STMICROELECTRONICS E

TDA7437N
Digitally controlled audio processor
Features
■
Input multiplexer
– Four stereo, one mono input, and one
differential input
– Selectable input gain for optimal adaptation
to different sources
■
Fully programmable loudness function
■
Volume control in 1dB steps including gain up
to 16dB
■
Zero crossing mute, soft mute and direct mute
■
Bass and treble control
■
Four speaker attenuators- four independent
speakers control in 1dB steps for balance and
fader facilities
■
Pause detector programmable threshold
■
All functions programmable via serial I2C bus
Description
The audioprocessor TDA7437N is an upgrade of
the TDA731X audioprocessor family.
Due to a highly linear signal processing, using
CMOS-switching techniques instead of standard
bipolar multipliers, very low distortion and very
LQFP44
low noise are obtained. Several new features like
softmute, and zero-crossing mute are
implemented. The soft Mute function can be
activated in two ways either via the serial bus
(Mute byte, bit D0), or directly on pin 28 through
an I/O line of the microcontroller
Very low DC stepping is obtained by use of a
BICMOS technology.
Order codes
Part numbers
Package
Packing
E-TDA7437N
LQFP44 (10x 10x 1.4mm)
Tray
E-TDA7437NTR
LQFP44 (10x 10x 1.4mm)
Tape and reel
December 2006
Rev 2
1/34
www.st.com
1
TDA7437N
Contents
1
PIN descriptions and electrical specifications . . . . . . . . . . . . . . . . . . . . 6
2
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3
I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4
5
2/34
3.1
Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2
Start and stop conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3
Byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5
Transmission without acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Software specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1
Interface protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2
Auto increment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3
Subaddress (receive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4
Transmitted data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5
Data byte specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Mute and pause features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1
Soft mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2
Direct mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3
Speakers mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4
Zero crossing mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.5
Pause function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.6
No symmetrical bass cut response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.7
Transmitted data (send mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.8
TDA7437N I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.9
I2C bus read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.10
Loudness stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.11
Treble stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.12
IN-OUT pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.13
Bass & mid filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
TDA7437N
5.14
Input selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6
Curves of electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3/34
TDA7437N
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
4/34
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Quick reference data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Subaddress (receive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Send mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Data byte specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Loudness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Bass treble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Input stage gain middle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
TDA7437N
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
CLD and CDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Timing diagram of I2C Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Acknowledge on the I2C Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Power on time constant vs CREF capacitor CREF = 4.7mF . . . . . . . . . . . . . . . . . . . . . . . 28
Power on time constant vs CREF capacitor CREF = 10mF . . . . . . . . . . . . . . . . . . . . . . . . 28
Power on time constant vs CREF capacitor CREF = 22mF . . . . . . . . . . . . . . . . . . . . . . . . 28
SVRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Soft mute ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Soft mute OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Zero crossing mute ON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Zero crossing mute OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Pause detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Pause detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Symmetrical bass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
unsymmetrical bass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Loudness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Test board diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
LQFP44 (10x10) Mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . . . 32
5/34
PIN descriptions and electrical specifications
PIN descriptions and electrical specifications
OUT_LF
PAUSE
DGND
SDA
SCL
ADDR
CREF
DVDD
AVDD
Pin description
TREB-L
Figure 1.
AGND
1
TDA7437N
44 43 42 41 40 39 38 37 36 35 34
TREB_R
1
33
OUT_RF
IN_R
2
32
OUT_LR
MUXOUT_R
3
31
MID_LI
LOUD_R
4
30
MID_LO
DIFFGND_R
5
29
OUT_RR
DIFF_R
6
28
SMEXT
STEREO4_R
7
27
BASS_RO
STEREO1_R
8
26
BASS_RI
STEREO2_R
9
25
BASS_LO
STEREO3_R
10
24
BASS_LI
MONO
11
23
MID_RO
MID_RI
MUXOUT_L
IN_L
CSM
STEREO3_L
STEREO2_L
STEREO1_L
STEREO4_L
DIFF_L
LOUD_L
Table 1.
DIFFGND_L
12 13 14 15 16 17 18 19 20 21 22
D96AU435B
Absolute maximum ratings
Symbol
Parameter
AVDD, DVDD Operating supply voltage
Unit
10.5
V
Tamb
Operating ambient temperature
-40 to 85
°C
Tstg
Storage temperature range
-55 to 150
°C
Value
Unit
150
°C/W
Table 2.
Thermal data
Symbol
Rth j-amb
Table 3.
6/34
Value
Parameter
Thermal resistance junction to pins Max.
Quick reference data
Symbol
Parameter
Min.
Typ.
Max.
Unit
AVDD, DVDD
Supply voltage (AVDD and DVDD must be at the same
potential)
6
9
10.2
V
2.1
2.6
VCL
Max. input signal handling
THD
Total harmonic distortion V = 1Vrms f = 1KHz
0.01
S/N
Signal to noise ratio
111
dB
SC
Channel separation f = 1KHz
95
dB
Vrms
0.8
%
TDA7437N
PIN descriptions and electrical specifications
Table 3.
Quick reference data (continued)
Symbol
Parameter
Max.
Unit
0
15
dB
Volume control 1dB step
-63
16
dB
Treble control 2dB step
-14
+14
dB
Bass control 2dB step
-14
+14
dB
Middle control 2dB step
-14
+14
dB
Fader and balance control 1dB step
-79
0
dB
0
20
dB
Input gain 1dB step
Loudness control 1dB step
Mute attenuation
Min.
Typ.
