STPS1H100 ® HIGH VOLTAGE POWER SCHOTTKY RECTIFIER Table 1: Main Product Characteristics IF(AV) 1A VRRM 100 V Tj (max) 175°C VF(max) 0.62 V FEATURES AND BENEFITS ■ ■ ■ ■ ■ SMA (JEDEC DO-214AC) STPS1H100A Negligible switching losses High junction temperature capability Low leakage cuurent Good trade-off between leakage current and forward voltage drop Avalanche capability specified DESCRIPTION Table 2: Order Codes Part Number STPS1H100A STPS1H100U Schottky rectifiers designed for high frequency miniature Switched Mode Power Supplies such as adaptators and on board DC/DC converters. Packaged in SMA or SMB. SMB (JEDEC DO-214AA) STPS1H100U Marking S11 G11 Table 3: Absolute Ratings (limiting values) Symbol Parameter VRRM Repetitive peak reverse voltage IF(RMS) RMS forward voltage Value 100 Unit V 10 A IF(AV) Average forward current TL = 160°C δ = 0.5 1 A IFSM Surge non repetitive forward current tp = 10ms sinusoidal 50 A IRRM Repetitive peak reverse current tp = 2µs F = 1kHz square 1 A IRSM Non repetitive peak reverse current tp = 100µs square 1 A PARM Repetitive peak avalanche power tp = 1µs Tj = 25°C 1500 W Tstg Tj dV/dt Storage temperature range Maximum operating junction temperature * Critical rate of rise of reverse voltage -65 to + 175 °C 175 10000 °C V/µs dPt ot 1 * : --------------- > -------------------------- thermal runaway condition for a diode on its own heatsink dTj Rth ( j – a ) August 2004 REV. 5 1/7 STPS1H100 Table 4: Thermal Resistance Symbol Parameter Rth(j-l) Value 30 25 SMA SMB Junction to lead Unit °C/W Table 5: Static Electrical Characteristics Symbol Parameter Tests conditions Tj = 25°C VR = VRRM Reverse leakage current Tj = 125°C IR * Tj = 25°C VF ** Tj = 125°C Forward voltage drop Tj = 25°C Tj = 125°C Min. Typ Max. 4 Unit µA 0.2 0.5 mA 0.77 IF = 1A 0.58 0.62 V 0.86 IF = 2A 0.65 0.7 * tp = 5 ms, δ < 2% Pulse test: ** tp = 380 µs, δ < 2% 2 To evaluate the conduction losses use the following equation: P = 0.54 x IF(AV) + 0.08 IF (RMS) Figure 1: Average forward power dissipation versus average forward current Figure 2: Average forward current versus ambient temperature (δ = 0.5) IF(AV)(A) PF(AV)(W) 1.2 0.8 0.7 δ = 0.1 δ = 0.05 δ = 0.5 δ = 0.2 Rth(j-a)=Rth(j-I) 1.0 0.6 δ=1 0.8 Rth(j-a)=120°C/W 0.5 0.6 0.4 Rth(j-a)=100°C/W 0.3 0.4 T 0.2 T 0.2 0.1 IF(AV)(A) δ=tp/T 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Figure 3: Normalized avalanche derating versus pulse duration tp 1.1 1.2 power δ=tp/T 0.0 0 20 Tamb(°C) tp 40 60 80 100 120 140 Figure 4: Normalized avalanche derating versus junction temperature PARM(tp) PARM(1µs) 160 180 power PARM(tp) PARM(25°C) 1 1.2 1 0.1 0.8 0.6 0.4 0.01 0.2 0.001 0.01 2/7 Tj(°C) tp(µs) 0.1 1 0 10 100 1000 25 50 75 100 125 150 STPS1H100 Figure 5: Non repetitive surge peak forward current versus overload duration (maximum values) (SMA) Figure 6: Non repetitive surge peak forward current versus overload duration (maximum values) (SMB) IM(A) IM(A) 10 8 9 7 8 6 7 5 Ta=25°C 4 Ta=75°C Ta=25°C 6 5 Ta=75°C 4 