STE2002 81 X 128 SINGLE CHIP LCD CONTROLLER / DRIVER ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 104 x 128 bits Display Data RAM Programmable MUX rate Programmable Frame Rate X,Y Programmable Carriage Return Dual Partial Display Mode Row by Row Scrolling Automatic data RAM Blanking procedure Selectable Input Interface: • I2C Bus Fast and Hs-mode (read and write) • Parallel Interface (read and write) • Serial Interface (read and write) ■ ■ ■ ■ ■ Low Power Consumption, suitable for battery operated systems Logic Supply Voltage range from 1.7 to 3.6V High Voltage Generator Supply Voltage range from 1.75 to 4.2V Display Supply Voltage range from 4.5 to 11V Backward Compatibility with STE2001 DESCRIPTION Fully Integrated Oscillator requires no external components CMOS Compatible Inputs Fully Integrated Configurable LCD bias voltage generator with: • Selectable multiplication factor (up to 6X) • Effective sensing for High Precision Output • Eight selectable temperature compensation coefficients Designed for chip-on-glass (COG) applications The STE2002 is a low power CMOS LCD controller driver. Designed to drive a 81 rows by 128 columns graphic display, provides all necessary functions in a single chip, including on-chip LCD supply and bias voltages generators, resulting in a minimum of externals components and in a very low power consumption. The STE2002 features three standard interfaces (Serial, Parallel & I2C) for ease of interfacing with the host mcontroller. Type Ordering Number Bumped Wafers STE2002DIE1 Bumped Dice on Waffle Pack STE2002DIE2 Figure 1. Block Diagram CO to C127 OSC_IN TIMING GENERATOR OSC OSC_OUT R0 to R80 ICON COLUMN DRIVERS ROW DRIVERS DATA LATCHES SHIFT REGISTER CLOCK BIAS VOLTAGE GENERATOR VLCDIN VLCDSENSE HIGH VOLTAGE GENERATOR VLCDOUT RES VSSAUX 104 x 128 RAM RESET SCROLL LOGIC TEST_1_14 TEST VDD1,2 DATA REGISTER VSS INSTRUCTION REGISTER ICON_MODE EXT BSY_FLG DISPLAY CONTROL LOGIC SEL1,2 SA1 I2CBUS SAO September 2002 SCL SDA_IN SOUT PARALLEL SDA_OUT DB0 to DB7 E R/W PD/C SCE SERIAL SDIN SCLK SD/C 1/51 STE2002 PIN DESCRIPTION N° Pad Type R0 to R80 129-169 282-322 O LCD Row Driver Output ICON 323 O ICON Row Driver C0 to C127 1-128 O LCD Column Driver Output VSS 236-255 GND VDD1 188-199 Supply IC Positive Power Supply VDD2 200-211 Supply Internal Generator Supply Voltages. VLCDIN 261-270 Supply LCD Supply Voltages for the Column and Row Output Drivers. VLCDOUT 273-282 Supply Voltage Multiplier Output VLCDSENSE 271-272 Supply Voltage Multiplier Regulation Input. VLCDOUT Sensing for Output Voltage Fine Tuning VSSAUX 180, 231, 218 O Ground Reference for Selection Pins Configuration SEL1,2 184,185 I Interface Mode Selection EXT 183 I Extended Instruction Set Selection EXT PAD CONFIG ICON_MO DE 186 I Function Ground pads. INSTRUCTION SET SELECTED VSS or VSSAUX BASIC VDD1 EXTENDED ICON ROW Management ICON MODE PAD CONFIG ICON MODE STATUS VSS or VSSAUX DISABLED VDD1 ENABLED SDA_IN 234 I I2C Bus Data In SDA_OUT 232 O I2C Bus Data Out SCL 235 I I2C bus Clock SA0 182 I I2C Slave Address BIT 0 SA1 181 I I2C Slave Address BIT 1 OSCIN 187 I External Oscillator Input OSCOUT 260 O Internal/External Oscillator Out RES 230 I Reset Input. Active