100
dB
7/34
2 x 4.7μF
5 x 470nF
2 x 4.7μF
5
DIFFGND_R
AVDD
22μF
39
CREF
43
SUPPLY
LOUD_L
2.2μF
3
2
47nF
LOUD_R
4
1
5.6nF
22nF
2.7K
BASS
26
100nF
BASS_RI
27
BASS
47nF
28
35
19
47nF
CSM
SPKR
ATT
SPKR
ATT
S-MUTE
MUTE CONTROL
SOFT, ZERO
SPKR
ATT
SPKR
ATT
S-MUTE
BASS_LI
24
25
18nF 100nF
5.6K
22
MID_RI
23
MIDDLE
MID_RO
TREBLE
VOLUME
+ LOUDN
MIDDLE
31
100nF
BASS_LO
5.6K
18nF 100nF
MID_LI
2.7K
22nF
I2C BUS DECODER + LATCHES
30
MID_LO
44
INGAIN
12
TREBLE
20
VOLUME
+ LOUDN
21
INGAIN
MUXOUT_L
AGND
42
41
6
DIFF_R
DVDD
7
STEREO4_R
11
MONO
10
13
DIFFGND_L
STEREO3_R
14
DIFF_L
9
15
STEREO4_L
STEREO2_R
18
STEREO3_L
8
17
STEREO2_L
STEREO1_R
16
MUXOUT_R
STEREO1_L
IN_R
4 x 470nF
TREBL_L
TREB_R
MULTIPLEXER
IN_L
5.6nF
BASS_RO)
8/34
SMEXT
D95AU249B
32
29
36
37
38
40
33
34
OUT_RF
OUT_RR
DIGGND
SDA
SCL
ADDR
OUT_LR
OUT_LF
Figure 2.
PAUSE
2.2μF 47nF
PIN descriptions and electrical specifications
TDA7437N
Block diagram
TDA7437N
2
Electrical characteristics
Electrical characteristics
(AVDD, DVDD = 9V; RL = 10KΩ; Rg = 50Ω; Tamb = 25°C; all gains = 0dB; f = 1KHz. Refer to the
test circuit, unless otherwise specified.)
Table 4.
Electrical characteristics
Symbol
Parameter
Test condition
Min.
Typ.
Max.
Unit
130
KΩ
Input selector (mono and stereo inputs)
RI
VCL
Input resistance
pin 7 to 11 and 15 to 18
70
100
Clipping level
d ≤ 0.3%
2.1
2.6
VRMS
95
dB
SI
Input separation
80
RL
Output load resistance
2
KΩ
GI MIN
Minimum input gain
-0.75
0
+0.75
dB
GI MAX
Maximum input gain
14
15
16
dB
Step resolution
0.5
1.0
1.5
dB
Ea
Set error
-1.0
0
1.0
dB
0.5
10
mV
VDC
DC steps
Gstep
Adjacent gain steps
GIMIN to GIMAX
3
mV
Differential input (Pin 5, 6, 13, 14)
RI
CMRR
d
eIN
GDIFF
Input selector BIT D4 = 0
(0dB)
10
15
20
KΩ
Input selector BIT D4 = 1(6dB)
14
20
26
KΩ
Common mode rejection
ratio
VCM = 1VRMS ; f = 1KHz
45
70
Distortion
VI = 1VRMS
Input noise
20Hz to 20KHz; Flat; D6 =
0
Input resistance
0.01
dB
0.08
%
μV
5
D4 = 0
-1
0
1
dB
D4 = 1
-7
-6
-5
dB
Pin 2 and 20
31
44
57
KΩ
Differential gain
Volume control
RI
Input resistance
GMAX
Maximum gain
15
16
17
dB
AMAX
Maximum attenuation
61
63.75
66.5
dB
0.5
1.0
1.5
dB
G = 16 to -20dB
-1.0
0
1.0
dB
G = -20 to -63dB
-2.75
2.75
dB
2
dB
ASTEPC Step resolution coarse atten.
EA
Attenuation set error
Et
Tracking error
9/34
Electrical characteristics
Table 4.
Electrical characteristics (continued)
Symbol
VDC
TDA7437N
Parameter
DC steps
Test condition
Min.
Typ.
Max.
Unit
Adjacent gain steps
-5
+5
mV
Adjacent attenuation steps
-3
+3
mV
0.5
5
mV
35
50
65
KΩ
From 0dB to AMAX
Loudness control (Pin 4, 12)
RI
Internal resistor
Loud = On
AMAX
Maximum attenuation
19
20
21
dB
Astep
Step resolution
0.5
1
1.5
dB
Zero crossing mute
VTH
AMUTE
VDC
Zero crossing threshold (1)
WIN = 11
35
mV
WIN = 10
70
mV
WIN = 01
140
mV
WIN = 00
280
mV
100
dB
Mute attenuation
DC step
80
0dB to Mute
0.1
3
mV
Soft mute
AMUTE
TDON
TDOFF
Mute attenuation
ON delay time
OFF current
50
65
CCSM = 22nF; 0 to -20dB; I
= IMAX
0.8
1.5
2.0
ms
CCSM = 22nF; 0 to -20dB; I
= IMIN
25
45
60
ms
VCSM = 0V; I = IMAX
20
40
60
mA
VCSM = 0V; I = IMIN
RINT
Pullup resistor (pin 28)
VSMH
(pin 28) Level high
VSML
(pin 28) Level low
(2)
dB
2
μA
100
KΩ
3.5
V
Soft mute active
1
V
Bass control
±11.5
±14
±16
dB
Step resolution
1
2
3
dB
Internal feedback resistance
31
44
57
KΩ
±11.5
±14
±16
dB
1
2
3
dB
17.5
25
32.5
KΩ
Crange
Control range
Astep
Rg
Middle control
Crange
Control range
Astep
Step resolution
Rg
10/34
Internal feedback resistance
TDA7437N
Electrical characteristics
Table 4.
