MITSUBISHI SEMICONDUCTOR MGFS39E3336-01 3.3-3.6GHz HBT Integrated Circuit Specifications are subject to change without notice. Outline Drawing DESCRIPTION 6.0 (Lot. No) JAPAN 30 29 28 27 26 25 24 23 22 21 11 12 13 14 15 16 17 18 19 20 6.0 39E3336 30 29 28 27 26 25 24 23 22 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 InGaP HBT Device 6V Operation 30dBm Linear Output Power (64QAM, EVM=2.5%) 40dB Linear Gain Integrated Output Power Detector Integrated 1-bit 20dB Step Attenuator Surface Mount Package RoHS Compliant Package 1 2 3 4 5 6 7 8 9 10 40 39 38 37 36 35 34 33 32 31 FEATURES • • • • • • • • 0.9 40 39 38 37 36 35 34 3 33 32 1 31 MGFS39E3336 is a 4-stage GaAs RF amplifier Designed for WiMAX CPE. DIM in mm Top view APPLICATION IEEE802.16-2004 FUNCTIONAL BLOCK DIAGRAM Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i)placement of substitutive, auxiliary, circuits, (ii)use of non-flammable material or (iii)prevention against any malfunction or mishap. MITSUBISHI ELECTRIC CORP. (1/14) Rev.5.2 Sep. 30-2009 MITSUBISHI SEMICONDUCTOR MGFS39E3336-01 3.3-3.6GHz HBT Integrated Circuit Specifications are subject to change without notice. ABSOLUTE MAXIMUM RATINGS Symbol Vc1,Vc2,Vc3,Vc4 Vcb1-3,Vcb4 Vref Vcont Parameter Conditions Value Unit Supply Voltage - 8 V Reference Voltage - 3 V - 3.5 V ATT Control Voltage Ic1 80 mA Ic2 300 mA 300 mA Operation current Ic3 - Ic4 Pin Input Power Tj Tstg mA -3 dBm - Junction Temperature Tc(op) 2000 Operation Temperature Storage Temperature Pout<=30dBm Duty<=50% - 160 deg. C -40 to +85 deg.C -40 to +125 deg.C NOTE : Each maximum rating is guaranteed independently. Please take care that MGFS39E3336 is operated under these conditions at the worst case on your terminal. . ELECTRICAL CHARACTERISTICS(Ta=25°C) Symbol Parameter Test Conditions f Frequency Gp Gain Vcc=6V, Vref=2.85V Ict Total Collector Current Pout=30dBm EVM EVM 64QAM OFDM Modulation RLin Input Return Loss Duty Cycle <= 50% Vdet Power Detector Voltage ATT Control Gain Step NOTE : Zin=50 Ohm, Zout : Measured with application circuit ESD RATING Min 3.3 Limits Typ 43 1.2 2.5 10 1.7 26 Unit Max 3.6 GHz dB A % dB V dB : Class 2 (HBM) MOISTURE SENSITIVITY LEVEL THERMAL RESISTANCE : : Level 3 4 deg.C/W (The thermal resistance of the 4th stage is calculated as 5.5 deg.C/W ) MITSUBISHI ELECTRIC CORP. (2/14) Rev.5.2 Sep. 30-2009 MITSUBISHI SEMICONDUCTOR MGFS39E3336-01 3.3-3.6GHz HBT Integrated Circuit Specifications are subject to change without notice. PERFORMANCE DATA WiMAX OFDM 64QAM BW=10MHz signal input. Vcc=6V, Vref=2.85V, Vcont=0V, Duty 50%, Ta=25deg.C Power Gain vs. Output Power EVM vs. Output Power 50 10 3.3GHz 3.4GHz 3.5GHz 3.6GHz 9 8 45 EVM(%) Gp (dB) 7 40 3.3GHz 3.4GHz 3.5GHz 3.6GHz 35 6 5 4 3 2 1 30 0 15 20 25 30 35 15 20 Output Power (dBm) 25 30 35 30 35 Output Power (dBm) Collector Current vs. Output Power Detector Voltage vs. Output Power 3.0 2000 3.3GHz 3.4GHz 3.5GHz 3.6GHz 3.3GHz 3.4GHz 3.5GHz 3.6GHz 2.5 2.0 Ict (mA) Vdet (V) 1500 1.5 1.0 1000 0.5 0.0 500 15 20 25 30 35 15 20 25 Output Power (dBm) Output Power (dBm) Attenuator Performance 50 40 S21 (dB) 30 20 10 Vcont=0V 0 Vcont=3V -10 3.0 3.2 3.4 3.6 3.8 4.0 Frequency (GHz) MITSUBISHI ELECTRIC CORP. (3/14) Rev.5.2 Sep. 30-2009 MITSUBISHI SEMICONDUCTOR MGFS39E3336-01 3.3-3.6GHz HBT Integrated Circuit Specifications are subject to change without notice. Spectrum Emission Mask WiMAX OFDM 64QAM BW=10MHz signal input. Vcc=6V, Vref=2.85V, Vcont=0V, Duty=50%, Ta=25deg.C Po=30dBm, ETSI Mask: EqC-EMO=6 (Type G) * RBW 30 kHz * RBW 30 kHz * VBW 300 Hz * VBW 300 Hz Ref * Att 0 dBm * SWT 9.2 s 0 dB Ref 0 * SWT 9.2 s 0 dB 0 3.3GHz -10 1 RM * CLRWR * Att 0 dBm A SGL TRG -20 -30 -40 -40 EXT EXT -50 3DB 3DB -60 -60 -70 -70 10 10 -80 -80 -90 -90 -100 Center -100 3.3 GHz Date: 19.DEC.2008 5 MHz/ Span 50 MHz Center 15:58:15 3.4 GHz Date: 19.DEC.2008 5 MHz/ * VBW 300 Hz Ref * SWT 9.2 s 0 dB * Att 0 dBm * SWT 9.2 s 0 dB 0 0 3.5GHz -10 1 RM * CLRWR 50 MHz * RBW 30 kHz * VBW 300 Hz * Att 0 dBm Span 15:57:11 * RBW 30 kHz Ref A SGL TRG -20 3.6GHz -20 -30 -40 -40 TRG EXT -50 EXT -50 A SGL -10 1 RM * CLRWR -30 3DB 3DB -60 -60 -70 -70 10 10 -80 -80 -90 -90 -100 -100 Center 3.5 GHz 5 MHz/ Span Center 50 MHz SEM vs. Output Power Date: 19.DEC.2008 15:55:53 3.6 GHz Date: 19.DEC.2008 -10 5 MHz/ Span 50 MHz 15:54:20 -20 f=3.3GHz f=3.4GHz f=3.5GHz f=3.6GHz -15 -20 Spectrum Emission Mask (dBc) Spectrum Emission Mask (dBc) A SGL TRG -20 -30 -50 3.4GHz -10 1 RM * CLRWR 5M Hz offse t -25 -30 -35 7.14M Hz offse t -40 -45 -50 15 20 25 30 35 Output Power (dBm) f=3.3GHz f=3.4GHz f=3.5GHz f=3.6GHz -25 -30 -35 10.57M Hz offs e t -40 -45 -50 20M Hz offs e t -55 -60 15 20 25 30 35 Output Pow er (dBm) MITSUBISHI ELECTRIC CORP. (4/14) Rev.5.2 Sep. 30-2009 MITSUBISHI SEMICONDUCTOR MGFS39E3336-01 3.3-3.6GHz HBT Integrated Circuit Specifications are subject to change without notice. Temperature Dependence WiMAX OFDM 64QAM BW=10MHz signal input. Vcc=6V, Vref=2.85V, Vcont=0V, Duty 50%, f=3.5GHz Power Gain vs. Output Power f=3.3GHz 50 45 Gp (dB) 45 Gp (dB) f=3.4GHz 50 40 -40deg.C 0deg.C +25deg.C +60deg.C +85deg.C 35 40 -40deg.C 0deg.C +25deg.C +60deg.C +85deg.C 35 30 30 15 20 25 30 15 35 20 25 f=3.5GHz 30 35 f=3.6GHz 50 45 45 Gp (dB) Gp (dB) 35 Output Power (dBm) Output Power (dBm) 50 30 40 -40deg.C 0deg.C +25deg.C +60deg.C +85deg.C 35 40 -40deg.C 0deg.C +25deg.C +60deg.C +85deg.C 35 30 30 15 20 25 30 35 15 20 Output Power (dBm) 25 Output Power (dBm) EVM vs. Output Power f=3.3GHz 10 -40deg.C 0deg.C +25deg.C +60deg.C +85deg.C 9 8 -40deg.C 0deg.C +25deg.C +60deg.C +85deg.C 9 8 7 6 EVM(%) EVM(%) 7 f=3.4GHz 10 5 4 6 5 4 3 3 2 2 1 1 0 0 15 20 25 30 35 15 20 25 30 35 Output Power (dBm) Output Power (dBm) MITSUBISHI ELECTRIC CORP. (5/14) Rev.5.2 Sep. 30-2009 MITSUBISHI SEMICONDUCTOR MGFS39E3336-01 3.3-3.6GHz HBT Integrated Circuit Specifications are subject to change without notice. f=3.5GHz 10 -40deg.C 0deg.C +25deg.C +60deg.C +85deg.C 9 8 8 7 6 5 4 6 5 4 3 3 2 2 1 1 0 0 15 -40deg.C 0deg.C +25deg.C +60deg.C +85deg.C 9 EVM(%) EVM(%) 7 f=3.6GHz 10 20 25 30 15 35 20 25 30 35 Output Power (dBm) Output Power (dBm) Collector Current vs. Output Power f=3.3GHz -40deg.C 0deg.C +25deg.C +60deg.C +85deg.C 1800 1600 -40deg.C 0deg.C +25deg.C +60deg.C +85deg.C 1800 1600 1400 Ict (mA) 1400 Ict (mA) f=3.4GHz 2000 2000 1200 1200 1000 1000 800 800 600 600 400 400 15 20 25 