MITSUBISHI MGFS39E3336-01

MITSUBISHI SEMICONDUCTOR
MGFS39E3336-01
3.3-3.6GHz HBT Integrated Circuit
Specifications are subject to change without notice.
Outline Drawing
DESCRIPTION
6.0
(Lot. No)
JAPAN
30
29
28
27
26
25
24
23
22
21
11
12
13
14
15
16
17
18
19
20
6.0
39E3336
30
29
28
27
26
25
24
23
22
21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
InGaP HBT Device
6V Operation
30dBm Linear Output Power (64QAM, EVM=2.5%)
40dB Linear Gain
Integrated Output Power Detector
Integrated 1-bit 20dB Step Attenuator
Surface Mount Package
RoHS Compliant Package
1
2
3
4
5
6
7
8
9
10
40
39
38
37
36
35
34
33
32
31
FEATURES
•
•
•
•
•
•
•
•
0.9
40
39
38
37
36
35
34
3
33
32
1
31
MGFS39E3336 is a 4-stage GaAs RF amplifier
Designed for WiMAX CPE.
DIM in mm
Top view
APPLICATION
IEEE802.16-2004
FUNCTIONAL BLOCK DIAGRAM
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always
the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i)placement of
substitutive, auxiliary, circuits, (ii)use of non-flammable material or (iii)prevention against any malfunction or mishap.
MITSUBISHI ELECTRIC CORP.
(1/14)
Rev.5.2
Sep. 30-2009
MITSUBISHI SEMICONDUCTOR
MGFS39E3336-01
3.3-3.6GHz HBT Integrated Circuit
Specifications are subject to change without notice.
ABSOLUTE MAXIMUM RATINGS
Symbol
Vc1,Vc2,Vc3,Vc4
Vcb1-3,Vcb4
Vref
Vcont
Parameter
Conditions
Value
Unit
Supply Voltage
-
8
V
Reference Voltage
-
3
V
-
3.5
V
ATT Control Voltage
Ic1
80
mA
Ic2
300
mA
300
mA
Operation current
Ic3
-
Ic4
Pin
Input Power
Tj
Tstg
mA
-3
dBm
-
Junction Temperature
Tc(op)
2000
Operation Temperature
Storage Temperature
Pout<=30dBm
Duty<=50%
-
160
deg. C
-40 to +85
deg.C
-40 to +125
deg.C
NOTE :
Each maximum rating is guaranteed independently.
Please take care that MGFS39E3336 is operated under these conditions at the worst case on your terminal.
.
ELECTRICAL CHARACTERISTICS(Ta=25°C)
Symbol
Parameter
Test Conditions
f
Frequency
Gp
Gain
Vcc=6V, Vref=2.85V
Ict
Total Collector Current
Pout=30dBm
EVM
EVM
64QAM OFDM Modulation
RLin
Input Return Loss
Duty Cycle <= 50%
Vdet
Power Detector Voltage
ATT
Control Gain Step
NOTE : Zin=50 Ohm, Zout : Measured with application circuit
ESD RATING
Min
3.3
Limits
Typ
43
1.2
2.5
10
1.7
26
Unit
Max
3.6
GHz
dB
A
%
dB
V
dB
: Class 2 (HBM)
MOISTURE SENSITIVITY LEVEL
THERMAL RESISTANCE
:
: Level 3
4 deg.C/W
(The thermal resistance of the 4th stage is calculated as 5.5 deg.C/W )
MITSUBISHI ELECTRIC CORP.
(2/14)
Rev.5.2
Sep. 30-2009
MITSUBISHI SEMICONDUCTOR
MGFS39E3336-01
3.3-3.6GHz HBT Integrated Circuit
Specifications are subject to change without notice.