Electrical characteristics (continued)
Symbol
Parameter
Test condition
Min.
Typ.
Max.
Unit
±13
±14
±15
dB
1
2
3
dB
Treble control
CRANGE Control range
Astep
Step resolution
Speaker attenuators
CRANGE Control range
Astep
79
Step resolution
AV = 0 to -40dB
0.5
1
Output mute attenuation
Data word = 1111XXXX
80
100
EA
Attenuation set error
AV = 0 to -40dB
VDC
DC steps
Adjacent attenuation steps
AMUTE
0.1
dB
1.5
dB
dB
1.5
dB
3
mV
Audio output
Vclip
Clipping level
d = 0.3%
2.1
2.6
Vrms
RL
Output load resistance
2
RO
Output impedance
50
90
140
W
VDC
DC voltage level
3.5
3.8
4.1
V
KΩ
Pause detector
VTH
WIN = 11
35
mV
WIN = 10
70
mV
WIN = 01
140
mV
WIN = 00
280
mV
Pause threshold
IDELAY
Pull-up current
VTHP
Pause threshold
15
25
35
3.0
μA
V
General
VCC
Supply voltage
6
9
10.2
V
ICC
Supply current
7
10
13
mA
70
90
dB
μV
PSRR
Power supply rejection ratio
f = 1KHz
Output noise
Output muted (B = 20 to
20kHz flat)
4
All gains 0dB (B = 200 to
20kHz flat)
6
15
μV
AV = 0 to -20dB
0
1
dB
AV = -20 to -60dB
0
2
dB
eNO
Et
Total tracking error
S/N
Signal to noise ratio
SC
Channel separation L - R
All Gains = 0dB; VO =
2.1Vrms
80
111
dB
95
dB
11/34
Electrical characteristics
Table 4.
Electrical characteristics (continued)
Symbol
d
TDA7437N
Parameter
Test condition
Distortion
Min.
VIN =1V all gain = 0dB
Typ.
Max.
Unit
0.01
0.08
%
1
V
Bus inputs
VIL
Input low voltage
VlN
Input high voltage
IlN
Input current
VIN = 0.4V
VO
Output voltage SDA
acknowledge
IO = 1.6mA
3
V
-5
0.1
5
μA
0.4
V
1. WIN represents the MUTE programming bit pair D6, D5 for the zero crossing window threshold
2. Internal pullup resistor to Vs/2; "LOW" = softmute active
Note:
The ANGND and DIGGND layout wires must be kept separated. A 50Ω resistor is
recommended to be put as far as possible from the device.
The CLD - and CDR - can be short-circuited in applications providing 3 wires CD signal
Figure 3.
CLD and CDR
CD
L+
L+
∼RL- =
LR-
R+
R+
D02AU1384
CLD - = DIFFINLGND
CDR - = DIFFINRGND
12/34
TDA7437N
TDA7437N
3
I2C bus interface
I2C bus interface
Data transmission from the microprocessor to the TDA7437N, and vice versa, takes place
through the 2 wires of the I2C BUS interface, consisting of the two lines SDA and SCL (pullup resistors to positive supply voltage must be externally connected).
3.1
Data validity
As shown in Figure 4, the data on the SDA line must be stable during the high period of the
clock. The HIGH and LOW state of the data line can only change when the clock signal on
the SCL line is LOW.
3.2
Start and stop conditions
As shown in Figure 5 a start condition is a HIGH to LOW transition of the SDA line while
SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is
HIGH. A STOP conditions must be sent before each START condition.
3.3
Byte format
Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an
acknowledge bit. The MSB is transferred first.
3.4
Acknowledge
The master (microprocessor) puts a resistive HIGH level on the SDA line during the
acknowledge clock pulse (see Figure 6). The peripheral (audioprocessor) that
acknowledges has to pull-down (LOW) the SDA line during the acknowledge clock pulse, so
that the SDA line is stable LOW during this clock pulse. The audioprocessor which has been
addressed has to generate an acknowledgment after the reception of each byte, otherwise
the SDA line remains at the HIGH level during the ninth clock pulse time. In this case the
master transmitter can generate the STOP information in order to abort the transfer.
3.5
Transmission without acknowledgment
To avoid detection of the acknowledge clock pulse of the audioprocessor, the microprocessor can
use a simpler transmission: it simply waits one clock pulse, and sends the new data. This is less
protected from any errors and will decrease the immunity to noise.
13/34
I2C bus interface
Figure 4.
TDA7437N
Data validity
SDA
SCL
DATA LINE
STABLE, DATA
VALID
Figure 5.
CHANGE
DATA
ALLOWED
D99AU1031
Timing diagram of I2C Bus
SCL
I2CBUS
SDA
D99AU1032
START
Figure 6.
STOP
Acknowledge on the I2C Bus
SCL
1
2
3
7
8
9
SDA
MSB
START
14/34
D99AU1033
ACKNOWLEDGMENT
FROM RECEIVER
TDA7437N
Software specification
4
Software specification
4.1
Interface protocol
The interface protocol comprises of:
●
A start condition (s)
●
A chip address byte, (the LSB bit determines read (=1)/write (=0) transmission)
●
A subaddress byte.