Low. DB0 to DB7 220-227 I/O R/W 219 I Parallel Interface Read & Write Control Line E 229 I Parallel Interface Data Latch Signal. PD/C 228 I Parallel Interface Data/Command Selector SDIN 214 I Serial Interface Data Input 2/51 Parallel Interface 8 Bit Data Bus STE2002 PIN DESCRIPTION (continued) N° Pad Type Function SCLK 217 I Serial Interface Clock SCE 216 I Serial Interface ENABLE. When Low the Incoming Data are Clocked In. SD/C 215 I Serial Interface Data/Command Selector SOUT 213 O Serial Out BSYFLG 212 O Active Procedure Flag. Notice if There is an ongoing Internal Operation or an active reset. Active Low. T1 to T14 170-179, 256-259 I/O Test Pads. - A 50kohm pull-down resistor is added on input pis. Test Num. Pin Configuration TEST_1 TEST_2 TEST_3 TEST_4 OPEN TEST_5 TEST_6 TEST_7 TEST_8 TEST_9 TEST_10 VSS / VSSAUX TEST_11 TEST_12 TEST_13 TEST_14 VSS / VSSAUX 3/51 STE2002 ICON ROW 0 ROW 34 Figure 2. Chip Mechanical Drawing MARK_1 COL 0 ROW 35 ROW 39. STE2002 VLCDOUT VLCDOUT VLCDSENSE VLCDSENSE VLCDIN VLCDIN MARK_3 OSCOUT TEST_14 TEST_13 TEST_12 TEST_11 VSS SCL SDAIN SDAOUT COL 63 VSSAUX RES (0,0) E PD/C D0 D1 D2 D3 D4 D5 D6 D7 R/W VSSAUX Y COL 64 X SCLK SCE SD/C SDIN SDOUT MARK_4 BSY_FLG VDD2 VDD2 VDD1 VDD1 OSCIN ICON_MODE SEL1 SEL2 EXT_SET SA0 SA1 VSSAUX TEST_10 TEST_9 TEST_8 TEST_7 TEST_6 TEST_5 TEST_4 TEST_3 TEST_2 TEST_1 ROW 80/ICON ROW 79 COL 127 ROW 76 4/51 ROW 75 ROW 40 MARK_2 STE2002 Figure 3. Improved ALTH & PLESKO Driving Method VLCD V2 V3 ∆V1(t) ∆V2(t) ROW 0 R0 (t) V4 V5 VSS VLCD V2 V3 ROW 1 R1 (t) V4 V5 VSS VLCD V2 V3 COL 0 C0 (t) V4 V5 VSS VLCD V2 V3 COL 1 C1 (t) V4 V5 VSS VLCD - VSS V3 - VSS Vstate1(t) VLCD - V2 0V V3 - VSS V4 - V5 0V VSS - V5 V4 - VLCD VSS - VLCD VLCD - VSS V3 - VSS Vstate2(t) VLCD - V2 0V V3 - VSS V4 - V5 0V VSS - V5 V4 - VLCD VSS - VLCD ..... 64 0 1 2 3 4 5 6 7 8 9 ....... 0 1 2 3 4 5 6 7 8 9 ....... FRAME n ∆V1(t) = C1(t) - R0(t) ∆V2(t) = C1(t) - R1(t) ..... 64 FRAME n + 1 D00IN1154 5/51 STE2002 CIRCUIT DESCRIPTION Supplies Voltages and Grounds VDD2 is supply voltages to the internal voltage generator (see below). If the internal voltage generator is not used, this should be connected to V DD1 pad. VDD1 supplies the rest of the IC. V DD1 supply voltage could be different form VDD2. Internal Supply Voltage Generator The IC has a fully integrated (no external capacitors required) charge pump for the Liquid Crystal Display supply voltage generation. The multiplying factor can be programmed to be: Auto, X6, X5, X4, X3, X2, using the ’set CP Multiplication’ Command. If Auto is set, the multiplying factor is automatically selected to have the lowest current consumption in every condition. This make possible to have an input voltage that changes over time and a constant VLCD voltage. The output voltage (VLCDOUT) is tightly controlled through the VLCDSENSE pad. For this voltage, eight different temperature coefficients (TC, rate of change with temperature) can be programmed using the bits TC1 and TC0 and T2,T1 & T0. This will ensure no contrast degradation over the LCD operating range. Using the internal charge pump, the VLCDIN and VLCDOUT pads must be connected together. An external supply could be connected to VLCDIN to supply