STMICROELECTRONICS STV1389AQ

STV1389AQ
CABLE DRIVER FOR DIGITAL TRANSFER
.
.
.
.
.
1 DIFFERENTIAL INPUT, 3 DIFFERENTIAL
OUTPUTS
SUFFICIENT DRIVE CAPABILITY FOR A
300m LENGTH COAXIAL CABLE
STABILITY DUE TO MINIMAL WAVEFORM
DISTORTION
BIPOLAR SILICON MONOLITHIC IC
APPLICATIONS
DATA TRANSFER BETWEEN DIGITAL SIGNAL PROCESSING EQUIPMENT
QFP32
(Plastic Package)
ORDER CODE : STV1389AQ
DESCRIPTION
The STV1389AQ offers in a single-chip a complete
IC driver for digital data transfer.
November 1992
3A
GND
GND
2B
N.C.
GND5
GND4
24
23
22
21
20
19
18
17
3B
27
14
VEE
N.C.
28
13
VEE
GND
29
12
VEE
GND
30
11
VEE
N.C.
31
10
N.C.
1A
32
9
INX
1
2
3
4
5
6
7
8
N.C.
N.C.
INY
15
GND
26
GND
GND7
GND
2A
1B
16
GND3
25
GND2
GND6
1389-01.EPS
N.C.
PIN CONNECTIONS
1/7
STV1389AQ
PIN DESCRIPTION
Pin
Number
Symbol
Standard
DC
Voltage
Equivalent Circuit
Description
GND
180 Ω
7
1mA
2k Ω
7
9
INY
INX
- 2.7V
Input pin of the differential
amplifier. Input executed after DC
portion is cut off.
2k Ω
1mA
9
1389-02.EPS
180 Ω
VEE
GND
2/7
1A
1B
2A
2B
3A
3B
1k Ω
-
Collector of the emitter follower
output Tr.
Connect to GND.
1
2
17
18
25
26
- 2.7V
1mA
VEE
32
3
16
20
23
27
Emitter of emitter follower output
Tr.
To use, connect pull-down
resistor. (Even when only 1 side is
used pull-down is executed In
pairs.)
Pairs 32 16 23
3
20 27
1389-01.TBL
32
3
16
20
23
27
GND2
GND3
GND4
GND5
GND6
GND7
1389-03.EPS
1
2
17
18
25
26
STV1389AQ
BLOCK DIAGRAM
N.C.
3A
GND
GND
2B
N.C.
24
23
22
21
20
19
GND5 GND4
18
17
GND6 25
16 2A
GND7 26
15 N.C.
1.6Vp-p
When the below input is applied
between INX and INY, in-phase
1.6Vp-p is output at 1A, 2A and 3A.
In reversed phase, 1.6Vp-p is output
at 1B, 2B and 3B.
* Various output pins are connected
as indicated below.
-5V
3B 27
14 VEE
Co-axial cable
0.1µF
N.C. 28
13 VEE
GND 29
12 VEE
GND 30
11 VEE
150 Ω
75 Ω
-5V
BIAS
GEN
N.C. 31
10 N.C.
1A 32
9
INX
0.1µF
1
2
GND2 GND3
3
4
5
6
7
8
1B
GND
GND
GND
INY
N.C.
0.6Vp-p
0.1µF
1389-04.EPS
0.6Vp-p
ABSOLUTE MAXIMUM RATINGS
Parameter
VCC
Supply Voltage
Tstg
Storage Temperature
PD
Allowable Power Dissipation
Value
Unit
7.0
V
o
- 65, + 150
C
500
mW
Value
Unit
1389-02.TBL
Symbol
Symbol
Parameter
VCC
Supply Voltage
4.8 to 5.2
V
Topr
Operating Temperature
- 20, + 75
o
C
1389-03.TBL
OPERATING CONDITIONS
Bias Conditio ns
V INY
V INX
SW
ON
Pin Voltage INY
-
-
-
Pin Voltage INX
-
-
-
A1-1
PIn Voltage 1A
-
-
-
B1-1
Pin Voltage 1B
-
-
-
Pin 32 Test of pin voltage
Pin 3
A2-1
PIn Voltage 2A
-
-
-
Pin 16
B2-1
Pin Voltage 2B
-
-
-
Pin 3
Symbol
Parameter
V1
V2
Test
Point
Test
Min.
Typ.
Max.