●
A sequence of data (N-bytes + acknowledge)
●
A stop condition (P)
CHIP ADDRESS
MSB
S 1
0
SUBADDRESS
MSB
LSB
0
0
1
0
A
R/W
DATA 1 to DATA n
ACK
LSB
X X X
I
A3
A2
A1
A0
MSB
ACK
LSB
DATA
ACK
P
ACK = Acknowledge; S = Start; P = Stop; I = Auto increment; X = Not used
Max clock speed 500kbits/s
ADDRpin open A = 0
ADDRpin close to Vs A = 1
4.2
Auto increment
If bit I in the subaddress byte is set to "1", the autoincrement of the subaddress is enabled.
4.3
Subaddress (receive mode)
Table 5.
Subaddress (receive mode)
MSB
X
LSB
X
X
I
FUNCTION
A3
A2
A1
A0
0
0
0
0
Input selector
0
0
0
1
Loudness
0
0
1
0
Volume
0
0
1
1
Bass, Treble
0
1
0
0
Speaker attenuator LF
0
1
0
1
Speaker attenuator LR
0
1
1
0
Speaker attenuator RF
0
1
1
1
Speaker Attenuator RR
1
0
0
0
Input gain middle
1
0
0
1
Mute
15/34
Software specification
4.4
TDA7437N
Transmitted data
Table 6.
Send mode
MSB
LSB
X
X
X
X
X
SM
ZM
P
P = Pause (Active low)
ZM = Zero crossing muted (HIGH active)
SM = Soft mute activated (HIGH active)
X = Not used
The transmitted data is automatically updated after each ACK.
Transmission can be repeated without new chipaddress.
4.5
Data byte specification
Table 7.
Data byte specification
MSB
LSB
Function
D7
X
D6
X
D5
D4
D3
D2
D1
D0
1
0
0
0
Differential
1
0
0
1
Stereo 1
1
0
1
0
Stereo 2
1
0
1
1
Stereo 3
1
1
0
0
Stereo 4
1
1
0
1
Mono
0
X
X
X
DC connect (1)
X
X
0
0
Half-diff 0dB (2)
0
1
Half-diff -6dB (2)
1
0
Full-diff 0dB (3)
1
1
Full-diff -6dB (3)
1. Selected when using a 3 wire differential source (pins 5 and 13 shorted)
2. Selected when using a 4 wire differential source
3. OUTR-INR (OUTL-INR) short circuited internally (no need for external connection
Table 8.
Loudness
MSB
D7
16/34
D6
LSB
Function
D5
D4
D3
D2
D1
D0
Loudness step
0
0
0
0
0
0
0dB
0
0
0
0
0
1
1dB
0
0
0
0
1
0
2dB
0
0
0
0
1
1
3dB
TDA7437N
Software specification
Table 8.
Loudness (continued)
MSB
D7
D6
LSB
Function
D5
D4
D3
D2
D1
D0
Loudness step
0
0
0
1
0
0
4dB
0
0
0
1
0
1
5dB
0
0
0
1
1
0
6dB
0
0
0
1
1
1
7dB
0
0
1
0
0
0
8dB
0
0
1
0
0
1
9dB
0
0
1
0
1
0
10dB
0
0
1
0
1
1
11dB
0
0
1
1
0
0
12dB
0
0
1
1
0
1
13dB
0
0
1
1
1
0
14dB
0
0
1
1
1
1
15dB
0
1
0
0
0
0
16dB
0
1
0
0
0
1
17dB
0
1
0
0
1
0
18dB
0
1
0
0
1
1
19dB
0
1
0
1
0
0
20dB
1
Loudness off
Fine volume
0
0
0dB
0
1
-0.25dB
1
0
-0.5dB
1
1
-0.75dB
Table 9.
Mute
MSB
LSB
Function
D7
D6
D5
D4
D3
D2
D1
0
0
1
Soft mute on
0
0
1
soft mute with fast slope
0
1
1
Soft mute with slow slope
0
1
1
D0
1
Zero mute
Direct mute
Reset
17/34
Software specification
Table 9.
TDA7437N
Mute (continued)
MSB
LSB
Function
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
Zero cross window
(280mV)
0
1
0
Zero cross window
(140mV)
1
0
0
Zerocross window (70mV)
1
1
0
Zerocross window (35mV)
0
Non symmetrical bass
1
Symmetrical bass
Table 10.
Volume
MSB
LSB
Function
D7
D6
D5
D4
D3
D2
D1
D0
1
0
0
0
0dB
1
0
0
1
-1dB
1
0
1
0
-2dB
1
0
1
1
-3dB
1
1
0
0
-4dB
1
1
0
1
-5dB
1
1
1
0
-6dB
1
1
1
1
-7dB
1
18/34
1
0
0
0
0
16dB
1
0
0
0
1
8dB
1
0
0
1
0
0dB
1
0
0
1
1
-8dB
1
0
1
0
0
-16dB
1
0
1
0
1
-24dB
1
0
1
1
0
-32dB
1
0
1
1
1
-40dB
1
1
0
0
0
-48dB
1
1
0
0
1
-56dB
0
X
X
X
X
X
X
X
Mute
TDA7437N
Software specification
Table 11.
Speaker
MSB
LSB
Function
D7
D6
D5
D4
D3
D2
D1
D0
1.25dB step
Table 12.