PERFORMANCE DATA
WiMAX OFDM 64QAM BW=10MHz signal input. Vcc=6V, Vref=2.85V, Vcont=0V, Duty 50%, Ta=25deg.C
Power Gain vs. Output Power
EVM vs. Output Power
50
10
3.3GHz
3.4GHz
3.5GHz
3.6GHz
9
8
45
EVM(%)
Gp (dB)
7
40
3.3GHz
3.4GHz
3.5GHz
3.6GHz
35
6
5
4
3
2
1
30
0
15
20
25
30
35
15
20
Output Power (dBm)
25
30
35
30
35
Output Power (dBm)
Collector Current vs. Output Power
Detector Voltage vs. Output Power
3.0
2000
3.3GHz
3.4GHz
3.5GHz
3.6GHz
3.3GHz
3.4GHz
3.5GHz
3.6GHz
2.5
2.0
Ict (mA)
Vdet (V)
1500
1.5
1.0
1000
0.5
0.0
500
15
20
25
30
35
15
20
25
Output Power (dBm)
Output Power (dBm)
Attenuator Performance
50
40
S21 (dB)
30
20
10
Vcont=0V
0
Vcont=3V
-10
3.0
3.2
3.4
3.6
3.8
4.0
Frequency (GHz)
MITSUBISHI ELECTRIC CORP.
(3/14)
Rev.5.2
Sep. 30-2009
MITSUBISHI SEMICONDUCTOR
MGFS39E3336-01
3.3-3.6GHz HBT Integrated Circuit
Specifications are subject to change without notice.
Spectrum Emission Mask
WiMAX OFDM 64QAM BW=10MHz signal input. Vcc=6V, Vref=2.85V, Vcont=0V, Duty=50%, Ta=25deg.C
Po=30dBm, ETSI Mask: EqC-EMO=6 (Type G)
* RBW 30 kHz
* RBW 30 kHz
* VBW 300 Hz
* VBW 300 Hz
Ref
* Att
0 dBm
* SWT 9.2 s
0 dB
Ref
0
* SWT 9.2 s
0 dB
0
3.3GHz
-10
1 RM *
CLRWR
* Att
0 dBm
A
SGL
TRG
-20
-30
-40
-40
EXT
EXT
-50
3DB
3DB
-60
-60
-70
-70
10
10
-80
-80
-90
-90
-100
Center
-100
3.3 GHz
Date: 19.DEC.2008
5 MHz/
Span
50 MHz
Center
15:58:15
3.4 GHz
Date: 19.DEC.2008
5 MHz/
* VBW 300 Hz
Ref
* SWT 9.2 s
0 dB
* Att
0 dBm
* SWT 9.2 s
0 dB
0
0
3.5GHz
-10
1 RM *
CLRWR
50 MHz
* RBW 30 kHz
* VBW 300 Hz
* Att
0 dBm
Span
15:57:11
* RBW 30 kHz
Ref
A
SGL
TRG
-20
3.6GHz
-20
-30
-40
-40
TRG
EXT
-50
EXT
-50
A
SGL
-10
1 RM *
CLRWR
-30
3DB
3DB
-60
-60
-70
-70
10
10
-80
-80
-90
-90
-100
-100
Center
3.5 GHz
5 MHz/
Span
Center
50 MHz
SEM vs.
Output Power
Date: 19.DEC.2008 15:55:53
3.6 GHz
Date: 19.DEC.2008
-10
5 MHz/
Span
50 MHz
15:54:20
-20
f=3.3GHz
f=3.4GHz
f=3.5GHz
f=3.6GHz
-15
-20
Spectrum Emission Mask (dBc)
Spectrum Emission Mask (dBc)
A
SGL
TRG
-20
-30
-50
3.4GHz
-10
1 RM *
CLRWR
5M Hz offse t
-25
-30
-35
7.14M Hz offse t
-40
-45
-50
15
20
25
30
35
Output Power (dBm)
f=3.3GHz
f=3.4GHz
f=3.5GHz
f=3.6GHz
-25
-30
-35
10.57M Hz offs e t
-40
-45
-50
20M Hz offs e t
-55
-60
15
20
25
30
35
Output Pow er (dBm)
MITSUBISHI ELECTRIC CORP.