the LCD without using the internal generator. In such event the VLDCOUT and VLCDSENSE must be connected to GND and the internal voltage generator must be programmed to zero (PRS = [0;0], Vop = 0 - Reset condition). Oscillator A fully integrated oscillator (requires no external components) is present to provide the clock for the Display System. When used the OSC pad must be connected to VDD1 pad. An external oscillator could be used and fed into the OSC pin. An oscillator out is provided on the OSCOUT Pad to cascade two or more drivers Bias Levels To properly drive the LCD, six (Including VLCD and VSS) different voltage (Bias) levels are generated. The ratios among these levels and VLCD, should be selected according to the MUX ratio (m). They are established to be (Fig. 4): n+2 2 1 n+3 V L CD, ------------- V LCD , ------------- V LCD , ------------- V L CD , ------------- V LCD ,V SS n+4 n+4 n+4 n+4 Figure 4. Bias level Generator VLCD R n+3 ·VLCD n+4 R n+2 ·VLCD n+4 nR 2 ·VLCD n+4 R 1 ·VLCD n+4 R VSS D00IN1150 thus providing an 1/(n+4) ratio, with n calculated from: n= For m = 81, n = 6 and an 1/10 ratio is set. For m = 65, n =5 and an 1/9 ratio is set. 6/51 m–3 STE2002 The STE2002 provides three bits (BS0, BS1, BS2) for programming the desired Bias Ratio as shown below: BS2 BS1 BS0 n 0 0 0 7 0 0 1 6 0 1 0 5 0 1 1 4 1 0 0 3 1 0 1 2 1 1 0 1 1 1 1 0 The following table Bias Level for m = 65 and m = 81 are provided: Symbol m = 65 (1/9) m = 81 (1/10) V1 VLCD VLCD V2 8/9*VLCD 9/10*VLCD V3 7/9*VLCD 8/10*VLCD V4 2/9*V VLCD 2/10*VLCD V5 1/9 *VLCD 1/10*VLCD V6 VSS VSS LCD Voltage Generation The LCD Voltage at reference temperature (To = 27°C) can be set using the VOP register content according to the following formula: VLCD(T=To) = VLCDo = (Ai+VOP · B) (i=0,1,2) with the following values: Symbol Value Unit Note Ao 2.95 V PRS = [0;0] A1 6.83 V PRS = [0;1] A2 10.71 V PRS = [1;0] B 0.0303 V To 27 °C Note that the three PRS values produce three adjacent ranges for VLCD. If the VOP register and PRS bits are set to zero the internal voltage generator is switched off. The proper value for the VLCD is a function of the Liquid Crystal Threshold Voltage (Vth) and of the Multiplexing Rate. A general expression for this is: 1+ m V L CD = ------------------------------------ ⋅ V th 1 2 ⋅ 1 – --------- m For MUX Rate m = 65 the ideal VLCD is: VLCD(to) = 6.85 · Vth than: ( 6.85 ⋅ Vth – A i ) V o p = ----------------------------------------0.03 7/51 STE2002 Temperature Coefficient As the viscosity, and therefore the contrast, of the LCD are subject to change with temperature, there's the need to vary the LCD Voltage with temperature. The STE2002 provides the possibility to change the VLCD in a linear fashion against temperature with eight different Temperature Coefficient selectable through the T2, T1 and T0 bits. Only four of them are available with basic instruction set (TC1 & TC0 Bits). NAME TC1 TC0 Value Unit TC0 0 0 -0.0· 10-3 1/ °C TC2 0 1 -0.7 · 10-3 1/°C TC3 1 0 -1.05· 10-3 1/°C TC6 1 1 -2.1 · 10-3 1/°C NAME TC2 TC1 TC0 TC0 0 0 0 Value TC1 0 1 1 -0.35 · 10-3 1/°C TC2 1 0 0 -0.7 · 10-3 1/°C TC3 1 1 1 -1.05· 10-3 1/°C TC4 1 1 1 -1.4 · 10-3 1/°C TC5 1 1 1 -1.75· 10-3 1/°C TC6 1 1 1 -2.1 · 10-3 1/°C TC7 1 1 1 -2.3· 10-3 1/°C -0.0· 10-3 Unit 1/ °C Figure 5. VLCD B A2 A0 + B A1 A0 00h 01h 02h 03h 04h 05h …. 