0
0
0
0dB
0
0
1
-1dB
0
1
0
-2dB
0
1
1
-3dB
1
0
0
-4dB
1
0
1
-5dB
1
1
0
-6dB
1
1
1
-7dB
0
0
0
0
0dB
0
0
0
1
-8dB
0
0
1
0
-16dB
0
0
1
1
-24dB
0
1
0
0
-32dB
0
1
0
1
-40dB
0
1
1
0
-48dB
0
1
1
1
-56dB
1
0
0
0
-64dB
1
0
0
1
-72dB
1
1
1
1
X
X
X
Mute
Bass treble
MSB
LSB
Function
D7
D6
D5
D4
D3
D2
D1
D0
Treble step
0
0
0
0
-14dB
0
0
0
1
-12dB
0
0
1
0
-10dB
0
0
1
1
-8dB
0
1
0
0
-6dB
0
1
0
1
-4dB
0
1
1
0
-2dB
0
1
1
1
0dB
19/34
Software specification
Table 12.
TDA7437N
Bass treble (continued)
MSB
LSB
Function
D7
D6
D5
D4
D3
D2
D1
D0
1
1
1
1
0dB
1
1
1
0
2dB
1
1
0
1
4dB
1
1
0
0
6dB
1
0
1
1
8dB
1
0
1
0
10dB
1
0
0
1
12dB
1
0
0
0
14dB
Bass steps
0
0
0
0
-14dB
0
0
0
1
-12dB
0
0
1
0
-10dB
0
0
1
1
-8dB
0
1
0
0
-6dB
0
1
0
1
-4dB
0
1
1
0
-2dB
0
1
1
1
0dB
1
1
1
1
0dB
1
1
0
2dB
1
0
1
4dB
1
0
0
6dB
0
1
1
8dB
0
1
0
10dB
1
0
0
1
126B
1
0
0
0
14dB
1
1
Table 13.
Input stage gain middle
MSB
LSB
Function
D7
D6
D5
D4
D3
D2
D1
D0
In-gain step
20/34
0
0
0
0
0dB
0
0
0
1
1dB
0
0
1
0
2dB
0
0
1
1
3dB
TDA7437N
Software specification
Table 13.
Input stage gain middle (continued)
MSB
LSB
Function
D7
D6
D5
D4
D3
D2
D1
D0
0
1
0
0
4dB
0
1
0
1
5dB
0
1
1
0
6dB
0
1
1
1
7dB
1
0
0
0
8dB
1
0
0
1
9dB
1
0
1
0
10dB
1
0
1
1
11dB
1
1
0
0
12dB
1
1
0
1
13dB
1
1
1
0
14dB
1
1
1
1
15dB
Middle step
0
0
0
0
-14dB
0
0
0
1
-12dB
0
0
1
0
-10dB
0
0
1
1
-8dB
0
1
0
0
-6dB
0
1
0
1
-4dB
0
1
1
0
-2dB
0
1
1
1
0dB
1
1
1
1
0dB
1
1
1
0
2dB
1
1
0
1
4dB
1
1
0
0
6dB
1
0
1
1
8dB
1
0
1
0
10dB
1
0
0
1
126B
1
0
0
0
14dB
21/34
Mute and pause features
5
TDA7437N
Mute and pause features
The TDA7437N provides three types of mute, controlled via I2C bus (see Table 9 Mute byte
register).
5.1
Soft mute
Bit D0 = 1 → Soft mute ON
Bit D0 = 0 → Soft mute OFF
It allows an automatic soft muting and unmuting of the signal.
The time constant is fixed by an external capacitor Csm inserted between pin Csm and
ground.
Once the external capacitor is fixed, two different slopes (time constant) are selectable by
programming of bit D1.
Bit D1 = 0 → fast slope (I=Imax)
Bit D1 = 1 → slow slope (I=Imin)
The soft mute generates a gradually decreasing signal, avoiding big click noise of an
immediate high attenuation, without necessity to program a sequence of decreasing volume
levels. A response example is reported in Figure 11 (mute), and Figure 12 (unmute). The
final attenuation obtained with soft mute ON is 60dB typical. The used reference parameter
is the delay time taken to reach 20dB attenuation (no matter what the signal level is).
Using a capacitor Csm = 22nF this delay is:
d = 1. 8mswhen selected Fast slope mode (bit D1=0)
d = 25 ms when selected Slow slope mode (bit D1=1
In the application, the soft mute ON programming should be followed by programming of
direct mute on (see 5.2), in order to achieve a final 100dB attenuation. In addition to the I2C
bus programming, the Soft Mute ON can be generated in a fast way by forcing a LOW level
at pin SMEXT (TTL Level compatible). This approach is recommended for fast RDS AF
switching.
The Soft Mute status can be detected via I2C bus, reading the Transmitted Byte, bit SM
(see Table 6).
read bit SM = 1 soft mute status ON
read bit SM = 0 soft mute status OFF
5.2
Direct mute
bit D3 = 1 Direct mute ON
bit D3 = 0 Direct mute OFF
The direct mute bit forces an internal immediate signal connection to ground.
It is located just before the Volume/Loudness stage, and gives a typical 100dB attenuation.
22/34
TDA7437N
5.3
Mute and pause features
Speakers mute
An additional direct mute function is included in the speakers attenuators stage.
The four output LF, RF, LR, RR can be separately muted by setting the speaker attenuator
byte to the value 01111111 binary.
Typical attenuation level 100dB. This mute is useful for fader and balance functions. It
should not be applied for system mute/unmute, because it can generate noise due to the
offset of previous stages (bass / treble).
5.4
Zero crossing mute
bit D2 = 1 D4 = 0 zero crossing mute ON
bit D2 = 0 D4 = 0 zero crossing mute OFF
The mute activation/deactivation is delayed until the signal waveform crosses the DC zero
level (Vref level).
The detection works separately for left and right channels (see Figure 13 and Figure 14).