30 15 35 20 f=3.5GHz 2000 1600 35 30 35 -40deg.C 0deg.C +25deg.C +60deg.C +85deg.C 1800 1600 1400 Ict (mA) 1400 Ict (mA) 30 f=3.6GHz 2000 -40deg.C 0deg.C +25deg.C +60deg.C +85deg.C 1800 25 Output Power (dBm) Output Power (dBm) 1200 1200 1000 1000 800 800 600 600 400 400 15 20 25 30 35 15 20 25 Output Power (dBm) Output Power (dBm) MITSUBISHI ELECTRIC CORP. (6/14) Rev.5.2 Sep. 30-2009 MITSUBISHI SEMICONDUCTOR MGFS39E3336-01 3.3-3.6GHz HBT Integrated Circuit Specifications are subject to change without notice. Detector Voltage vs. Output Power f=3.3GHz 3.0 -40deg.C 0deg.C +25deg.C +60deg.C +85deg.C 2.5 -40deg.C 0deg.C +25deg.C +60deg.C +85deg.C 2.5 2.0 Vdet (V) 2.0 Vdet (V) f=3.4GHz 3.0 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0 15 20 25 30 15 35 20 Output Power (dBm) f=3.5GHz 3.0 30 35 2.0 Vdet (V) Vdet (V) 35 -40deg.C 0deg.C +25deg.C +60deg.C +85deg.C 2.5 2.0 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0 15 20 25 30 15 35 20 25 Output Power (dBm) SEM vs. Output Power Output Power (dBm) f=3.3GHz -40deg.C 0deg.C +25deg.C +60deg.C +85deg.C -15 -20 f=3.4GHz -10 Spectrum Emission Mask (dBc) -10 Spectrum Emission Mask (dBc) 30 f=3.6GHz 3.0 -40deg.C 0deg.C +25deg.C +60deg.C +85deg.C 2.5 25 Output Power (dBm) 5MHz offset -25 -30 -35 7.14MHz offset -40 -45 -50 -40deg.C 0deg.C +25deg.C +60deg.C +85deg.C -15 -20 5MHz offset -25 -30 -35 7.14MHz offset -40 -45 -50 15 20 25 30 35 Output Power (dBm) 15 20 25 30 Output Power (dBm) MITSUBISHI ELECTRIC CORP. (7/14) Rev.5.2 Sep. 30-2009 35 MITSUBISHI SEMICONDUCTOR MGFS39E3336-01 3.3-3.6GHz HBT Integrated Circuit Specifications are subject to change without notice. f=3.5GHz -40deg.C 0deg.C +25deg.C +60deg.C +85deg.C -15 -20 5MHz offset -25 -30 -35 f=3.6GHz -10 Spectrum Emission Mask (dBc) Spectrum Emission Mask (dBc) -10 7.14MHz offset -40 -45 -50 -40deg.C 0deg.C +25deg.C +60deg.C +85deg.C -15 -20 -30 -35 7.14MHz offset -40 -45 -50 15 20 25 30 35 15 20 Output Power (dBm) Spectrum Emission Mask (dBc) Spectrum Emission Mask (dBc) -40deg.C 0deg.C +25deg.C +60deg.C +85deg.C -40 30 35 f=3.4GHz -30 -35 25 Output Power (dBm) f=3.3GHz -30 10.57MHz offset -45 -50 20MHz offset -55 -60 -40deg.C 0deg.C +25deg.C +60deg.C +85deg.C -35 -40 10.57MHz offset -45 -50 20MHz offset -55 -60 15 20 25 30 35 15 20 Output Power (dBm) 30 35 f=3.6GHz -30 Spectrum Emission Mask (dBc) -40deg.C 0deg.C +25deg.C +60deg.C +85deg.C -35 25 Output Power (dBm) f=3.5GHz -30 Spectrum Emission Mask (dBc) 5MHz offset -25 -40 10.57MHz offset -45 -50 20MHz offset -55 -60 -40deg.C 0deg.C +25deg.C +60deg.C +85deg.C -35 -40 10.57MHz offset -45 -50 20MHz offset -55 -60 15 20 25 30 35 Output Power (dBm) 15 20 25 30 35 Output Power (dBm) MITSUBISHI ELECTRIC CORP. (8/14) Rev.5.2 Sep. 30-2009 MITSUBISHI SEMICONDUCTOR MGFS39E3336-01 3.3-3.6GHz HBT Integrated Circuit Specifications are subject to change without notice. 