(4/14)
Rev.5.2
Sep. 30-2009
MITSUBISHI SEMICONDUCTOR
MGFS39E3336-01
3.3-3.6GHz HBT Integrated Circuit
Specifications are subject to change without notice.
Temperature Dependence
WiMAX OFDM 64QAM BW=10MHz signal input. Vcc=6V, Vref=2.85V, Vcont=0V, Duty 50%, f=3.5GHz
Power Gain vs. Output Power
f=3.3GHz
50
45
Gp (dB)
45
Gp (dB)
f=3.4GHz
50
40
-40deg.C
0deg.C
+25deg.C
+60deg.C
+85deg.C
35
40
-40deg.C
0deg.C
+25deg.C
+60deg.C
+85deg.C
35
30
30
15
20
25
30
15
35
20
25
f=3.5GHz
30
35
f=3.6GHz
50
45
45
Gp (dB)
Gp (dB)
35
Output Power (dBm)
Output Power (dBm)
50
30
40
-40deg.C
0deg.C
+25deg.C
+60deg.C
+85deg.C
35
40
-40deg.C
0deg.C
+25deg.C
+60deg.C
+85deg.C
35
30
30
15
20
25
30
35
15
20
Output Power (dBm)
25
Output Power (dBm)
EVM vs. Output Power
f=3.3GHz
10
-40deg.C
0deg.C
+25deg.C
+60deg.C
+85deg.C
9
8
-40deg.C
0deg.C
+25deg.C
+60deg.C
+85deg.C
9
8
7
6
EVM(%)
EVM(%)
7
f=3.4GHz
10
5
4
6
5
4
3
3
2
2
1
1
0
0
15
20
25
30
35
15
20
25
30
35
Output Power (dBm)
Output Power (dBm)
MITSUBISHI ELECTRIC CORP.
(5/14)
Rev.5.2
Sep. 30-2009
MITSUBISHI SEMICONDUCTOR
MGFS39E3336-01
3.3-3.6GHz HBT Integrated Circuit
Specifications are subject to change without notice.
f=3.5GHz
10
-40deg.C
0deg.C
+25deg.C
+60deg.C
+85deg.C
9
8
8
7
6
5
4
6
5
4
3
3
2
2
1
1
0
0
15
-40deg.C
0deg.C
+25deg.C
+60deg.C
+85deg.C
9
EVM(%)
EVM(%)
7
f=3.6GHz
10
20
25
30
15
35
20
25
30
35
Output Power (dBm)
Output Power (dBm)
Collector Current vs. Output Power
f=3.3GHz
-40deg.C
0deg.C
+25deg.C
+60deg.C
+85deg.C
1800
1600
-40deg.C
0deg.C
+25deg.C
+60deg.C
+85deg.C
1800
1600
1400
Ict (mA)
1400
Ict (mA)
f=3.4GHz
2000
2000
1200
1200
1000
1000
800
800
600
600
400
400
15
20
25
30
15
35
20
f=3.5GHz
2000
1600
35
30
35
-40deg.C
0deg.C
+25deg.C
+60deg.C
+85deg.C
1800
1600
1400
Ict (mA)
1400
Ict (mA)
30
f=3.6GHz
2000
-40deg.C
0deg.C
+25deg.C
+60deg.C
+85deg.C
1800
25
Output Power (dBm)
Output Power (dBm)
1200
1200
1000
1000
800
800
600
600
400
400
15
20
25
30
35
15
20
25
Output Power (dBm)
Output Power (dBm)
MITSUBISHI ELECTRIC CORP.
(6/14)
Rev.5.2
Sep. 30-2009
MITSUBISHI SEMICONDUCTOR
MGFS39E3336-01
3.3-3.6GHz HBT Integrated Circuit
Specifications are subject to change without notice.