Four different window thresholds are software selectable by two dedicated bits.
bit
D6 bit D5 Window
0
0
Vref DC +/-280mV
0
1
Vref DC +/-140mV
1
0
Vref DC +/-70mV
1
1
Vref DC +/-35mV
The zero crossing mute activation/deactivation starts when the AC signal level falls inside
the selected window (internal comparator).
The zero crossing mute (and pause) detector is always active. It can be disabled, if the
feature is not used, by forcing the bit D4 = 1 Zero crossing and pause detector reset.
In this way the internal comparator logic is stopped, eliminating its switching noise.
The zero cross mute status is detected reading the transmitted byte bit ZM.
bit ZM = 1 zero cross mute status ON
bit ZM = 0 zero cross mute status OFF
5.5
Pause function
On chip is implemented by a pause detector block.
It uses the same 4 windows threshold selectable for the zero crossing mute, bit D6,D5 byte
MUTE (see above). The detector can be put into OFF by forcing bit D4 = 1, otherwise it is
active.
Pause detector information is available at the PAUSE pin. A capacitor must be connected
between the PAUSE pin and ground.
23/34
Mute and pause features
TDA7437N
When the incoming signal is detected to be outside the selected window, the external
capacitor is discharged. When the signal is inside the window, the capacitor is integrating up
(see Figure 15 and Figure 16).
a)
by reading directly the Pause pin level.The ON/OFF voltage threshold is 3.0V
typical. Pause OFF = level low (< 3.0V) Pause ON = level high ( ; 3.0V)
b)
by reading via I2C bus the transmitted byte, bit PP = 0 pause active. P = 1 no
pause detected. The external capacitor value fixes the time constant.
The pull up current is 25uV typical, with input signal
Vin = 1Vrm --; Vdc pin pause = 15mV
Vin = 0Vrms --; Vdc pin pause = 5.62V
For example choosing Cpause = 100nF the charge up constant is about 22ms. Instead with
Cpause = 15nF the charge up constant is about 360μs.
The pause detection is useful in applications like RDS, to perform noiseless tuning
frequency jumps, avoiding the use of the mute.
5.6
No symmetrical bass cut response
bit D7 = 0 No symmetrical
bit D7 = 1 Symmetrical
The bass stage has the option to generate an unsymmetrical response, for cut mode
settings (bass level from -2db to - 14dB)
For example using a T-type band pass external
The feature is useful for human ear equalization in a noisy environment, like a car.
See examples in Figure 17 (symmetrical response) and Figure 18 (unsymmetrical
response).
5.7
Transmitted data (send mode)
bitP = 0Pause active
bitP = 1No pause detected
bitZM = 1Zero cross mute ON
bitZM = 0Zero cross mute OFF
bitSM = 1Soft mute ON
bitSM = 0Soft mute OFF
bitST = 1Stereo signal detected (input MPX)
bitST = 0Mono signal detected (input MPX)
The TDA7437N allows the reading of four info bits.
24/34
TDA7437N
Mute and pause features
The type (stereo/mono) of received broadcasting signal is easily checked and displayed by
using the ST bit.
The P bit check is useful in tuning jumps without signal muting.
The SM soft mute status becomes active immediately, when bit D0 is set to 1 (soft mute ON,
MUTE byte) and not when the signal level has reached the 60 dB final attenuation.
5.8
TDA7437N I2C bus protocol
The protocol is standard I2C, using subaddress byte plus data bytes (as shown within
Chapter 4).
The optional autoincrement mode allows to refresh all the bytes registers with transmission
of a single subaddress, reducing drastically the total transmission time.
Without autoincrement, subaddress bit I = 0, to refresh all the bytes registers (10), it is
necessary to transmit 10 times the chip address, the subaddress and the data byte.
Working with a 100Kb/s clock speed the total time would be :
[(9*3+2)*10]bits*10us=2.9ms
Instead using autoincrement mode, subaddress bit I=1, the total time will be:
(9*12+2)*10us=1.1ms.
The autoincrement mode is useful also to refresh partially the data. For example to refresh
the 4 speakers attenuators it is possible to program the subaddress Spkr LF (code
XX010100), followed by the data byte of SPKR LF, LR, RF, RR in sequence.
Note: that the autoincrement mode has a module 16 counter, whereas the total used
register bytes are 10.
It is not correct to refresh all the 10 bytes starting from a subaddress different than
XX010000.
For example; using subaddress XX010010 (volume), the registers from Volume to Mute (see
Table 5) are correctly updated, but the next two transmitted bytes, refer instead to the
wanted Input selector, and Loudness are discharged. (the solution in this case is to send
two separate patterns in autoincrement mode, the first composed by address, subaddress
XX010010, 8 data bytes, and the second composed by address, subaddress XX010000, 2
data bytes).
With autoincrement disabled, the protocol allows the transmission in sequence of N data
bytes of a specific register, without the necessity to resend the address and subaddress
bytes, each time.
This feature can be implemented, for example, if a gradual volume change has to be
performed (the MCU does not send the STOP condition, but keeps the TDA7437N
communication active).
Warning:
The TDA7437N always needs to receive a STOP condition,
before beginning a new START condition. The device doesn't
recognize a START condition if a previously active
communication was not ended by a STOP condition.
25/34
Mute and pause features
5.9
TDA7437N
I2C bus read mode
The TDA7437N sends the master a 1 byte "transmitted info" via I2C bus in read mode.
The read mode is master activated by sending the chip address with LSB set to 1, followed
by an acknowledge bit.
The TDA7437N recognizes the request. At the following master generated clock bits, the
TDA7437N issues the transmitted inFO byte on the SDA data bus line (MSB transmitted
first).