31 32 33 34 35 36 37 38 1 30 2 29 3 28 4 27 5 26 6 GND 25 7 24 8 23 9 22 10 21 NC 11 NC 12 NC 13 Vcb1-3 14 Vc2 15 Vc3 16 Vcb4 17 NC 18 NC 19 NC 20 NC NC NC NC RF IN RF IN NC NC Vc1 NC 39 40 NC NC NC Vcont NC Vref NC Vdet NC NC Pinout Description GND RF OUT RF OUT RF OUT RF OUT RF OUT RF OUT RF OUT RF OUT GND (X-ray Top View) Pin 1, 2, 3, 4, 7, 8, 10, 11, 12, 13, 18, 19, 20, 31, 32, 34, 36, 38, 39, 40 5,6 9 14 15 16 17 21,30 Function NC Description No connect pins, not wired inside the package. It is recommended to connect them to ground. RF IN Vc1 Vcb1-3 Vc2 Vc3 Vcb4 GND 22,23,24,25, 26,27,28,29 33 RF OUT RF input terminals, internally DC-grounded. Do not apply DC voltage to them Collector terminal of the 1st stage. DC supply terminal for the 1st, 2nd and 3rd stage bias circuits. Collector terminal of the 2nd stage. Collector terminal of the 3rd stage. DC supply terminal for the 4th stage base bias circuit. Ground pins, internally grounded inside the package. It is recommended to connect them to on-board ground to achieve stable operation. RF output pins and the collector terminals of the 4th stage. 35 Vref 37 Vcont GND GND Vdet Output of power detector. A capacitor and a resistor are connected on board between this pin and ground for setting output voltage level appropriately. (See P.10 and 11) Reference voltage and power up/down control pin for all the stage. The bias circuit operates with a Vref of 2.85V. All bias currents can be shut down by turning off Vref. The Vref pin should be operated under the pulsed condition in order to achieve specified performance. The recommended pulse condition is shown in P. 12. Attenuator control pin. The ATT controller offers through mode with a Vcont of 0V, and offers attenuation mode with a Vcont of 3V. The backside ground paddle should be connected to the external ground plane which provides heat sinking. MITSUBISHI ELECTRIC CORP. (9/14) Rev.5.2 Sep. 30-2009 MITSUBISHI SEMICONDUCTOR MGFS39E3336-01 3.3-3.6GHz HBT Integrated Circuit Specifications are subject to change without notice. EXAMPLE LAYOUT OF EVALUATION BOARD(40mmX 40mm, t=0.2mm(RF), Er=4.2, FR-4) Vref(2.85V) Vcon(0/3V) Vdet RF IN RF OUT Vc(6V) ITEM Q1 C1, C2, C10, C11, C12 C14 C13, C15 C3 C4, C5 C6 C7 C8 C9 C16, C17, C18, C19, C20 C21, C22 R1 DESCRIPTION MGFS39E3336 1 nF, 1005 Murata, GRM155B11H102KDA2 1 nF, 1005 Murata, GRM155B11H102KDA2 1 nF, 1005 Murata, GRM155B11H102KDA2 1.7 pF, 1005 Murata, GJM1554C1H1R7BB01 1.8 pF, 1005 Murata, GJM1554C1H1R8BB01 (Unused Number) 2.7 pF, 1005 Murata, GJM1553C1H2R7BB01 0.8 pF, 1005 Murata, GJM1554C1HR80BB01 1uF, 1608 Murata: GRM188B31E105KA75 4.7uF, 3216 Murata: GCM31CR71E475KA40 160kohms, 1005 Taiyosha, RPCO3T164J NOTE 6mmX6mm, QFN Decoupling Capacitors. Decoupling Capacitors. Position is important. Capacitor for detector circuit. Defines response shape. Capacitors for output matching circuit, Position is important. Capacitor for output matching circuit. Position is important. Capacitor for output matching circuit. Position is important. Capacitor for output matching circuit. Position is important. Decoupling Capacitors. Decoupling Capacitors. Resistor for detector circuit. Defines output voltage MITSUBISHI ELECTRIC CORP. (10/14) Rev.5.2 Sep. 30-2009 MITSUBISHI SEMICONDUCTOR MGFS39E3336-01 3.3-3.6GHz HBT Integrated Circuit Specifications are subject to change without notice. APPLICATION CIRCUIT IN EVALUATION BOARD NOTE: <Layout> A properly designed PC board is essential to any RF/microwave circuit. Be