ACST6 ® OVER VOLTAGE PROTECTED AC POWER SWITCH ASD (Application Specific Devices) MAIN APPLICATIONS ■ ■ ■ AC static switching in appliance & industrial control systems Induction motor drive actuator for: - Refrigerator / Freezer compressor - Dishwasher spray pump - Clothes drier tumble Actuator for the thermostat of a refrigerator or COM COM freezer OUT TO-220AB ACST6-7ST FEATURES ■ VDRM /VRRM = +/- 700V ■ ■ IT(RMS) = 6A with Tcase = 105 °C ■ High noise immunity: static dV/dt > 200 V/µs Gate triggering current : IGT < 10 mA ■ ■ ■ TO-220FPAB ACST6-7SFP OUT Avalanche controlled device IT(RMS) = 1.5 A with no heat sink and Tamb = 40 °C ■ G OUT COM G OUT COM OUT G OUT COM G COM D2PAK ACST6-7SG Snubberless turn off commutation: (dI/dt)c > 3.5A/ms D2PAK, I2PAK, TO-220FPAB or TO-220AB package I2PAK ACST6-7SR Table 1: Order Codes Part Numbers Marking ACST6-7ST ACST6-7SFP BENEFITS ■ Enables equipment to meet IEC61000-4-5 standards ■ High off-state reliability with planar technology ■ Needs no external overvoltage protection ■ Direct interface with the microcontroller ■ Reduces the power component count ACST67S ACST6-7SG ACST6-7SR Figure 1: Functional Diagram DESCRIPTION The ACST6-7Sx belongs to the AC power switch family built around the ASD technology. This high performance device is adapted to home appliances or industrial systems and drives an induction motor up to 6A. This ACST switch embeds a triac structure with a high voltage clamping device to absorb the inductive turn-off energy and withstand line transients such as those described in the IEC61000-4-5 standards. OUT G COM May 2005 REV. 8 1/10 ACST6 Table 2: Absolute Ratings (limiting values) Symbol VDRM/ VRRM IT(RMS) ITSM I2t Parameter Value Unit Tj = 125 °C 700 V RMS on-state current full cycle sine wave 50 to 60 Hz, no heat sink Tamb = 40 °C 1.5 A RMS on-state current full cycle sine wave 50 to 60 Hz, TO-220AB package Tcase = 105 °C 6 A tp = 20ms 45 A tp = 16.7ms 50 A tp = 10ms 11 A 2s Rate period > 1mn 100 A/µs 2 kV Repetitive peak off-state voltage Non repetitive surge peak on-state current Tj initial = 25 °C, full cycle sine wave Thermal constraint for fuse selection dI/dt Non repetitive on-state current critical rate of rise IG = 10mA (tR < 100ns) VPP Non repetitive line peak pulse voltage (see note 1) Tstg Storage temperature range - 40 to + 150 °C Tj Operating junction temperature range - 30 to + 125 °C Tl Maximum lead soldering temperature during 10s 260 °C Note 1: according to test described by IEC61000-4-5 standard and figure 3. Table 3: Gate Characteristics (maximum values) Symbol Value Unit Average gate power dissipation 0.1 W PGM Peak gate power dissipation (tp = 20µs) 10 W IGM Peak gate current (tp = 20µs) 1 A Value Unit PG (AV) Parameter Table 4: Thermal Resistances Symbol Parameter Rth(j-a) Junction to ambient TO-220AB / TO-220FPAB 60 Rth(j-a) Junction to ambient I2PAK 65 D2PAK cm2 Rth(j-a) Junction to ambient