Detector Voltage vs. Output Power
f=3.3GHz
3.0
-40deg.C
0deg.C
+25deg.C
+60deg.C
+85deg.C
2.5
-40deg.C
0deg.C
+25deg.C
+60deg.C
+85deg.C
2.5
2.0
Vdet (V)
2.0
Vdet (V)
f=3.4GHz
3.0
1.5
1.5
1.0
1.0
0.5
0.5
0.0
0.0
15
20
25
30
15
35
20
Output Power (dBm)
f=3.5GHz
3.0
30
35
2.0
Vdet (V)
Vdet (V)
35
-40deg.C
0deg.C
+25deg.C
+60deg.C
+85deg.C
2.5
2.0
1.5
1.5
1.0
1.0
0.5
0.5
0.0
0.0
15
20
25
30
15
35
20
25
Output Power (dBm)
SEM vs. Output Power Output Power (dBm)
f=3.3GHz
-40deg.C
0deg.C
+25deg.C
+60deg.C
+85deg.C
-15
-20
f=3.4GHz
-10
Spectrum Emission Mask (dBc)
-10
Spectrum Emission Mask (dBc)
30
f=3.6GHz
3.0
-40deg.C
0deg.C
+25deg.C
+60deg.C
+85deg.C
2.5
25
Output Power (dBm)
5MHz offset
-25
-30
-35
7.14MHz offset
-40
-45
-50
-40deg.C
0deg.C
+25deg.C
+60deg.C
+85deg.C
-15
-20
5MHz offset
-25
-30
-35
7.14MHz offset
-40
-45
-50
15
20
25
30
35
Output Power (dBm)
15
20
25
30
Output Power (dBm)
MITSUBISHI ELECTRIC CORP.
(7/14)
Rev.5.2
Sep. 30-2009
35
MITSUBISHI SEMICONDUCTOR
MGFS39E3336-01
3.3-3.6GHz HBT Integrated Circuit
Specifications are subject to change without notice.
f=3.5GHz
-40deg.C
0deg.C
+25deg.C
+60deg.C
+85deg.C
-15
-20
5MHz offset
-25
-30
-35
f=3.6GHz
-10
Spectrum Emission Mask (dBc)
Spectrum Emission Mask (dBc)
-10
7.14MHz offset
-40
-45
-50
-40deg.C
0deg.C
+25deg.C
+60deg.C
+85deg.C
-15
-20
-30
-35
7.14MHz offset
-40
-45
-50
15
20
25
30
35
15
20
Output Power (dBm)
Spectrum Emission Mask (dBc)
Spectrum Emission Mask (dBc)
-40deg.C
0deg.C
+25deg.C
+60deg.C
+85deg.C
-40
30
35
f=3.4GHz
-30
-35
25
Output Power (dBm)
f=3.3GHz
-30
10.57MHz offset
-45
-50
20MHz offset
-55
-60
-40deg.C
0deg.C
+25deg.C
+60deg.C
+85deg.C
-35
-40
10.57MHz offset
-45
-50
20MHz offset
-55
-60
15
20
25
30
35
15
20
Output Power (dBm)
30
35
f=3.6GHz
-30
Spectrum Emission Mask (dBc)
-40deg.C
0deg.C
+25deg.C
+60deg.C
+85deg.C
-35
25
Output Power (dBm)
f=3.5GHz
-30
Spectrum Emission Mask (dBc)
5MHz offset
-25
-40
10.57MHz offset
-45
-50
20MHz offset
-55
-60
-40deg.C
0deg.C
+25deg.C
+60deg.C
+85deg.C
-35
-40
10.57MHz offset
-45
-50
20MHz offset
-55
-60
15
20
25
30
35
Output Power (dBm)
15
20
25
30
35
Output Power (dBm)
MITSUBISHI ELECTRIC CORP.