Unit
Pin 7
- 2.9
- 2.7
- 2.5
V
PIn 9
- 2.9
- 2.7
- 2.5
V
- 3.1
- 2.7
- 2.5
V
- 3.1
- 2.7
- 2.5
V
- 3.1
- 2.7
- 2.5
V
- 3.1
- 2.7
- 2.5
V
3/7
1389-04.TBL
ELECTRICAL CHARACTERISTICS
STV1389AQ
ELECTRICAL CHARACTERISTICS (TA = 25oC)
SW
ON
Test
Point
Parameter
A3-1
PIn Voltage 3A
-
-
-
Pin 23
B3-1
Pin Voltage 3B
-
-
-
Pin 27
IEE
Current Power
Supply
-
-
-
VEE
A1-2
DC applied 1A
V1 + 0.2
V2 - 0.2
B1-2
DC applied 1B
↓
↓
A2-2
DC applied 2A
↓
↓
B2-2
DC applied 2B
↓
↓
A3-2
DC applied 3A
↓
↓
B3-2
DC applied 3B
↓
↓
V1-1
Amplitude
1A + 1B
Calculation
V2-1
Amplitude
2A + 2B
Calculation
V3-1
Amplitude
3A + 3B
Calculation
-
Amplitude
1A/1B
Calculation
-
Amplitude
2A/2B
Calculation
-
Amplitude
3A/3B
Calculation
V INY
V INX
Test
Test of pin voltage
Current power supply at
VEE
Pin 32 Output DC voltage is
Pin 3 tested when +0.2V is
applied to INY and - 0.2V
to INX.
SW1 Pin 16 (A1-2) = Test value - (A1-1)
SW2 Pin 20 (B1-2) = Test value - (B1-1)
The difference with the
previous pin voltage is
Pin 23 recorded. Same for A2-2,
Pin 27 B2-2, A3-2, B3-2
Min.
Typ. Max. Unit
- 3.1
- 2.7
- 2.5
V
- 3.1
- 2.7
- 2.5
V
- 77
mA
- 143
0.31
0.39
0.47
V
0.47
0.39
0.31
V
0.31
0.39
0.47
V
0.47
0.39
0.31
V
0.31
0.39
0.47
V
0.47
0.39
0.31
V
0.65
0.75
0.85
V
0.65
0.75
0.85
V
0.65
0.75
0.85
V
0.85
1.0
1.15
-
0.85
1.0
1.15
-
0.85
1.0
1.15
-
Pin 32 Output DC voltage is
- 0.9
tested when - 0.4V is
Pin 3 applied to INY and + 0.4V
0.6
to INX.
Pin
16
0.9
SW1
(A1-3) = Test value - (A1-1)
SW2
(B1-3) = Test value - (B1-1)
Pin 20 The difference with the
0.6
previous pin voltage is
Pin 23 recorded. Same for A2-3,
- 0.9
B2-3, A3-3, B3-3
Pin 27
0.6
0.75
- 0.6
V
0.75
0.9
V
0.75
- 0.6
V
A1-3
DC applied 1A’
V1 - 0.4
V1 + 0.4
B1-3
DC applied 1B’
↓
↓
A2-3
DC applied 2A’
↓
↓
B2-3
DC applied 2B’
↓
↓
A3-3
DC applied 3A’
↓
↓
B3-3
DC applied 3B’
↓
↓
V1-2
Amplitud’e
1A’ + 1B
Calculation
V2-2
Amplitude
2A’ + 2B’
Calculation
V3-2
Amplitude
3A’ + 3B’
Calculation
-
Amplitude
1A’ + 1B’
Calculation
-
Amplitude
2A’ + 2B’
-
(V1-1) = (A1-2) - (B1-2)
Amplitude calculated from
T10 with T15 as base,
same for V2-1, V3-1.
(A1-2) / (B1-2)
0.75
0.9
V
0.75
- 0.6
V
0.75
0.9
V
1.3
1.5
1.7
V
1.3
1.5
1.7
V
1.3
1.5
1.7
V
(A1-3) / (B1-3)
0.85
1.0
1.15
V
Calculation
(A2-3) / (B2-3)
0.85
1.0
1.15
V
Amplitude
3A’ + 3B’
Calculation
(A3-3) / (B3-3)
0.85
1.0
1.15
V
V1-3
Linearity 1
Calculation
(V1-2) / (V1-1)
1.7
1.9
2.1
V
V2-3
Linearity 2
Calculation
(V2-2) / (V1-1)
1.7
1.9
2.1
V
V3-3
Linearity 3
Calculation
(V3-2) / (V1-1)
1.7
1.9
2.1
V
4/7
(V1-2) = (A1-3) + (B1-3)
Amplitude calculated from
T22 with T27 as base,
same for V2-2, V3-2.