Rth(j-c) Junction to case for full cycle sine wave conduction (TO-220AB) 2.5 Rth(j-c) Junction to case for full cycle sine wave conduction (TO-220FPAB) 3.5 2/10 soldered on 1 copper pad °C/W 45 °C/W ® ACST6 Table 5: Parameter Description Parameter Symbol Parameter description IGT Gate triggering current VGT Gate triggering voltage VGD Non triggering voltage IH Holding current IL Latching current VTM On state voltage VT0 On state characteristic threshold voltage Rd On state characteristic dynamic resistance IDRM / IRRM Forward or reverse leakage current dV/dt Static pin OUT voltage rise (dI/dt)c Turn off current rate of decay VCL Avalanche voltage at turn off Table 6: Electrical Characteristics For either positive or negative polary of pin OUT voltage respect to pin COM voltage Symbol Test conditions Value Unit IGT VOUT = 12V (DC) RL = 33Ω Tj = 25°C MAX. 10 mA VGT VOUT = 12V (DC) RL = 33Ω Tj = 25°C MAX. 1.5 V VGD VOUT = VDRM RL = 3.3Ω Tj = 125°C MIN. 0.2 V IH IOUT = 100mA Gate open Tj = 25°C MAX. 25 mA IL IG = 20mA Tj = 25°C MAX. 50 mA VTM IOUT = 2.1A tp = 380µs Tj = 25°C MAX. 1.4 V VTM IOUT = 8.5A tp = 380µs Tj = 25°C MAX. 1.7 V VT0 Tj = 125°C MAX. 0.9 V Rd Tj = 125°C MAX. 80 mΩ Tj = 25°C MAX. 20 µA Tj = 125°C MAX. 500 µA Tj = 125°C MIN. 200 V/µs IDRM IRRM VOUT = VDRM VOUT = VRRM dV/dt VOUT = 600V gate open (dI/dt)c (dI/dt)c = 15V/µs Tj = 125°C MIN. 3 A/ms (dI/dt)c (dI/dt)c = 15V/µs IOUT < 0 Rgk = 150Ω Tj = 125°C MIN. 3.5 A/ms ICL = 1mA Tj = 25°C TYP. 1100 V VCL ® tp = 1ms 3/10 ACST6 AC LINE SWITCH BASIC APPLICATION The ACST6-7S device is especially designed to drive medium power induction motors in refrigerators, dish washers, and tumble dryers. Pin COM : Common drive reference, to be connected to the power line neutral Pin G : Switch Gate input to be connected to the controller Pin OUT : Switch Output to be connected to the load When driven from a low voltage controller, the ACST switch is triggered with a negative gate current flowing out of the gate pin G. It can be directly driven by the controller through a resistor as shown on the typical application diagram. In appliance systems, the ACST6-7S switch intends to drive medium power load in ON / OFF full cycle or phase angle control mode. Thanks to its thermal and turn-off commutation characteristics, the ACST6-7S switch is able to drive an inductive load up to 6A without a turn-off aid snubber circuit. Figure 2: Typical Application Diagram Run Run Start Start OUT OUT G G COM COM ST 62/72 MCU ST 62/72 MCU AC LINE TRANSIENT VOLTAGE RUGGEDNESS The ACST6-7S switch is able to safely withstand the AC line transient voltages either by clamping the low energy spikes or by breaking over under high energy shocks. The test circuit in figure 3 is representative of the ACST application and is used to test the ACST switch according to the IEC61000-4-5 standard conditions. Thanks to the load impedance, the ACST switch withstands voltage spikes