At the ninth clock bit the MCU master can:
5.10
●
acknowledge the reception, starting in this way the transmission of another byte from
the TDA7437N.
●
no acknowledge, stopping the read mode communication.
Loudness stage
The previous SGS-THOMSON audioprocessors implemented a fixed loudness response,
only ON/OFF sw programmable.
No possibility to change the loud boost rate at a certain volume level. The TDA7437N
implements a fully programmable loudness control in 20 steps of 1dB.
It allows a customized loudness response for each application. The external network
connected to the loudness pins LOUD_L and LOUD_R fixes the type of loudness response.
5.11
1.
Simple capacitor. The loudness effect is only a boost of low frequencies.
(see Figure 19)
2.
Second order loudness (boost of low and high frequencies).
3.
Second order decreased type loudness (lower boost of low and high frequencies).
4.
Second order modified type loudness (higher boost of low and high frequencies).
Treble stage
The treble stage is a simple high pass filter, it’s time constant is fixed by internal resistor
(typically 50Kohm), and an external capacitor, connected between pins TREB_R/TREB_L
and ground.
5.12
IN-OUT pins
The multiplexer output is available at OUT_R and OUT_L pins for the optional connection of
an external graphic equalizer (TDA7316/TDA7317), surround chip (TDA7346) etc. The
signal is fed in again at pins IN_L and IN-R. In the case of an application without any
external devices, the pins OUT_L/OUT_R and IN_L/IN_R can be left unconnected, if bit D3
byte input selector is forced = 0 (DC connect). Instead if bit D3 is kept = 1 an external
decoupling capacitor must be provided between OUTR/INR and OUTL/INR to avoid signal
DC jumps, generating "clicking" output noise. The input impedance of the next volume stage
is 44Kohm typical (minimum 31Kohm). A capacitor no lower than 1mF should be used.
26/34
TDA7437N
5.13
Mute and pause features
Bass & mid filters
Several bass filter types can be implemented. Normally it is the basic T-type bandpass filter
that is used. Starting from the filter component values (R1 internal and R2, C1, C2 external),
the centre frequency Fc, the gain Av at max bass boost and the filter Q factor are computed
as follows:
1
F c = ----------------------------------------------------------------2 ⋅ Π ⋅ R1 ⋅ R2 ⋅ C1 ⋅ C2
R2 ⋅ C2 + R2 ⋅ C1 + R1 ⋅ C1
A v = -------------------------------------------------------------------------R2 ⋅ C1 + R2 ⋅ C2
Vice versa fixed Fc, Av, and R1 (internal typ.±30%), the external component values are
Av – 1
C1 = --------------------------------2 ⋅ Π ⋅ R1 ⋅ Q
Q ⋅ Q ⋅ C1
C2 = ----------------------------------Av – 1 – Q ⋅ Q
( R1 ⋅ R2 ⋅ C1 ⋅ C2 )
Q = -----------------------------------------------------R2 ⋅ C1 + R2 ⋅ C2
Av – 1 – Q ⋅ Q
R2 = --------------------------------------------------------------------2 ⋅ Π ⋅ C1 ⋅ F c ⋅ ( A v – 1 ) ⋅ Q
5.14
Input selector
The multiplexer selector can choose one of the following inputs:
●
a differential CD stereo input.
●
a mono input.
●
four stereo input
The signal fed to the input pins must be decoupled via series capacitors. The minimum
allowed value depends on the correspondent input impedance. For the CD diff input (Zi =
10Kohm worst case) a Cin = 4.7uF is recommended. For the other inputs (70Kohm worst
case, a Cin=1uF is recommended.
27/34
Curves of electrical characteristics
TDA7437N
6
Curves of electrical characteristics
Figure 7.
Power on time constant vs CREF
capacitor CREF = 4.7μF
V
(1V/div)
2
BWL
2
1
CREF
BWL
0.5s/DIV TIME
Power on time constant vs CREF
capacitor CREF = 22μF
0.5s/DIV
TIME
Figure 10. SVRR vs. frequency
D95AU382
V
(1V)
D95AU381
OUT LF
1
CREF
Power on time constant vs CREF
capacitor CREF = 10μF
V
(1V/div)
D95AU380
OUT LF
Figure 9.
Figure 8.