7Ch 7Dh 7Eh 7Fh 00h 01h 02h 03h 04h 05h …. PRS = [0;0] 7Ch 7Dh 7Eh 7Fh 00h 01h 02h 03h 04h 05h …. 7Ch 7Dh 7Eh 7Fh PRS = [0;1] Finally, the VLCD voltage at a given (T) temperature can be calculated as: VLCD(T) = VLCDo · [1 + (T-To) · TC] 8/51 PRS = [1;0] VO STE2002 Display Data RAM The STE2002, provides an 104X128 bits Static RAM to store Display data. This is organized into 13 (Bank0 to Bank12) banks with 128 Bytes. One of these banks (128 bits wide) can be used for Icons. RAM access is accomplished in either one of the Bus Interfaces provided (see below). Allowed addresses are X0 to X127 (Horizontal) and Y0 to Y12 (Vertical). When writing to RAM, four addressing mode are provided: • Normal Horizontal (MX=0 and V=0), having the column with address X= 0 located on the left of the memory map. The X pointer is increased after each byte written. After the last column address (X=X-Carriage), Y address pointer is set to jump to the following bank and X restarts from X=0. (Fig. 6) • Normal Vertical (MX=0 and V=1), having the column with address X= 0 located on the left of the memory map. The Y pointer is increased after each byte written. After the last Y bank address (Y=Y-Carriage), X address pointer is set to jump to next column and Y restarts from Y=0 (Fig. 7). • Mirrored Horizontal (MX=1 and V=0), having the column with address X= 0 located on the right of the memory map. The X pointer is increased after each byte written. After the last column address (X=XCarriage), Y address pointer is set to jump to the next bank and X restarts from X=0 (fig. 8). • Mirrored Vertical (MX=1 and V=1), having the column with address X= 0 located on the right of the memory map. The Y pointer is increased after each byte written. After the last Y bank address (Y=Y-Carriage), the X pointer is set to jump to next column and Y restarts from Y=0 (fig. 9). After the last allowed address (X;Y)=(X-Carriage; Y-Carriage), the address pointers always jump to the cell with address (X;Y) = (0;0) (Fi. 10, 11, 12 & 13). Data bytes in the memory could have the MSB either on top (D0 = 0, Fig.14) or on the bottom (D0=1, Fig. 15). The STE2002 provides also means to alter the normal output addressing. A mirroring of the Display along the X axis is enabled setting to a logic one MY bit.This function doesn't affect the content of the memory RAM. It is only related to the visualization process. When ICON MODE=1 the Icon Row is not mirrored with MY and is not scrolled. When ICON Mode=0 the Icon Row is like the other graphic lines and is mirrored and scrolled. Four are the multiplex ratio available when the partial display mode is disabled (MUX 33, MUX 49, MUX 65 and MUX 81). Only a subset of writable rows are output on Row drivers. When Y-Carriage<MUX/8, if Mux 65 is selected only the first 65 memory rows are visualized, if Mux 49 is selected only the first 49 memory rows are visualized, if Mux 33 is selected only the first 33 memory rows are visualized. All unused Row and Column drivers must be left floating. When Y-Carriage<MUX/8, the icon Bank is located to BANK 10 