up to 2 kV above the peak line voltage by breaking over safely. Such non-repetitive testing can be done 10 times on each AC line voltage polarity. Figure 3: Overvoltage ruggedness test circuit for resistive and inductive loads according to IEC61000-4-5 standard R = 10Ω, L = 5µH & VPP = 2kV R L OUT SURGE VOLTAGE AC LINE & GENERATOR VAC + V PP G COM 4/10 ® ACST6 Figure 4: Maximum power dissipation versus RMS on-state current (full cycle) Figure 5: RMS on-state current versus case temperature (full cycle) P(W) IT(RMS)(A) 8 7 7 6 TO-220AB, D2PAK & I2PAK TO-220FPAB 6 5 5 4 4 3 3 2 2 1 1 TC(°C) IT(RMS)(A) 0 0 1 2 0 3 4 5 6 Figure 6: RMS on-state current versus ambient temperature (printed circuit board FR4, copper thickness: 35µm), full cycle 0 25 50 75 100 125 Figure 7: Relative variation of thermal impedance versus pulse duration IT(RMS)(A) K=[Zth/Rth] 3.0 1E+0 D2PAK S=1cm2 2.5 Zth(j-c) TO-220AB, D2PAK & I2PAK 2.0 1E-1 Zth(j-c) TO-220FPAB 1.5 Zth(j-a) TO-220FPAB, TO-220AB & I2PAK Free air 1E-2 1.0 0.5 tp(°C) Tamb(°C) 1E-3 0.0 0 25 50 75 100 1E-3 125 Figure 8: On-state characteristics (maximum values) 1E-2 1E-1 1E+0 1E+1 1E+2 5E+2 Figure 9: Surge peak on-state current versus number of cycles ITSM(A) ITM(A) 50.0 50 45 40 Tj max. VT0 = 0.9V Rd = 80mΩ 10.0 t=20ms Non repetitive Tj initial=25°C 35 30 25 20 1.0 15 Repetitive Tc=105°C 10 5 VTM(V) 0.1 Number of cycles 0 0.5 ® 1.0 1.5 2.0 2.5 3.0 3.5 4.0 1 10 100 1000 5/10 ACST6 Figure 10: Non repetitive surge peak on-state current for a sinusoidal pulse with width tp < 10ms, and corresponding value of I2t 2 Figure 11: Relative variation of gate trigger current, holding current and latching current versus junction temperature (typical values) IGT, IH,IL[Tj] / IGT, IH, IL[Tj=25°C] 2 ITSM(A), I t (A s) 3.0 1000 Tj initial=25°C 2.5 dI/dt limitation: 100A/µs ITSM 100 2.0 IGT QIII 1.5 I2t IGT QI, QII, IH & IL 1.0 10 0.5 Tj(°C) tp(ms) 0.0 1 0.01 0.10 1.00 Figure 12: Relative variation of critical rate of decrease of main current versus reapplied (dV/ dt)c (typical values) -20 0 20 40 60 80 100 120 140 Figure 13: Relative variation of critical rate of decrease of main current versus junction temperature (dI/dt)c[Tj] / (dI/dt)c[Tj=125°C] (dI/dt)c [(dV/dt)c] / Specified (dI/dt)c 6 4.0 3.5 -40 10.00 Tj = 125°C 5 3.0 4 2.5 2.0 3 1.5 2 1.0 0.5 1 (dV/dt)c (V/µs) Tj(°C) 0.0 0 0.1 1.0 10.0 100.0 Figure 14: Relative variation of dV/dt immunity versus junction temperature for different values of gate to com resistance (gate open is the reference value) 25 50 75 100 125 Figure 15: Thermal resistance junction to ambient versus copper surface under tab (printed circuit board FR4, copper thickness: 35µm) (D2PAK) Rth(j-a)(°C/W) dV/dt[Tj] / dV/dt[Tj=125°C] 70 4.0 Rgk = 470W 3.5 0 60 Rgk < 220W 3.0 50 2.5 40 2.0 Rgk = 1kW 30 1.5 Gate open 20 1.0 10 0.5 Tj(°C) S(Cu)(cm²) 0.0 0 0 6/10 25 50 75 100 125 150 0 2 4 6 8 10 12 14 16 18 20 ® ACST6 Figure 16: Ordering