STMICROELECTRONICS STPS1H100A

STPS1H100
®
HIGH VOLTAGE POWER SCHOTTKY RECTIFIER
Table 1: Main Product Characteristics
IF(AV)
1A
VRRM
100 V
Tj (max)
175°C
VF(max)
0.62 V
FEATURES AND BENEFITS
■
■
■
■
■
SMA
(JEDEC DO-214AC)
STPS1H100A
Negligible switching losses
High junction temperature capability
Low leakage cuurent
Good trade-off between leakage current and
forward voltage drop
Avalanche capability specified
DESCRIPTION
Table 2: Order Codes
Part Number
STPS1H100A
STPS1H100U
Schottky rectifiers designed for high frequency
miniature Switched Mode Power Supplies such as
adaptators and on board DC/DC converters.
Packaged in SMA or SMB.
SMB
(JEDEC DO-214AA)
STPS1H100U
Marking
S11
G11
Table 3: Absolute Ratings (limiting values)
Symbol
Parameter
VRRM Repetitive peak reverse voltage
IF(RMS) RMS forward voltage
Value
100
Unit
V
10
A
IF(AV)
Average forward current
TL = 160°C δ = 0.5
1
A
IFSM
Surge non repetitive forward current
tp = 10ms sinusoidal
50
A
IRRM
Repetitive peak reverse current
tp = 2µs F = 1kHz square
1
A
IRSM
Non repetitive peak reverse current
tp = 100µs square
1
A
PARM
Repetitive peak avalanche power
tp = 1µs Tj = 25°C
1500
W
Tstg
Tj
dV/dt
Storage temperature range
Maximum operating junction temperature *
Critical rate of rise of reverse voltage
-65 to + 175
°C
175
10000
°C
V/µs
dPt ot
1
* : --------------- > -------------------------- thermal runaway condition for a diode on its own heatsink
dTj
Rth ( j – a )
August 2004
REV. 5
1/7
STPS1H100
Table 4: Thermal Resistance
Symbol
Parameter
Rth(j-l)
Value
30
25
SMA
SMB
Junction to lead
Unit
°C/W
Table 5: Static Electrical Characteristics
Symbol
Parameter
Tests conditions
Tj = 25°C
VR = VRRM
Reverse leakage current
Tj = 125°C
IR *
Tj = 25°C
VF **
Tj = 125°C
Forward voltage drop
Tj = 25°C
Tj = 125°C
Min.
Typ
Max.
4
Unit
µA
0.2
0.5
mA
0.77
IF = 1A
0.58
0.62
V
0.86
IF = 2A
0.65
0.7
* tp = 5 ms, δ < 2%
Pulse test:
** tp = 380 µs, δ < 2%
2
To evaluate the conduction losses use the following equation: P = 0.54 x IF(AV) + 0.08 IF (RMS)
Figure 1: Average forward power dissipation
versus average forward current
Figure 2: Average forward current versus
ambient temperature (δ = 0.5)
IF(AV)(A)
PF(AV)(W)
1.2
0.8
0.7
δ = 0.1
δ = 0.05
δ = 0.5
δ = 0.2
Rth(j-a)=Rth(j-I)
1.0
0.6
δ=1
0.8
Rth(j-a)=120°C/W
0.5
0.6
0.4
Rth(j-a)=100°C/W
0.3
0.4
T
0.2
T
0.2
0.1
IF(AV)(A)
δ=tp/T
0.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Figure 3: Normalized avalanche
derating versus pulse duration
tp
1.1
1.2
power
δ=tp/T
0.0
0
20
Tamb(°C)
tp
40
60
80
100
120
140
Figure 4: Normalized avalanche
derating versus junction temperature
PARM(tp)
PARM(1µs)
160
180
power
PARM(tp)
PARM(25°C)
1
1.2
1
0.1
0.8
0.6
0.4
0.01
0.2
0.001
0.01
2/7
Tj(°C)
tp(µs)
0.1
1
0
10
100
1000
25
50
75
100
125
150
STPS1H100
Figure 5: Non repetitive surge peak forward
current versus overload duration (maximum
values) (SMA)
Figure 6: Non repetitive surge peak forward
current versus overload duration (maximum
values) (SMB)
IM(A)
IM(A)
10
8
9
7
8
6
7
5
Ta=25°C
4
Ta=75°C
Ta=25°C