(8/14)
Rev.5.2
Sep. 30-2009
MITSUBISHI SEMICONDUCTOR
MGFS39E3336-01
3.3-3.6GHz HBT Integrated Circuit
Specifications are subject to change without notice.
31
32
33
34
35
36
37
38
1
30
2
29
3
28
4
27
5
26
6
GND
25
7
24
8
23
9
22
10
21
NC 11
NC 12
NC 13
Vcb1-3 14
Vc2 15
Vc3 16
Vcb4 17
NC 18
NC 19
NC 20
NC
NC
NC
NC
RF IN
RF IN
NC
NC
Vc1
NC
39
40
NC
NC
NC
Vcont
NC
Vref
NC
Vdet
NC
NC
Pinout Description
GND
RF OUT
RF OUT
RF OUT
RF OUT
RF OUT
RF OUT
RF OUT
RF OUT
GND
(X-ray Top View)
Pin
1, 2, 3, 4, 7, 8, 10,
11, 12, 13, 18, 19,
20, 31, 32, 34, 36,
38, 39, 40
5,6
9
14
15
16
17
21,30
Function
NC
Description
No connect pins, not wired inside the package. It is recommended to connect them to
ground.
RF IN
Vc1
Vcb1-3
Vc2
Vc3
Vcb4
GND
22,23,24,25,
26,27,28,29
33
RF OUT
RF input terminals, internally DC-grounded. Do not apply DC voltage to them
Collector terminal of the 1st stage.
DC supply terminal for the 1st, 2nd and 3rd stage bias circuits.
Collector terminal of the 2nd stage.
Collector terminal of the 3rd stage.
DC supply terminal for the 4th stage base bias circuit.
Ground pins, internally grounded inside the package. It is recommended to connect them to
on-board ground to achieve stable operation.
RF output pins and the collector terminals of the 4th stage.
35
Vref
37
Vcont
GND
GND
Vdet
Output of power detector. A capacitor and a resistor are connected on board between this
pin and ground for setting output voltage level appropriately. (See P.10 and 11)
Reference voltage and power up/down control pin for all the stage. The bias circuit operates
with a Vref of 2.85V. All bias currents can be shut down by turning off Vref. The Vref pin
should be operated under the pulsed condition in order to achieve specified performance.
The recommended pulse condition is shown in P. 12.
Attenuator control pin. The ATT controller offers through mode with a Vcont of 0V, and
offers attenuation mode with a Vcont of 3V.
The backside ground paddle should be connected to the external ground plane which
provides heat sinking.
MITSUBISHI ELECTRIC CORP.
(9/14)
Rev.5.2
Sep. 30-2009
MITSUBISHI SEMICONDUCTOR
MGFS39E3336-01
3.3-3.6GHz HBT Integrated Circuit
Specifications are subject to change without notice.
EXAMPLE LAYOUT OF EVALUATION BOARD(40mmX 40mm, t=0.2mm(RF), Er=4.2, FR-4)
Vref(2.85V)
Vcon(0/3V)
Vdet
RF IN
RF OUT
Vc(6V)
ITEM
Q1
C1, C2, C10, C11, C12
C14
C13, C15
C3
C4, C5
C6
C7
C8
C9
C16, C17, C18, C19,
C20
C21, C22
R1
DESCRIPTION
MGFS39E3336
1 nF, 1005
Murata, GRM155B11H102KDA2
1 nF, 1005
Murata, GRM155B11H102KDA2
1 nF, 1005
Murata, GRM155B11H102KDA2
1.7 pF, 1005
Murata, GJM1554C1H1R7BB01
1.8 pF, 1005
Murata, GJM1554C1H1R8BB01
(Unused Number)
2.7 pF, 1005
Murata, GJM1553C1H2R7BB01
0.8 pF, 1005
Murata, GJM1554C1HR80BB01
1uF, 1608
Murata: GRM188B31E105KA75
4.7uF, 3216
Murata: GCM31CR71E475KA40
160kohms, 1005
Taiyosha, RPCO3T164J
NOTE
6mmX6mm, QFN
Decoupling Capacitors.