in MUX 81 Mode, to BANK8 in MUX 65 Mode, to BANK 6 in MUX 49 Mode and to BANK 4 in MUX 33 Mode. When Y-Carriage>MUX/8 lines only 33, 49, 65 or 81 lines are visualized but it is possible to select which lines of DDRAM are connected on the output drivers. The DDRAM rows to visualized can be selected in the 0-Y-Carriage*8 range using the scrolling function. When Y-Carriage>MUX lines, the icon row is moved in DDRAM to the first row of the Y-CARRIAGE Return BANK even if it is always connected on the same output Driver. When MY=0, the icon Row is output on R80 in mux 81 mode, on R72 in MUX 65, on R64 in MUX49 and on R56 in MUX 33. When MY=1, and ICON MODE=1, the icon Row is output on R80 in mux 81 mode, on R72 in MUX 65, on R64 in MUX49 and on R56 in MUX 33. When MY=1, and ICON MODE=0, the icon Row is output on R0 whatever is the MUX Rate. When ICON MODE =1, the Memory ICON Row content is output on ICON Pad. If Not Used ICON Pad must be left floating. 9/51 STE2002 Figure 6. Automatic data RAM writing sequence with V=0 and Data RAM Normal Format (MX=0)1 0 1 2 3 124 125 126 127 BANK 0 BANK 1 BANK 2 BANK 3 BANK 4 BANK 5 BANK 6 BANK 7 BANK 8 BANK 9 BANK 10 BANK 11 BANK 12 Figure 7. Automatic data RAM writing sequence with V=1 and Data RAM Normal Format (MX=0)1 0 1 2 3 124 125 126 127 BANK 0 BANK 1 BANK 2 BANK 3 BANK 4 BANK 5 BANK 6 BANK 7 BANK 8 BANK 9 BANK 10 BANK 11 BANK 12 Figure 8. Automatic data RAM writing sequence with V=0 and Data RAM Mirrored Format (MX=1)1 127 126 125 124 3 2 1 0 BANK 0 BANK 1 BANK 2 BANK 3 BANK 4 BANK 5 BANK 6 BANK 7 BANK 8 BANK 9 BANK 10 BANK 11 BANK 12 Figure 9. Automatic data RAM writing sequence with V=1 and Data RAM Mirrored Format (MX=1)1 127 126 BANK 0 BANK 1 BANK 2 BANK 3 BANK 4 BANK 5 BANK 6 BANK 7 BANK 8 BANK 9 BANK 10 BANK 11 BANK 12 1. X Carriage=127; Y-Carriage = 12 10/51 125 124 3 2 1 0 STE2002 Figure 10. Automatic data RAM writing sequence with X-Y Carriage Return (V=0; MX=0) 0 1 2 X CARR 3 124 125 126 127 BANK 0 BANK 1 BANK 2 Y CARR BANK 11 BANK 12 Figure 11. Automatic data RAM writing sequence with X-Y Carriage Return (V=1; MX=0) X CARR 0 1 2 3 124 125 126 127 BANK 0 BANK 1 BANK 2 Y CARR BANK 11 BANK 12 Figure 12. Automatic data RAM writing sequence with X-Y Carriage Return (V=0; MX=1) X CARR 127 126 125 124 3 2 1 0 BANK 0 BANK 1 BANK 2 Y CARR BANK 11 BANK 12 Figure 13. Automatic data RAM writing sequence with X-Y Carriage Return (V=1; MX=1) X CARR 127 126 125 124 3 2 1 0 BANK 0 BANK 1 BANK 2 Y CARR BANK 11 BANK 12 11/51 STE2002 Figure 14. Data RAM Byte organization with D0 = 0 MSB 0 1 2 3 124 125 126 127 124 125 126 127 BANK 0 BANK 1 BANK 2 BANK 3 BANK 4 BANK 5 BANK 6 BANK 7 BANK 8 BANK 9 BANK 10 BANK 11 BANK 12 LSB Figure 15. Data RAM Byte organization with D0 = 1 LSB 0 1 2 3 BANK 0 BANK 1 BANK 2 BANK 3 BANK 4 BANK 5 BANK 6 BANK 7 BANK 8 BANK 9 BANK 10 BANK 11 BANK 12 MSB Figure 16. Memory Rows vs. Row drivers mapping with MY=0, MUX81, ICON MODE=0,1 ROW DRIVER ICON MODE=1 ROW DRIVER ICON MODE=0 R0 R1 R2 R3 R0 R1 R2 R3 PHYSICAL MEMORY ROW 0 1 2 3 124 125 126 127 ROW 0 ROW 1 ROW 2 ROW 3 Y-CARRIAGE R 79 R 80 R 79 R 80 ROW 79 ROW 80 ICON ROW ICON Figure 17. Memory Rows vs. Row drivers mapping with MY=0, MUX 81, SCROLL POINTER = +3, ICON MODE=1 ROW DRIVER ICON MODE=1 PHYSICAL MEMORY ROW 0 R0 R1 R2 R3 1 2 3 124 125 126 127 ROW 0 ROW 1 ROW 2 ROW 3 Y-CARRIAGE R 76 R 77 R 78 R 79 R 80 ICON 12/51 ROW 79 ROW 80 ICON ROW STE2002 Figure 18. Memory Rows vs. Row drivers mapping with MY=0, MUX 81, SCROLL POINTER=+3, ICON MODE=0 ROW DRIVER ICON MODE=0 PHYSICAL MEMORY ROW 0 1 2 3 124 125 126 127 ROW 0 R0 R1 R2 R3 ROW 1 ROW 2 ROW 3 Y-CARRIAGE R 76 R 77 R 78 R 79 R 80 ROW 79 ROW161 80 ROW ICON ROW ICON Figure 19. Memory Rows vs. Row drivers mapping with MUX 65 Y-CARRIAGE<=8 SCROLL POINTER=0, ICON MODE=1 ROW DRIVER PHYSICAL MEMORY ROW 0 R0 1 2 3 124 125 126 127 ROW 0 ROW 1 R 30 R 31 ROW 31 N.C. N.C. R 40 ROW 32 R 71 R 72 ROW 63 ROW 64 R 79 R 80 ROW 96 Y-CARRIAGE ICON ROW ICON Figure 20. Memory Rows vs. Row drivers mapping with MUX65, Y-CARRIAGE>8, SCROLL POINTER=0, ICON MODE=1 ROW DRIVER PHYSICAL MEMORY ROW 0 R0 ROW 0 R 31 R 32 ROW 32 R 40 ROW 63 1 2 3 124 125 126 127 ROW 31 N.C. R 71 R 72 N.C. ROW 75 ROW 76 R 79 R 80 ICON ROW Y-CARRIAGE ROW 96 ICON 13/51 STE2002 Figure 21. Memory Rows vs. Row drivers mapping with MUX65, Y-CARRIAGE>8, SCROLL POINTER=3, ICON MODE=1, ROW DRIVER PHYSICAL MEMORY ROW 0 R0 R 30 R 31 2 3 124 125 126 127 ROW 1 ROW 2 ROW 33 N.C. R 40 R 71 R 72 N.C. 1 ROW 0 ROW 34 ROW 66 ICON ROW ROW 75 ROW 76 R 79 R 80 Y-CARRIAGE ROW 96 ICON Figure 22. Memory Rows vs. Row drivers mapping with MY=1, MUX81, ICON MODE 0,1 SCROLL POINTER=0 ROW DRIVER ICON MODE=1 ROW DRIVER ICON MODE=0 R 79 R 78 R 80 R 79 PHYSICAL MEMORY ROW 0 1 2 3 124 125 126 127 ROW 0 ROW 1 ROW 2 ROW 3 Y-CARRIAGE R2 R1 R0 R 80 R3 R2 R1 R0 ICON ICON ROW 79 ROW 80 ICON ROW Figure 23. Memory Rows vs. Row drivers mapping with MY=1, MUX81, SCROLL OFFSET= +3, ICON MODE =0 ROW DRIVER ICON MODE=0 PHYSICAL MEMORY ROW 0 R 80 R 78 R 79 R 77 R 76 1 2 3 124 125 126 127 ROW 0 ROW 1 ROW 2 ROW 3 Y-CARRIAGE R1 R0 ICON 14/51 ROW 79 ROW 80 ICON ROW STE2002 Figure 24. Memory Rows vs. Row drivers mapping with MY=1, MUX81, SCROLL OFFSET= +3, ICON MODE =1 ROW DRIVER ICON MODE=1 SCROLL OFFSET +3 PHYSICAL MEMORY ROW 0 R 79 R 78 R 77 ROW 0 R 76 ROW 3 1 2 3 124 125 126 127 ROW 1 ROW 2 Y-CARRIAGE R1 R0 R 80 ROW 79 ROW 80 ICON ROW ICON Figure 25. Row Drivers vs. LCD Panel Interconnection in MUX81 Mode ICON 81x128 MUX 81 Mode COLUMN DRIVERS ROW DRIVERS STE2002 R35 R36 R37 R38 R39 R80/ICON R79 R78 R77 R76 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 ICON R 0 R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 ROW DRIVERS LR0012 15/51 STE2002 Figure 26. Row Drivers vs. LCD Panel Interconnection in MUX65 Mode ICON 65x128 MUX 65 Mode COLUMN DRIVERS ROW DRIVERS STE2002 R35 R36 R37 R38 R39 R80/ICON R79 R78 R77 R76 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 ICON R 0 R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 ROW DRIVERS LR0014 Figure 27. Row Drivers vs. LCD Panel Interconnection in MUX49 Mode ICON 49x128 MUX 49 Mode COLUMN DRIVERS ROW DRIVERS STE2002 R35 R36 R37 R38 R39 R80/ICON R79 R78 R77 R76 16/51 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 ICON R 0 R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 ROW DRIVERS LR0013 STE2002 Figure 28. Row Drivers vs. LCD Panel Interconnection in MUX33 Mode ICON 33x128 