6
5
Ta=75°C
4
3
3
2
Ta=110°C
IM
1
1E-2
t
1
t(s)
δ=0.5
0
1E-3
1E-1
1E+0
Figure 7: Relative variation of thermal
impedance junction to ambient versus pulse
duration (epoxy printed circuit board,
e(Cu)=35µm, recommended pad layout) (SMA)
Ta=110°C
IM
2
t
t(s)
δ=0.5
0
1E-3
1E-2
1E-1
1E+0
Figure 8: Relative variation of thermal
impedance junction to ambient versus pulse
duration (epoxy printed circuit board,
e(Cu)=35µm, recommended pad layout) (SMB)
Zth(j-c)/Rth(j-c)
Zth(j-c)/Rth(j-c)
1.00
1.00
δ = 0.5
δ = 0.5
δ = 0.2
δ = 0.2
δ = 0.1
δ = 0.1
0.10
0.10
Single pulse
T
Single pulse
δ=tp/T
tp(s)
0.01
1E-3
1E-2
1E-1
T
1E+0
1E+1
tp(s)
tp
1E+2
5E+2
Figure 9: Reverse leakage current versus
reverse voltage applied (typical values)
0.01
1E-3
1E-2
1E-1
1E+0
δ=tp/T
1E+1
tp
1E+2
5E+2
Figure 10: Junction capacitance versus
reverse voltage applied (typical values)
C(pF)
IR(µA)
100
2E+2
1E+2
Tj=125°C
F=1MHz
Tj=25°C
1E+1
50
1E+0
1E-1
20
Tj=25°C
1E-2
VR(V)
VR(V)
1E-3
10
0
10
20
30
40
50
60
70
80
90
100
1
10
100
3/7
STPS1H100
Figure 11: Forward voltage drop versus
forward current (maximum values)
Figure 12: Thermal resistance junction to
ambient versus copper surface under each
lead (Epoxy printed circuit board FR4, copper
thickness: 35µm) (SMA)
IFM(A)
Rth(j-a)(°C/W)
2E+1
140
1E+1
130
120
Tj=125°C
110
Tj=25°C
100
1E+0
90
80
70
60
1E-1
50
40
20
1E-2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
Figure 13: Thermal resistance junction to
ambient versus copper surface under each
lead (Epoxy printed circuit board FR4, copper
thickness: 35µm) (SMB)
Rth(j-a)(°C/W)
120
110
100
90
80
70
60
50
40
30
S(Cu)(cm²)
20
0.0
4/7
0.5
1.0
1.5
2.0
2.5
S(Cu)(cm²)
30
VFM(V)
3.0
3.5
4.0
4.5
5.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
STPS1H100
Figure 14: SMA Package Mechanical Data
DIMENSIONS
REF.
E1
D
E
A1
A2
C
L
b
Millimeters
Inches
Min.
Max.
Min.
Max.
A1
1.90
2.03
0.075
0.080
A2
0.05
0.20
0.002
0.008
b
1.25
1.65
0.049
0.065
c
0.15
0.41
0.006
0.016
E
4.80
5.60
0.189
0.220
E1
3.95
4.60
0.156
0.181
D
2.25
2.95
0.089
0.116
L
0.75
1.60
0.030
0.063
Figure 15: SMA Foot Print Dimensions
(in millimeters)
1.65
1.45
2.40
1.45
5/7
STPS1H100
Figure 16: SMB Package Mechanical Data
DIMENSIONS
REF.
E1
D
Millimeters
Inches
Min.
Max.
Min.
Max.
A1
1.90
2.45
0.075
0.096
A2
0.05
0.20
0.002
0.008
b
1.95
2.20
0.077
0.087
c
0.15
0.41
0.006
0.016
E
5.10
5.60
0.201
0.220
E1
4.05
4.60
0.159
0.181
D
3.30
3.95
0.130
0.156
L
0.75
1.60
0.030
0.063
E
A1
A2
C
L
b
Figure 17: SMB Foot Print Dimensions
(in millimeters)
2.3
1.52
6/7
2.75
1.52
STPS1H100
Table 6: Ordering Information
Ordering type
STPS1H100A
STPS1H100U
■
■
Marking
S11
G11
Package
SMA
SMB
Weight
0.068 g
0.107 g
Base qty
5000
2500
Delivery mode
Tape & reel
Tape & reel
Band indicates cathode
Epoxy meets UL94, V0
Table 7: Revision History
Date
Jul-2003
Revision
4A
Aug-2004
5
Description of Changes
Last update.
SMA package dimensions update. Reference A1 max.
changed from 2.70mm (0.106inc.) to 2.03mm (0.080).
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
7/7