1389-05.TBL
Bias Conditions
Symbol
STV1389AQ
TEST CIRCUIT
150 Ω
24
23
150 Ω
22
21
20
3A
19
18
17
2B
150 Ω
25
16
2A
26
15
150 Ω
27
-5V
3B
-5V
14
VEE
28
13
29
12
30
11
BIAS
GEN
31
10
SW2
1A
150 Ω
32
9
1B
INX B
INY A
2
3
4
5
6
7
150 Ω
V INX
8
SW1
1389-05.EPS
1
V INY
DESCRIPTION OF OPERATION
The STV1389AQ consists of 3 differential amplifier
with a common input and a bias generator, and
three differential outputs. Each amplifiers provides
a 6dB gain and is configured as a differential output
feeding the bases of a pair of current boosting
on-chip emitter follower transistors. The differential
input pins are internally biased and the input signal
is ac-coupled to remove the D.C. component.
Between the output pins of each differential amplifier and the coaxial cable, an R-C network is con-
nected to remove D.C. component from the output
and for impedance matching. The series resistor
has a value of 68 to 75Ω to match a 75Ω coaxial
cable. In this manner a signal almost identitical in
level to the input signal is transferred to the coaxial
cable.
Optimum PCB layout and matching resistor value
are chosen to obtain good eye pattern design at the
input pins. This is necessary because the waveform distortion at the input pins is directly transferred to the output waveform.
DC cut
Matching resistor
0.1 µF 75 Ω
STV1389AQ
Matching resistor
0.1µF
150 Ω
Signal
source =
0.8Vpp
75 Ω
75 Ω
Co-axial cable
- 5V
0.1µF
150 Ω
0.1µF
BIAS
GEN
0.6V
6dB
Differential
amplifier
0.1 µF 75 Ω
To the other 2 channels
75 Ω
1389-06.EPS
DC cut
1.5V
5/7
6/7
1389-07.EPS
Block A
75 Ω 0.1 µF
0.1 µF
150 Ω
32
31
2
3
4
5
6
7
75 Ω 0.1 µF
-5V
150 Ω
INY A
-5V
2A
INX B
17
14
15
16
8
0.1 µF
-5V
220 Ω
*R2 10 Ω
*R1 10 Ω
10 / 16V
Tantalum
capacitor
*R3
150 Ω
0.1 µF
0.1 µF
-5V
220 Ω
4
3
Serial Encoder
STV1601A
Keep unused output pins (both collector an emitter) open.
Even when only one output side is in use, connect both
the pull-down resistance and the collector.
V = 200mV/div
H = 1ns/div
Signal rate 270Mbps 75 Ω for terminatingpin
Exampleof output waveform
Since power consumptionis large, conceive a pattern takingdueconsideration
of the radiationfrom the PCB.
Keep the GND pin pattern as short as possible and provide sufficient GND.
A weak GND will cause unstable operation
The marked * resistor is altered through the PCB pattern.
Adjustment is performed to obtain a good eye pattern at Pins 7 and 9.
9
10
11
1B
18
30
BIAS
GEN
19
12
1
2B
20
STV1389AQ
Top View
21
29
1A
22
13
3B
3A
23
Same as Block A
28
27
26
25
24
Same as Block A
STV1389AQ
TEST CIRCUIT
STV1389AQ
PACKAGE MECHANICAL DATA
32 PINS - PLASTIC QUAD FLAT PACK
Dimensions in mm
9.0
7.0
0.2
0.3
0.1
24
1.5
0.35
0.15
0.15
17
25
16
8.0
9
1
0.8
0.3
0.15
0.10
0.1
8
0.12
M
0.127
0.1
0.05
0.2
0.1
0.50
PM-QFP32.EPS
32
0° - 10°
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility
for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result
from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics.
Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all
information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life
support devices or systems without express written approval of SGS-THOMSON Microelectronics.
 1994 SGS-THOMSON Microelectronics - All Rights Reserved
Purchase of I2C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips
I2C Patent. Rights to use these components in a I2C system, is granted provided that the system conforms to
the I2C Standard Specifications as defined by Philips.
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
7/7