STMICROELECTRONICS STW10NC60

STW10NC60
STH10NC60FI
N-CHANNEL 600V - 0.6Ω - 10A - TO-247/ISOWATT218
PowerMesh™II MOSFET
TYPE
STW10NC60
STH10NC60FI
■
■
■
■
■
VDSS
RDS(on)
ID
600 V
600 V
< 0.75 Ω
< 0.75 Ω
10 A
10 A (*)
TYPICAL RDS(on) = 0.6 Ω
EXTREMELY HIGH dv/dt CAPABILITY
100% AVALANCHE TESTED
NEW HIGH VOLTAGE BENCHMARK
GATE CHARGE MINIMIZED
DESCRIPTION
The PowerMESH™II is the evolution of the first
generation of MESH OVERLAY™. The layout refinements introduced greatly improve the Ron*area
figure of merit while keeping the device at the leading edge for what concerns swithing speed, gate
charge and ruggedness.
3
2
3
1
2
1
TO-247
ISOWATT218
INTERNAL SCHEMATIC DIAGRAM
APPLICATIONS
HIGH CURRENT, HIGH SPEED SWITCHING
■ SWITH MODE POWER SUPPLIES (SMPS)
■ DC-AC CONVERTERS FOR WELDING
EQUIPMENT AND UNINTERRUPTIBLE
POWER SUPPLIES AND MOTOR DRIVER
■
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Value
STW10NC60
VDS
VDGR
VGS
ID
ID
IDM (1)
PTOT
600
V
Drain-gate Voltage (RGS = 20 kΩ)
600
V
Gate- source Voltage
±30
V
Drain Current (continuous) at TC = 25°C
10
10 (*)
A
Drain Current (continuous) at TC = 100°C
6.3
6.3 (*)
A
Drain Current (pulsed)
40
40 (*)
A
Total Dissipation at TC = 25°C
160
60
W
Derating Factor
1.28
0.48
W/°C
Peak Diode Recovery voltage slope
VISO
Insulation Withstand Voltage (DC)
Tstg
Storage Temperature
Max. Operating Junction Temperature
(•)Pulse width limited by safe operating area
.
February 2002
STH10NC60FI
Drain-source Voltage (VGS = 0)
dv/dt
Tj
Unit
3.5
-
V/ns
2500
– 55 to 150
V
°C
(1)ISD ≤10A, di/dt ≤100A/µs, V DD ≤ V(BR)DSS, Tj ≤ TJMAX
(*) Limited only by Maximum Temperature Allowed
1/9
STW10NC60 / STH10NC60FI
THERMAL DATA
Rthj-case
Thermal Resistance Junction-case Max
Rthj-amb
Thermal Resistance Junction-ambient Max
Tl
TO-247
ISOWATT218
0.78
2.08
Maximum Lead Temperature For Soldering Purpose
°C/W
30
°C/W
300
°C
AVALANCHE CHARACTERISTICS
Symbol
Parameter
Max Value
Unit
IAR
Avalanche Current, Repetitive or Not-Repetitive
(pulse width limited by Tj max)
10
A
EAS
Single Pulse Avalanche Energy
(starting Tj = 25 °C, ID = IAR, VDD = 50 V)
820
mJ
ELECTRICAL CHARACTERISTICS (TCASE = 25 °C UNLESS OTHERWISE SPECIFIED)
OFF
Symbol
V(BR)DSS
IDSS
IGSS
Parameter
Test Conditions
Min.
Typ.
Max.
600
Unit
Drain-source
Breakdown Voltage
ID = 250 µA, VGS = 0
Zero Gate Voltage
Drain Current (VGS = 0)
VDS = Max Rating
1
µA
VDS = Max Rating, TC = 125 °C
50
µA
Gate-body Leakage
Current (VDS = 0)
VGS = ±30V
±100
nA
V
ON (1)
Symbol
Parameter
Test Conditions
VGS(th)
Gate Threshold Voltage
VDS = VGS, ID = 250µA
RDS(on)
Static Drain-source On
Resistance
VGS = 10V, ID = 4.5 A
Min.
Typ.
Max.
Unit
2
3
4
V
0.6
0.75
Ω
Typ.
Max.
Unit
DYNAMIC
Symbol
gfs (1)
2/9
Parameter
Forward Transconductance
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer
Capacitance
Test Conditions
VDS =20 V , ID = 4.5A
VDS = 25V, f = 1 MHz, VGS = 0
Min.
9
S
1420
pF
205
pF
35
pF
STW10NC60 / STH10NC60FI
ELECTRICAL CHARACTERISTICS (CONTINUED)
SWITCHING ON
Symbol
td(on)
tr
Parameter
Turn-on Delay Time
Rise Time
Qg
Total Gate Charge
Qgs
Gate-Source Charge
Qgd
Gate-Drain Charge
Test Conditions
Min.