Decoupling Capacitors. Position is important.
Capacitor for detector circuit. Defines response shape.
Capacitors for output matching circuit, Position is
important.
Capacitor for output matching circuit. Position is
important.
Capacitor for output matching circuit. Position is
important.
Capacitor for output matching circuit. Position is
important.
Decoupling Capacitors.
Decoupling Capacitors.
Resistor for detector circuit. Defines output voltage
MITSUBISHI ELECTRIC CORP.
(10/14)
Rev.5.2
Sep. 30-2009
MITSUBISHI SEMICONDUCTOR
MGFS39E3336-01
3.3-3.6GHz HBT Integrated Circuit
Specifications are subject to change without notice.
APPLICATION CIRCUIT IN EVALUATION BOARD
NOTE:
<Layout>
A properly designed PC board is essential to any RF/microwave circuit. Be sure to use controlled impedance lines on all
high-frequency inputs and outputs. A ground plane should be present on both the top and bottom of the PC board and
plated-through via holes connecting the top and bottom ground planes should be distributed (See page 10). GND pins and
ground paddle of the package should be connected to the bottom ground plane with plated-through via holes close to the
package. To improve the heat resistance, place as plated-through via holes as possible under the ground paddle (See page.
13).
<Output matching circuit>
The output matching circuit is not included in the device so that users can determine the optimum output performance on
their boards at the frequencies of interest. Since the circuit dictates the RF characteristics of PA, especially distortion, it
should be designed with great care to obtain its maximum ability.
The schematic of the evaluation board is shown above. Capacitors, C4~C6, C8, C9 and C15, and controlled impedance lines
are optimized to realize broad-band output matching at frequencies from 3.3 to 3.6GHz.
Input and output matching networks are very sensitive to layout-related parasitics. Suggested component values may vary
according to layout and PC board material.
<Bias circuit>
Since the high-impedance feed lines for Vc3 and Vc4 are not included in the device, both the lines have to be laid out on the
PCB. In layout design, please refer to the reference circuit of the feed lines which affect the distortion.
Each Vc node on the board should have its own decoupling capacitor to minimize supply coupling from one section of the
MMIC to another. A bypass capacitor with low ESR at the RF frequency of operation is located close to the package to reject
the RF noise. In addition, a large decoupling capacitor is located on each power supply line to reject low frequency noise.
MITSUBISHI ELECTRIC CORP.
(11/14)
Rev.5.2
Sep. 30-2009
MITSUBISHI SEMICONDUCTOR
MGFS39E3336-01
3.3-3.6GHz HBT Integrated Circuit
Specifications are subject to change without notice.
RECOMMENDED PULSE CONDITION
•Pulse Period : 5ms
•Pulse Width : 2.5 ms
•Delay time
: 0 ms
•Rise time of Vref pulse : 100ns
•Set up time of quiescent current
6V
Vc
0V
Vref
2.85V
0V
Pulse Width
2.5ms
Delay
Time
0ms
after Vref turn on : 1 us
Pulse Priod
5ms
on
RF
Signal
Input off
Pulse Width
2.5ms
Pulse Priod
5ms
time
•
•
•
This figure shows the timing chart between Vref and input signal.
Only while the reference voltage is 2.85V, the device transmits the input signal (*1).
We usually set the delay time at 0ms in our EVB evaluation because of short set-up time. However set-up time often
depends on bypass capacitors of PCB. Therefore, please give appropriate delay time (e.g. about the rise time of
Vref) between the rise edge of Vref and that of the input signal .
• We recommended the device operate with less than 50% duty cycle of a 5msec period in order to ensure specified
reliability.
*1: In case the device is operated under the Vref conditions of more than 50% duty cycle, self-heating will cause
reliability problem, thereby degrading both power gain and EVM performance unexpectedly.