sure to use controlled impedance lines on all high-frequency inputs and outputs. A ground plane should be present on both the top and bottom of the PC board and plated-through via holes connecting the top and bottom ground planes should be distributed (See page 10). GND pins and ground paddle of the package should be connected to the bottom ground plane with plated-through via holes close to the package. To improve the heat resistance, place as plated-through via holes as possible under the ground paddle (See page. 13). <Output matching circuit> The output matching circuit is not included in the device so that users can determine the optimum output performance on their boards at the frequencies of interest. Since the circuit dictates the RF characteristics of PA, especially distortion, it should be designed with great care to obtain its maximum ability. The schematic of the evaluation board is shown above. Capacitors, C4~C6, C8, C9 and C15, and controlled impedance lines are optimized to realize broad-band output matching at frequencies from 3.3 to 3.6GHz. Input and output matching networks are very sensitive to layout-related parasitics. Suggested component values may vary according to layout and PC board material. <Bias circuit> Since the high-impedance feed lines for Vc3 and Vc4 are not included in the device, both the lines have to be laid out on the PCB. In layout design, please refer to the reference circuit of the feed lines which affect the distortion. Each Vc node on the board should have its own decoupling capacitor to minimize supply coupling from one section of the MMIC to another. A bypass capacitor with low ESR at the RF frequency of operation is located close to the package to reject the RF noise. In addition, a large decoupling capacitor is located on each power supply line to reject low frequency noise. MITSUBISHI ELECTRIC CORP. (11/14) Rev.5.2 Sep. 30-2009 MITSUBISHI SEMICONDUCTOR MGFS39E3336-01 3.3-3.6GHz HBT Integrated Circuit Specifications are subject to change without notice. RECOMMENDED PULSE CONDITION •Pulse Period : 5ms •Pulse Width : 2.5 ms •Delay time : 0 ms •Rise time of Vref pulse : 100ns •Set up time of quiescent current 6V Vc 0V Vref 2.85V 0V Pulse Width 2.5ms Delay Time 0ms after Vref turn on : 1 us Pulse Priod 5ms on RF Signal Input off Pulse Width 2.5ms Pulse Priod 5ms time • • • This figure shows the timing chart between Vref and input signal. Only while the reference voltage is 2.85V, the device transmits the input signal (*1). We usually set the delay time at 0ms in our EVB evaluation because of short set-up time. However set-up time often depends on bypass capacitors of PCB. Therefore, please give appropriate delay time (e.g. about the rise time of Vref) between the rise edge of Vref and that of the input signal . • We recommended the device operate with less than 50% duty cycle of a 5msec period in order to ensure specified reliability. *1: In case the device is operated under the Vref conditions of more than 50% duty cycle, self-heating will cause reliability problem, thereby degrading both power gain and EVM performance unexpectedly. TEST SET-UP Power Meter Attenuator Vector Signal