VDD = 300V, ID = 4.5 A
RG = 4.7Ω VGS = 10V
(see test circuit, Figure 3)
VDD = 480V, ID = 9.0 A,
VGS = 10V
Typ.
Max.
Unit
20
ns
16
ns
55
77
nC
4.5
nC
31
nC
SWITCHING OFF
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
td(off)
tf
Turn-off Delay Time
Fall Time
VDD = 300 V, ID = 4.5 A
RG = 4.7Ω VGS = 10 V
(Resistive Load see, Figure 3)
64
32
ns
ns
tr(Voff)
tf
tc
Off-voltage Rise Time
Fall Time
Cross-over Time
VDD = 480V, ID = 9.0 A,
RG = 4.7Ω, VGS = 10V
(Inductive Load see, Figure 5)
19
13
32
ns
ns
ns
SOURCE DRAIN DIODE
Symbol
ISD
Parameter
Test Conditions
Min.
Typ.
Source-drain Current
ISDM (2)
Source-drain Current (pulsed)
VSD (1)
Forward On Voltage
ISD = 9 A, VGS = 0
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
ISD = 9 A, di/dt = 100A/µs,
VDD = 100V, Tj = 150°C
(see test circuit, Figure 5)
IRRM
Reverse Recovery Current
Max.
Unit
10
A
40
A
1.6
V
600
ns
4.7
µC
15.5
A
Note: 1. Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %.
2. Pulse width limited by safe operating area.
Safe Operating Area for TO-247
Safe Operating Area for ISOWATT218
3/9
STW10NC60 / STH10NC60FI
Thermal Impedance for TO-247
Output Characteristics
Transconductance
4/9
Thermal Impedance for ISOWATT218
Transfer Characteristics
Static Drain-source On Resistance
STW10NC60 / STH10NC60FI
Gate Charge vs Gate-source Voltage
Capacitance Variations
Normalized Gate Thereshold Voltage vs Temp.
Normalized On Resistance vs Temperature
Source-drain Diode Forward Characteristics
5/9
STW10NC60 / STH10NC60FI
Fig. 1: Unclamped Inductive Load Test Circuit
Fig. 2: Unclamped Inductive Waveform
Fig. 3: Switching Times Test Circuit For
Resistive Load
Fig. 4: Gate Charge test Circuit
Fig. 5: Test Circuit For Inductive Load Switching
And Diode Recovery Times
6/9
STW10NC60 / STH10NC60FI
TO-247 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
inch
MAX.
MIN.
0.19
TYP.
MAX.
A
4.85
5.15
0.20
D
2.20
2.60
0.08
0.10
E
0.40
0.80
0.015
0.03
F
1
1.40
0.04
0.05
F1
3
0.11
F2
2
0.07
F3
2
2.40
0.07
0.09
F4
3
3.40
0.11
0.13
G
10.90
0.43
H
15.45
15.75
0.60
0.62
L
19.85
20.15
0.78
0.79
L1
3.70
4.30
0.14
L2
L3
18.50
14.20
0.17
0.72
14.80
0.56
0.58
L4
34.60
1.36
L5
5.50
0.21
M
2
3
0.07
0.11
V
5º
5º
V2
60º
60º
Dia
3.55
3.65
0.14
0.143
7/9
STW10NC60 / STH10NC60FI
ISOWATT218 MECHANICAL DATA
DIM.
A
C
D
D1
E
F
F2
F3
G
H
L
L1
L2
L3
L4
L5
L6
N
R
DIA
MIN.
5.35
3.30
2.90
1.88
0.75
1.05
1.50
1.90
10.80
15.80
mm
TYP.
MAX.
5.65
3.80
3.10
2.08
0.95
1.25
1.70
2.10
11.20
16.20
MIN.
0.211
0.130
0.114
0.074
0.030
0.041
0.059
0.075
0.425
0.622
21.20
19.90
23.60
42.50
5.25
20.75
2.3
0.819
0.752
0.898
1.594
0.191
0.797
0.083
3.7
0.138
9
20.80
19.10
22.80
40.50
4.85
20.25
2.1
0.835
0.783
0.929
1.673
0.207
0.817
0.091
0.181
- Weight : 4.9 g (typ.)
- Maximum Torque (applied to mounting flange) Recommended: 0.8 Nm; Maximum: 1 Nm
- The side of the dissipator must be flat within 80 µm
8/9
MAX.
0.222
0.150
0.122
0.082
0.037
0.049
0.067
0.083
0.441
0.638
0.354
4.6
3.5
inch
TYP.
0.146
P025C/A
STW10NC60 / STH10NC60FI
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a trademark of STMicroelectronics
© 2001 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
9/9