IRFP21N60L, SiHFP21N60L Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Superfast Body Diode Eliminates the Need for External Diodes in ZVS Applications 600 RDS(on) (Ω) VGS = 10 V 0.27 Qg (Max.) (nC) 150 Qgs (nC) 46 Qgd (nC) 64 Configuration Available • Lower Gate Charge Results in Simple Drive RoHS* COMPLIANT Requirements • Enhanced dV/dt Capabilities Offer Improved Ruggedness • Higher Gate Voltage Threshold Offers Improved Noise Immunity Single D • Lead (Pb)-free Available TO-247 APPLICATIONS • Zero Voltage Switching SMPS G • Telecom and Server Power Supplies • Uniterruptible Power Supplies S • Motor Control Applications D G S N-Channel MOSFET ORDERING INFORMATION Package TO-247 IRFP21N60LPbF SiHFP21N60L-E3 IRFP21N60L SiHFP21N60L Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 600 Gate-Source Voltage VGS ± 30 Continuous Drain Current VGS at 10 V TC = 25 °C ID TC = 100 °C Pulsed Drain Currenta UNIT V 21 13 A IDM 84 2.6 W/°C Single Pulse Avalanche Energyb EAS 420 mJ Repetitive Avalanche Currenta IAR 21 A Repetitive Avalanche Energya EAR 33 mJ Linear Derating Factor Maximum Power Dissipation TC = 25 °C PD 330 W dV/dt 16 V/ns TJ, Tstg - 55 to + 150 Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque for 10 s 6-32 or M3 screw 300d °C 10 lbf · in 1.1 N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 1.9 mH, RG = 25 Ω, IAS = 21 A, dV/dt = 11 V/ns (see fig. 12a). c. ISD ≤ 21 A, dI/dt ≤ 530 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91206 S-81273-Rev. B, 16-Jun-08 www.vishay.com 1 IRFP21N60L, SiHFP21N60L Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER Maximum Junction-to-Ambient Case-to-Sink, Flat, Greased Surface Maximum Junction-to-Case (Drain) SYMBOL TYP. MAX. UNIT RthJA RthCS RthJC 0.24 - 40 0.38 °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage VDS VGS = 0 V, ID = 250 µA 600 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 420 - mV/°C VGS(th) VDS = VGS, ID = 250 µA 3.0 - 5.0 V Gate-Source Leakage IGSS VGS = ± 30 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 600 V, VGS = 0 V - - 50 µA VDS = 480 V, VGS = 0 V, TJ = 125 °C - - 2.0 mA - 0.27 0.32 Ω VDS = 50 V, ID = 13 A 11 - - S Drain-Source On-State Resistance RDS(on) Forward Transconductance gfs ID = 13 Ab VGS = 10 V Dynamic Input Capacitance Ciss VGS = 0 V, - 4000 - Output Capacitance Coss VDS = 25 V, - 340 - Crss f = 1.0 MHz, see fig. 5 - 29 - - 170 - - 130 - - - 150 - - 46 - - 64 Reverse Transfer Capacitance Effective Output Capacitance Coss eff. Effective Output Capacitance (Energy Related) Coss eff. (ER) Total Gate Charge Qg Gate-Source Charge Qgs Gate-Drain Charge Qgd Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time VGS = 0 V, VDS = 0 V to 480 Vc RG td(on) tr td(off) tf VGS = 10 V ID = 21 A, VDS = 480 V see fig. 7 and 15b f = 1 MHz, open drain VDD = 300 V, ID = 21 A, RG = 1.3 Ω, VGS = 10 V, see fig. 11a and 11bb - 0.63 - - 20 - - 58 - - 33 - - 10 - - - 21 - - 84 pF nC Ω ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Reverse Recovery Time IRRM MOSFET symbol showing the integral reverse p - n junction diode D A G S TJ = 25 °C, IS = 21 A, VGS = 0 Vb - - 1.5 TJ = 25 °C, IF = 21 A - 160 240 TJ = 125 °C, dI/dt = 100 A/µsb - 400 610 TJ = 25 °C, IF = 21 A, VGS = 0 Vb - 480 730 TJ = 125 °C, dI/dt = 100 A/µsb - 1540 2310 TJ = 25 °C - 5.3 7.9 V ns nC A Forward Turn-On Time ton Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising form 0 to 80 % VDS. Coss eff. (ER) is a fixed capacitance that stores the same energy as Coss while VDS is rising from 0 to 80 % VDS. www.vishay.com 2 Document Number: 91206 S-81273-Rev. B, 16-Jun-08 IRFP21N60L, SiHFP21N60L Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 1000 1000 10 BOTTOM ID, Drain-to-Source Current (Α ) ID, Drain-to-Source Current (A) TOP 100 VGS 15V 12V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 1 0.1 5.5V 0.01 100 T J = 150°C 10 1 T J = 25°C 0.1 VDS = 50V 20µs PULSE WIDTH 20µs PULSE WIDTH Tj = 25°C 0.01 0.001 0.1 1 10 100 4 1000 Fig. 1 - Typical Output Characteristics 8 10 12 14 16 Fig. 3 - Typical Transfer Characteristics 3.0 100 BOTTOM 5.5V 1 0.1 20µs PULSE WIDTH Tj = 150°C ID = 21A 2.5 VGS = 10V 2.0 (Normalized) 10 VGS 15V 12V 10V 8.0V 7.0V 6.5V 6.0V 5.5V RDS(on) , Drain-to-Source On Resistance TOP ID, Drain-to-Source Current (A) 6 VGS , Gate-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) 1.5 1.0 0.5 0.0 0.01 0.1 1 10 100 -60 -40 -20 0 20 40 60 80 100 120 140 160 VDS, Drain-to-Source Voltage (V) T J , Junction Temperature (°C) Fig. 2 - Typical Output Characteristics Fig. 4 - Normalized On-Resistance vs. Temperature Document Number: 91206 S-81273-Rev. B, 16-Jun-08 www.vishay.com 3 IRFP21N60L, SiHFP21N60L Vishay Siliconix 12.0 100000 VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = Cgd VGS , Gate-to-Source Voltage (V) Coss = Cds + Cgd 10000 C, Capacitance(pF) ID= 21A Ciss 1000 Coss 100 Crss VDS= 120V 8.0 6.0 4.0 2.0 0.0 10 1 10 100 0 1000 20 VDS, Drain-to-Source Voltage (V) 40 60 80 100 120 Q G Total Gate Charge (nC) Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage 25 Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage ISD, Reverse Drain Current (A) 100.00 20 Energy (µJ) VDS= 480V VDS= 300V 10.0 15 10 5 T J = 150°C 10.00 T J = 25°C 1.00 VGS = 0V 0 0.10 0 100 200 300 400 500 600 700 VDS, Drain-to-Source Voltage (V) Fig. 6 - Typical Output Capacitance Stored Energy vs. VDS www.vishay.com 4 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VSD, Source-to-Drain Voltage (V) Fig. 8 - Typical Source-Drain Diode Forward Voltage Document Number: 91206 S-81273-Rev. B, 16-Jun-08 IRFP21N60L, SiHFP21N60L Vishay Siliconix ID, Drain-to-Source Current (A) 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) RD VDS 100 VGS D.U.T. RG 10 100µsec + - VDD 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 1msec 1 Tc = 25°C Tj = 150°C Single Pulse Fig. 11a - Switching Time Test Circuit 10msec 0.1 1 10 100 1000 10000 VDS, Drain-to-Source Voltage (V) Fig. 9 - Maximum Safe Operating Area VDS 25 90 % ID, Drain Current (A) 20 10 % VGS 15 td(on) td(off) tf tr Fig. 11b - Switching Time Waveforms 10 5 0 25 50 75 100 125 150 T C , Case Temperature (°C) Fig. 10 - Maximum Drain Current vs. Case Temperature Thermal Response ( Z thJC ) 1 D = 0.50 0.1 0.20 0.10 0.05 0.01 0.02 0.01 P DM t1 0.001 t2 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty factor D = 2. Peak T t1/ t 2 J = P DM x Z thJC +T C 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 12 - Maximum Effective Transient Thermal Impedance, Junction-to-Case Document Number: 91206 S-81273-Rev. B, 16-Jun-08 www.vishay.com 5 IRFP21N60L, SiHFP21N60L Vishay Siliconix 5.0 VDS VGS(th) Gate threshold Voltage (V) tp 4.0 ID = 250µA 3.0 IAS Fig. 14c - Unclamped Inductive Waveforms 2.0 Current regulator Same type as D.U.T. 50 kΩ 1.0 -75 -50 -25 0 25 50 75 100 125 150 12 V 0.2 µF 0.3 µF T J , Temperature ( °C ) + Fig. 13 - Threshold Voltage vs. Temperature D.U.T. VDS VGS 800 EAS , Single Pulse Avalanche Energy (mJ) - ID 9.4A 13A BOTTOM 21A 700 3 mA TOP 600 IG ID Current sampling resistors Fig. 15a - Gate Charge Test Circuit 500 400 300 QG 200 VGS 100 QGS QGD 0 25 50 75 100 125 150 VG Starting T J , Junction Temperature (°C) Fig. 14a - Maximum Avalanche Energy vs. Drain Current Charge Fig. 15b - Basic Gate Charge Waveform 15 V L VDS D.U.T RG IAS 20 V tp Driver + A - VDD A 0.01 Ω Fig. 14b - Unclamped Inductive Test Circuit www.vishay.com 6 Document Number: 91206 S-81273-Rev. B, 16-Jun-08 IRFP21N60L, SiHFP21N60L Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG • • • • dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 16 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91206. Document Number: 91206 S-81273-Rev. B, 16-Jun-08 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1