Generator Coupler Vcont Oscilloscope • Attenuator Vdet DUT Attenuator Coupler Power Meter Vref Vcc DC Power Supply • • Vector Signal Analyzer Pulse Power Supply Oscilloscope Calibrate power meters at input/output ports on the EVB. Apply DC voltage to Vcc (Vcb1-3, Vcb4, Vc1~Vc4) and Vcont, where pulsed power supply should be applied to Vref for pulsed operation. . Monitor DC output voltage from Vdet using an oscilloscope or a multimeter. <Power up sequence> GND->Vcc->Vref->Vcont (1)Apply 6V to Vcc, where stepping up from 0 to 6V is preferable. (2)Supply pulsed voltage between 0 and 2.85V for Vref. Please check the voltage level of Vref close to EVB and the timing chart between Vref and input signal using an oscilloscope. Also please do not apply supply voltage exceeding 3V(absolute maximum rating) to the Vref terminal. (3)Supply Vcont with 3V for the attenuation mode. In the thru-mode, apply 0V to Vcont or keep it open. <Power off sequence> Vcont->Vref->Vcc->GND The reverse procedure is recommended for bias off. MITSUBISHI ELECTRIC CORP. (12/14) Rev.5.2 Sep. 30-2009 MITSUBISHI SEMICONDUCTOR MGFS39E3336-01 3.3-3.6GHz HBT Integrated Circuit Specifications are subject to change without notice. PACKAGE DRAWING DIMENSIONS All Dimensions are in mm. General tolerance is ±0.1mm. 6.0 3-R0.3 0.9(max.) 5.0 C0.4 INDEX 4.2 0.2 6.0 P0.5 x 9 = 4.5 0.2 4.2 5.0 0.2 P0.5 x 9 = 4.5 Top View Side View Bottom View EXAMPLE METAL LAND PATTERN Note: UNIT : um Through holes with 200um diameter should be put with a distance of 500um among them. It is recommended that they have metallization of 25um thick on the inside wall. MITSUBISHI ELECTRIC CORP. (13/14) Rev.5.2 Sep. 30-2009 MITSUBISHI SEMICONDUCTOR MGFS39E3336-01 3.3-3.6GHz HBT Integrated Circuit Specifications are subject to change without notice. HANDLING PRECAUTION 1) Work desk, test equipment, soldering iron and worker should be grounded before mounting and testing. Please note that electric discharge of GaAs HBT is much more sensitive than that of Si transistor. Handling without ground possibly damages GaAs HBT. 2) The surface of a board on which this product is mounted should be as flat and clean as possible to prevent a substrate from cracking by bending this product. 3) Recommended IR reflow soldering condition is shown as follows. (Max. two times) 240deg.C Peak 245deg.C 225deg.C ≤ 10 sec (PKG Surface temp.) ≤ 70 sec Max. Ramp Up Rate ≤ 3deg./sec. 180 ± 10 deg .C 120 ± 20sec Max. Ramp Down Rate ≤ 6deg./sec. 4) Handling precaution at high temperature In case of heating this product, please keep the same heat profile as recommended reflow one. Please note that crack, flaw or modification may be generated if epoxy resin part is handled with tweezers and etc. at high temperature. 5) Cleaning condition Please select after confirming administrative guidance, legal restrictions, and the mass of the residual ion contaminant etc., and use it. 6) After soldering, please remove the flux. Please take care that solvent does not penetrate into this product. 7) GaAs HBT contains As(Arsenic). This product should be dumped as particular industrial waste. MITSUBISHI ELECTRIC CORP. (14/14) Rev.5.2 Sep. 30-2009