D95AU383
SVRR
(dB)
-40
-50
μF
22
4.7μF
-60
μF
10
47μF
-70
2
OUT LF
-80
1
CREF
VS=8V
Ripple=0.2VRMS
AV=-15dB
-90
-100
BWL
1s/DIV
10
TIME
Figure 11. Soft mute ON
(a)
100
1K
10K
Freq(Hz)
(b)
V
SOFT MUTE=ON SLOPE=FAST Vout=500mVrms
V
D95AU384
Main Menu
Chan 2
1ms 0.2V
Vout
Pin Csm
Chan 3
1ms 2V
CH1 9V DC
SOFT MUTE
28/34
x
TIME
CH1 0.5V 10
~
CH2 20mV10x ~
CH3 0.2V10x =
x
CH4 20mV 10
= T/div 1ms
TDA7437N
Curves of electrical characteristics
Figure 12. Soft mute OFF
(a)
(b)
V
V
Main Menu
Vout
Chan 2
1ms 0.2V
SOFT MUTE=OFF SLOPE=FAST Vout=500mVrms
Chan 1
1ms 2V
D95AU387
Pin Csm
CH1 9V DC
TIME
SOFT MUTE
Figure 13. Zero crossing mute ON
Figure 14. Zero crossing mute OFF
ZERO CROSSING MUTE = ON
Panel
STATUS
Memory
ZERO CROSSING MUTE = OFF
D95AU389
V
x Chan 1
0.5ms 0.2V
LEFT
D95AU390
V
LEFT
Main Menu
x Chan 2
0.2ms 1V
RIGHT
x Chan 2
0.5ms 0.2V
Save
PANEL
Recall
Auxiliary
Setups
Memory
Card
x Chan 1
0.2ms 0.5V
Multi Zoom
off
X-Y mode
Persistance
mode
RIGHT
Return
CH2 528mV DC
TIME
Figure 15. Pause detector
2ms
TIME
CH1 2.7V DC
Figure 16. Pause detector
US
PAUSE DETECTOR ZCW=140mV Cpause=100nF
D02AU1385
V
Vout
C O
C
0
Cpause
00
D02AU1386
Vout
Main Menu
Main Menu
Chan 1
20ms 0.2V
Chan 2
20ms 2V
CH2 4.12V DC
TIME
Chan 2
20ms 2V
Chan 3
20ms 0.2V
CH2 4.08V DC
CH1 20mV10x ~
x
BWL CH2 0.2V 10x=
CH3 20mV 10 ~
x
CH4 5mV 10 ~ T/div 20ms
29/34
Curves of electrical characteristics
TDA7437N
Figure 17. Symmetrical bass
Figure 18. unsymmetrical bass
D95AU393
(dB)
ATT
(dB)
D95AU394
10
10
5
5
0
0
-5
-10
-5
-15
-10
-20
-15
-25
10
100
1K
10K
Freq(Hz)
Figure 19. Loudness
ATT
(dB)
D98AU887
18
16
14
12
10
8
6
4
2
0
10
30/34
100
1K
10K
Freq(Hz)
10
100
1K
10K
Freq(Hz)
TDA7437N
Curves of electrical characteristics
Figure 20. Test board diagram
GND VCC
CON1
C17
22μF
C18
100nF
R4
2.7K
TRR
IN_R
C21
2.2μF
C22 4.7nF
CON4
O_R
LOUDR
44
43
42
ADDR
DVDD
AGND
TRL
C20 5.6nF
AVDD
JP2 JP1
C19
5.6nF
41
C11
18nF
C10
22nF
MIDRI
40
R3
5.6K
C8
100nF
MIDRO
31
C7
100nF
BASSRO
CREF
BASSRI
27
30
C16 22μF
39
26
1
2
24
3
23
4
22
C23 4.7μF
DIFG_R
C24 4.7μF
DIFF_R
C25 470nF
ST4_R
C26 470nF
ST1_R
C27 470nF
ST2_R
C28 470nF
ST3_R
C29 470nF
MONO
20
DIFG_R
DIFF_R
ST4_R
ST1_R
ST2_R
ST3_R
MONO
LOUDR
BASSLO
BASSLI
MIDLO
MIDLI
21
6
38
7
28
37
8
36
9
C5 100nF
C4 22nF
O_L
SCL
11
33
12
13
14
DIFF_R
15
ST4_R
16
ST1_R
17
ST2_R
18
ST3_R
35
19
CSM
PAUSE
29
32
SCL
JP3
SMEX
SMEX
SDA
SDA
DGND
DGND
R5
50
OUTLF
RF
LR
OUTRR
LF
RF
C12
LR
C9
RR
GND
C31 4.7μF
C32 4.7μF
CON3
C13
DIFG_L
DIFF_L
R1
2.7K
CON2
C14
34
R2
5.6K
C3 18nF
C2
2.2μF
10
DIFG_R
C6 100nF
I_L
5
C30 4.7nF
CON5
25
C1
2.2nF
C15
10μF
ST4_L
C33 470nF
ST1_L
C34 470nF
ST2_L
C35 470nF
D98AU882
ST3_L
C36 470nF
31/34
Package information
7
TDA7437N
Package information
In order to meet environmental requirements, ST offers these devices in ECOPACK®
packages. These packages have a lead-free second level interconnect. The category of
second level interconnect is marked on the package and on the inner box label, in
compliance with JEDEC standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label.
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.
Figure 21. LQFP44 (10x10) Mechanical data and package dimensions
DIM.
mm
MIN.
inch
TYP.
MAX.
A
MIN.
TYP.
MAX.
1.60
0.0630
0.15 0.0020
0.0059
A1
0.05
A2
1.35
1.40
1.45 0.0531 0.0551 0.0571
b
0.30
0.37
0.45 0.0118 0.0146 0.0177
c
0.09
D
11.80
12.00
12.20 0.4646 0.4724 0.4803
D1
9.80
10.00
10.20 0.3858 0.3937 0.4016
D2
2.00
D3
0.20 0.0035
0.0079
0.0787
8.00
0.3150
E
11.80
12.00
12.20 0.4646 0.4724 0.4803
E1
9.80
10.00
10.20 0.3858 0.3937 0.4016
E2
2.00
0.0787
E3
8.00
e
0.80
L
L1
K
ccc
0.45
OUTLINE AND
MECHANICAL DATA
0.60
0.3150
0.0315
0.75 0.0177
1.00
0.0295
0.0394
3.5˚(min.),7˚(max.)
0.10
0.0039
Note: 1. The size of exposed pad is variable depending of leadframe design pad size. End user should verify “D2” and
“E2” dimensions for each device application.
LQFP44 (10 x 10 x 1.40mm)
Exposed Pad Down
7278839 C
32/34
TDA7437N
8
Revision history
Revision history
Table 14.
Document revision history
Date
Revision
Changes
24-Jan-06
1
Initial release.
01-Dec-06
2
Package changed, layout change, text modifications.
33/34
TDA7437N
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2006 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
34/34