Information Scheme ACS T 6 - 7 S T AC Switch Topology T = Triac RMS on-state current 6 = 6A Repetitive peak off-state voltage 7 = 700V Triggering gate current S = 10mA Package FP = TO-220FPAB T = TO-220AB G = D2PAK R = I2PAK Figure 17: D2PAK Package Mechanical Data REF. A E C2 L2 D L L3 A1 B2 R C B G A2 M * V2 * FLAT ZONE NO LESS THAN 2mm A A1 A2 B B2 C C2 D E G L L2 L3 M R V2 DIMENSIONS Millimeters Inches Min. Max. Min. Max. 4.40 4.60 0.173 0.181 2.49 2.69 0.098 0.106 0.03 0.23 0.001 0.009 0.70 0.93 0.027 0.037 1.14 1.70 0.045 0.067 0.45 0.60 0.017 0.024 1.23 1.36 0.048 0.054 8.95 9.35 0.352 0.368 10.00 10.40 0.393 0.409 4.88 5.28 0.192 0.208 15.00 15.85 0.590 0.624 1.27 1.40 0.050 0.055 1.40 1.75 0.055 0.069 2.40 3.20 0.094 0.126 0.40 Typ. 0.016 Typ. 0° 8° 0° 8° Figure 18: Foot Print Dimensions (in millimeters) 16.90 10.30 5.08 1.30 8.90 ® 3.70 7/10 ACST6 Figure 19: TO-220AB Package Mechanical Data REF. A H2 Dia C L5 L7 L6 L2 F2 F1 D L9 L4 F M G1 E G A C D E F F1 F2 G G1 H2 L2 L4 L5 L6 L7 L9 M Diam. DIMENSIONS Millimeters Inches Min. Max. Min. Max. 4.40 4.60 0.173 0.181 1.23 1.32 0.048 0.051 2.40 2.72 0.094 0.107 0.49 0.70 0.019 0.027 0.61 0.88 0.024 0.034 1.14 1.70 0.044 0.066 1.14 1.70 0.044 0.066 4.95 5.15 0.194 0.202 2.40 2.70 0.094 0.106 10 10.40 0.393 0.409 16.4 typ. 0.645 typ. 13 14 0.511 0.551 2.65 2.95 0.104 0.116 15.25 15.75 0.600 0.620 6.20 6.60 0.244 0.259 3.50 3.93 0.137 0.154 2.6 typ. 0.102 typ. 3.75 3.85 0.147 0.151 Figure 20: I2PAK Package Mechanical Data DIMENSIONS REF. Max. Min. Max. A 4.40 4.60 0.173 0.181 A1 2.49 2.69 0.098 0.106 B 0.70 0.93 0.027 0.037 B2 1.14 1.7 0.045 0.067 C 0.45 0.60 0.018 0.024 C2 1.23 1.36 0.048 0.053 D 8.95 9.35 0.352 0.368 B2 E 10.0 10.4 0.394 0.409 B G 4.88 5.28 0.192 0.208 L 16.7 17.5 0.657 0.689 L2 1.27 1.40 0.050 0.055 L3 13.82 14.42 0.544 0.568 C2 L2 D Cropping direction L3 A1 G 8/10 Inches Min. A E L Millimeters C ® ACST6 Figure 21: TO-220FPAB Package Mechanical Data DIMENSIONS Millimeters Inches Min. Max. Min. Max. 4.4 4.6 0.173 0.181 2.5 2.7 0.098 0.106 2.5 2.75 0.098 0.108 0.45 0.70 0.018 0.027 0.75 1 0.030 0.039 1.15 1.70 0.045 0.067 1.15 1.70 0.045 0.067 4.95 5.20 0.195 0.205 2.4 2.7 0.094 0.106 10 10.4 0.393 0.409 16 Typ. 0.63 Typ. 28.6 30.6 1.126 1.205 9.8 10.6 0.386 0.417 2.9 3.6 0.114 0.142 15.9 16.4 0.626 0.646 9.00 9.30 0.354 0.366 3.00 3.20 0.118 0.126 REF. A B H Dia L6 L7 L2 L3 L5 D F1 L4 F2 F E G1 G A B D E F F1 F2 G G1 H L2 L3 L4 L5 L6 L7 Dia. Table 7: Ordering Information ■ Ordering type ACST6-7ST Marking ACST67S Package TO-220AB Weight 2.3 g Base qty 50 Delivery mode Tube ACST6-7SG ACST67S 1.5 g 50 Tube 2.4 g 50 Tube 1.5 g 50 Tube ACST6-7SFP ACST67S D2PAK TO-220FPAB ACST6-7SR ACST67S 2PAK I Epoxy meets UL94,V0 Table 8: Revision History Date Revision Jan-2002 7F 09-May-2005 8 ® Description of Changes Last issue. Layout update. No content change. 9/10 ACST6 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 10/10 ®