3 3 2 Ta=110°C IM 1 1E-2 t 1 t(s) δ=0.5 0 1E-3 1E-1 1E+0 Figure 7: Relative variation of thermal impedance junction to ambient versus pulse duration (epoxy printed circuit board, e(Cu)=35µm, recommended pad layout) (SMA) Ta=110°C IM 2 t t(s) δ=0.5 0 1E-3 1E-2 1E-1 1E+0 Figure 8: Relative variation of thermal impedance junction to ambient versus pulse duration (epoxy printed circuit board, e(Cu)=35µm, recommended pad layout) (SMB) Zth(j-c)/Rth(j-c) Zth(j-c)/Rth(j-c) 1.00 1.00 δ = 0.5 δ = 0.5 δ = 0.2 δ = 0.2 δ = 0.1 δ = 0.1 0.10 0.10 Single pulse T Single pulse δ=tp/T tp(s) 0.01 1E-3 1E-2 1E-1 T 1E+0 1E+1 tp(s) tp 1E+2 5E+2 Figure 9: Reverse leakage current versus reverse voltage applied (typical values) 0.01 1E-3 1E-2 1E-1 1E+0 δ=tp/T 1E+1 tp 1E+2 5E+2 Figure 10: Junction capacitance versus reverse voltage applied (typical values) C(pF) IR(µA) 100 2E+2 1E+2 Tj=125°C F=1MHz Tj=25°C 1E+1 50 1E+0 1E-1 20 Tj=25°C 1E-2 VR(V) VR(V) 1E-3 10 0 10 20 30 40 50 60 70 80 90 100 1 10 100 3/7 STPS1H100 Figure 11: Forward voltage drop versus forward current (maximum values) Figure 12: Thermal resistance junction to ambient versus copper surface under each lead (Epoxy printed circuit board FR4, copper thickness: 35µm) (SMA) IFM(A) Rth(j-a)(°C/W) 2E+1 140 1E+1 130 120 Tj=125°C 110 Tj=25°C 100 1E+0 90 80 70 60 1E-1 50 40 20 1E-2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Figure 13: Thermal resistance junction to ambient versus copper surface under each lead (Epoxy printed circuit board FR4, copper thickness: 35µm) (SMB) Rth(j-a)(°C/W) 120 110 100 90 80 70 60 50 40 30 S(Cu)(cm²) 20 0.0 4/7 0.5 1.0 1.5 2.0 2.5 S(Cu)(cm²) 30 VFM(V) 3.0 3.5 4.0 4.5 5.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 STPS1H100 Figure 14: SMA Package Mechanical Data DIMENSIONS REF. E1 D E A1 A2 C L b Millimeters Inches Min. Max. Min. Max. A1 1.90 2.03 0.075 0.080 A2 0.05 0.20 0.002 0.008 b 1.25 1.65 0.049 0.065 c 0.15 0.41 0.006 0.016 E 4.80 5.60 0.189 0.220 E1 3.95 4.60 0.156 0.181 D 2.25 2.95 0.089 0.116 L 0.75 1.60 0.030 0.063 Figure 15: SMA Foot Print Dimensions (in millimeters) 1.65 1.45 2.40 1.45 5/7 STPS1H100 Figure 16: SMB Package Mechanical Data DIMENSIONS REF. E1 D Millimeters Inches Min. Max. Min. Max. A1 1.90 2.45 0.075 0.096 A2 0.05 0.20 0.002 0.008 b 1.95 2.20 0.077 0.087 c 0.15 0.41 0.006 0.016 E 5.10 5.60 0.201 0.220 E1 4.05 4.60 0.159 0.181 D 3.30 3.95 0.130 0.156 L 0.75 1.60 0.030 0.063 E A1 A2 C L b Figure 17: SMB Foot Print Dimensions (in millimeters) 2.3 1.52 6/7 2.75 1.52 STPS1H100 Table 6: Ordering Information Ordering type STPS1H100A STPS1H100U ■ ■ Marking S11 G11 Package SMA SMB Weight 0.068 g 0.107 g Base qty 5000 2500 Delivery mode Tape & reel Tape & reel Band indicates cathode Epoxy meets UL94, V0 Table 7: Revision History Date Jul-2003 Revision 4A Aug-2004 5 Description of Changes Last update. SMA package dimensions update. Reference A1 max. changed from 2.70mm (0.106inc.) to 2.03mm (0.080). Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 7/7