098 0.106 0.098 0.108 0.018 0.027 0.030 0.039 0.045 0.067 0.195 0.205 0.094 0.106 0.393 0.409 0.63 Typ. 1.126 1.205 0.386 0.417 0.114 0.142 0.626 0.646 0.354 0.366 0.118 0.126 A H B Dia L6 L2 L7 L3 L5 D F1 L4 F G1 G 6/8 E DTV1500Mxx PACKAGE DATA ISOWATT220AC A H B Diam REF. L6 L7 L2 L3 F1 F D E A B D E F F1 G H L2 L3 L6 L7 Diam DIMENSIONS Millimeters Inches Min. Max. Min. Max. 4.40 4.60 0.173 0.181 2.50 2.70 0.098 0.106 2.40 2.75 0.094 0.108 0.40 0.70 0.016 0.028 0.75 1.00 0.030 0.039 1.15 1.70 0.045 0.067 4.95 5.20 0.195 0.205 10.00 10.40 0.394 0.409 16.00 Typ. 0.630 Typ. 28.60 30.60 1.125 1.205 15.90 16.40 0.626 0.646 9.00 9.30 0.354 0.366 3.00 3.20 0.118 0.126 G PACKAGE DATA TO-220AC DIMENSIONS REF. A H2 C L5 L7 ØI L6 L2 D L9 F1 M F E G Inches Min. Max. Min. Max. A 4.40 4.60 0.173 0.181 C 1.23 1.32 0.048 0.051 D 2.40 2.72 0.094 0.107 E 0.49 0.70 0.019 0.027 F 0.61 0.88 0.024 0.034 F1 1.14 1.70 0.044 0.066 G 4.95 5.15 0.194 0.202 H2 10.00 10.40 0.393 0.409 L2 L4 Millimeters 16.40 typ. 0.645 typ. L4 13.00 14.00 0.511 0.551 L5 2.65 2.95 0.104 0.116 L6 15.25 15.75 0.600 0.620 L7 6.20 6.60 0.244 0.259 L9 3.50 3.93 0.137 0.154 M Diam. I 2.6 typ. 3.75 3.85 0.102 typ. 0.147 0.151 7/8 DTV1500Mxx ■ ■ ■ ■ ■ Type Marking Package Weight Base qty Delivery mode DTV1500MFP DTV1500MFP TO-220FPAC 1.8g 50 Tube DTV1500MD DTV1500MD TO-220AC 1.86g 50 Tube DTV1500MF DTV1500MF ISOWATT220AC 2g 50 Tube Cooling method: C Epoxy meets UL94-V0 Torquevalue: 0.55 m.Ntyp (0.7m.Nmax) Electrical Isolation: 2000V DC Capacitance: 12pF Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 2002 STMicroelectronics - Printed in Italy - All rights reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com 8/8