TEST SET-UP
Power Meter
Attenuator
Vector Signal
Generator
Coupler
Vcont
Oscilloscope
•
Attenuator
Vdet
DUT
Attenuator
Coupler
Power Meter
Vref
Vcc
DC Power Supply
•
•
Vector Signal Analyzer
Pulse Power Supply
Oscilloscope
Calibrate power meters at input/output ports on the EVB.
Apply DC voltage to Vcc (Vcb1-3, Vcb4, Vc1~Vc4) and Vcont, where pulsed power supply should be applied to Vref
for pulsed operation. .
Monitor DC output voltage from Vdet using an oscilloscope or a multimeter.
<Power up sequence>
GND->Vcc->Vref->Vcont
(1)Apply 6V to Vcc, where stepping up from 0 to 6V is preferable.
(2)Supply pulsed voltage between 0 and 2.85V for Vref.
Please check the voltage level of Vref close to EVB and the timing chart between
Vref and input signal using an oscilloscope. Also please do not apply supply
voltage exceeding 3V(absolute maximum rating) to the Vref terminal.
(3)Supply Vcont with 3V for the attenuation mode. In the thru-mode, apply 0V to Vcont
or keep it open.
<Power off sequence>
Vcont->Vref->Vcc->GND
The reverse procedure is recommended for bias off.
MITSUBISHI ELECTRIC CORP.
(12/14)
Rev.5.2
Sep. 30-2009
MITSUBISHI SEMICONDUCTOR
MGFS39E3336-01
3.3-3.6GHz HBT Integrated Circuit
Specifications are subject to change without notice.
PACKAGE DRAWING DIMENSIONS
All Dimensions are in mm. General tolerance is ±0.1mm.
6.0
3-R0.3
0.9(max.)
5.0
C0.4
INDEX
4.2
0.2
6.0
P0.5 x 9 = 4.5
0.2
4.2
5.0
0.2
P0.5 x 9 = 4.5
Top View
Side View
Bottom View
EXAMPLE METAL LAND PATTERN
Note:
UNIT : um
Through holes with 200um diameter should be put with a distance of 500um among them.
It is recommended that they have metallization of 25um thick on the inside wall.
MITSUBISHI ELECTRIC CORP.
(13/14)
Rev.5.2
Sep. 30-2009
MITSUBISHI SEMICONDUCTOR
MGFS39E3336-01
3.3-3.6GHz HBT Integrated Circuit
Specifications are subject to change without notice.
HANDLING PRECAUTION
1)
Work desk, test equipment, soldering iron and worker should be grounded before mounting and
testing. Please note that electric discharge of GaAs HBT is much more sensitive than that of Si
transistor. Handling without ground possibly damages GaAs HBT.
2)
The surface of a board on which this product is mounted should be as flat and clean as possible to
prevent a substrate from cracking by bending this product.
3)
Recommended IR reflow soldering condition is shown as follows. (Max. two times)
240deg.C
Peak 245deg.C
225deg.C
≤ 10 sec
(PKG Surface temp.)
≤ 70 sec
Max. Ramp Up Rate ≤ 3deg./sec.
180 ± 10 deg .C
120 ± 20sec Max. Ramp Down Rate
≤ 6deg./sec.
4)
Handling precaution at high temperature
In case of heating this product, please keep the same heat profile as recommended reflow one.
Please note that crack, flaw or modification may be generated if epoxy resin part is handled with
tweezers and etc. at high temperature.
5)
Cleaning condition
Please select after confirming administrative guidance, legal restrictions, and the mass of the residual
ion contaminant etc., and use it.
6)
After soldering, please remove the flux. Please take care that solvent does not penetrate into this
product.
7)
GaAs HBT contains As(Arsenic). This product should be dumped as particular industrial waste.
MITSUBISHI ELECTRIC CORP.
(14/14)
Rev.5.2
Sep. 30-2009