MUX 33Mode COLUMN DRIVERS ROW DRIVERS STE2002 R35 R36 R37 R38 R39 R80/ICON R79 R78 R77 R76 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 ICON R 0 R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 ROW DRIVERS LR0106 Instruction Set Two different instructions formats are provided: - With D/C set to LOW commands are sent to the Control circuitry. - With D/C set to HIGH the Data RAM is addressed. Two different instruction set are embedded: the STE2001-like instruction set and the extended instruction set. To select the STE2001-like instruction set the EXT pad has to be connected to a logic LOW (connect to VSS). To select the extended instruction the EXT pad has to be connected to a logic HIGH (connect to VDD1). The instructions have the syntax summarized in Table 1 (basic-set) and Table 2 (extended set) Reset (RES) At power-on, all internal registers are configured with the default value. The RAM content is not defined. A Reset pulse on RES pad (active low) re-initialize the internal registers content (see Tables 3,4,5,&6). Applying a reset pulse, every on-going communication with the host controller is interrupted. After the power-on, the Software Reset instruction can be used to re-load the reset configuration into the internal registers The Default configurations is: . - Horizontal addressing (V = 0) - Bias system (BS[2: 0] = 0) - Normal instruction set (H[1:0] = 0) - Multiplexing Ratio (M[1:0]=0) - Normal display (MX = MY = 0) - Frame Rate (FR[1:0]=”75Hz”) - Display blank (E = D = 0) - Power Down (PD = 1) - Address counter X[6: 0] = 0 and Y[4: 0] = 0 - Dual Partial Display Disabled (PE=0) - Temperature coefficient (TC[1: 0] = 0) - VOP=0 A MEMORY BLANK instruction can be executed to clear the RAM content. 17/51 STE2002 Power Down (PD = 1) When at Power Down, all LCD outputs are kept at VSS (display off). Bias generator and VLCD generator are OFF (VLCDOUT output is discharged to VSS, and then is possible to disconnect VLCDOUT). The internal Oscillator is in off state. An external clock can be provided. The RAM contents is not cleared. Memory Blanking Procedure This instruction allows to fill the memory with "blank" patterns, in order to delete patterns randomly generated in memory when starting up the device. This instruction substitutes (128X13) single "write" instructions. It is possible to program "Memory Blanking Procedure" only under the following conditions: - PD bit =0 The end of the procedure will be notified on the BSY_FLG pad going HIGH (while LOW the procedure is running). Any instruction programmed with BSY_FLG LOW will be ignored that is, no instruction can be programmed for a period equivalent to 128X13 internal write cycles (128X13X1/fclock). The start of Memory blanking procedure will be between one and two fclock cycles from the last active edge (E rising edge for the parallel interface, last SCLK rising edge for the Serial interface, last SCL rising edge for the I2C interface). Checker Board Procedure This instruction allows to fill the memory with "checker-board" pattern. It is mainly intended to developers, who can now simply obtain complex module test configuration by means of a single instruction. It is possible to program "Checker Board Procedure" only under the following conditions: - PD bit =0 The end of the procedure will be notified on the BSY_FLG pad going HIGH, while LOW the procedure is running. Any instruction programmed with BSY_FLG LOW will be ignored, that is, no instruction can be programmed for a period equivalent to 128X13 internal write cycles (128X13X1/fclock). The start of Memory blanking procedure will be between one and two fclock cycles from the last active edge (E rising edge for the parallel interface, last SCLK rising edge for the Serial interface, last SCL rising edge for the I2C interface). Scrolling function The STE2002 can scroll the graphics display in units of raster-rows. The scrolling function is achieved changing the correspondence between the rows of the logical memory map and the output row drivers. The scroll function doesn't affect the data ram content. It is only related to the visualization process. The information output on the drivers is related to the row reading sequence (the 1st row read is output on R0, the 2nd on R1 and so on). Scrolling means reading the matrix starting from a row that is sequentially increased or decreased. After every scrolling command the offset between the memory address and the memory scanning pointer is increased or decreased by one. The offset range changes in accordance with MUX Rate. After 80th/81th scrolling commands in MUX 81 mode, or after the 64th/65th scrolling commands in mux 65 mode, or after 48nd/49rd scrolling command in MUX 49 mode, or after 32nd/33rd scrolling command in MUX 33 mode, the offset between the memory address and the memory scanning pointer is again zero (Cyclic Scrolling). A Reset Scrolling Pointer instruction can be executed to force to zero the offset between the memory address and the memory scanning pointer The Icon Row is not scrolled if ICON MODE =1. If ICON MODE=0 the last row is like a general purpose row and it is scrolled as other rows. If the DIR Bit is set to a logic zero the offset register is increased by one and the raster is scrolled from top down. If the DIR Bit is set to a logic one the offset register is decreased by one and the raster is scrolled from bottom-up. 18/51 STE2002 MUX RATE ICON MODE OFFSET RANGE DESCRIPTION MUX 33 1 0-31 ICON ROW NOT SCROOLED R56 MUX 33 0 0-32 33 LINE GRAPHIC MATRIX R56 MUX 49 1 0-47 ICON ROW NOT SCROOLED R64 MUX 49 0 0-48 49 LINE GRAPHIC MATRIX R64 MUX 65 1 0-63 ICON ROW NOT SCROOLED R72 MUX 65 0 0-64 65 LINE GRAPHIC MATRIX R72 MUX 81 1 0-79 ICON ROW NOT SCROOLED R80 MUX 81 0 0-80 81 LINE GRAPHIC MATRIX R80 ICON Row Driver with MY=0 Dual Partial Display If the PE Bit is set to a logic one the dual partial display mode is enabled. Eight partial display modes are available. The offset of the two partial display zones is row by row programmable. The Icon row is accessed last in each partial display frame. Two sets of register for the HV-generator parameters are provided (PRS[1:0], Vop[6:0], BS[2:0], CP[2:0].). This allows switching from normal mode to partial display mode applying one instruction. The HV generator is automatically re configured using the parameters related to the enabled mode. The parameters of the two sets of registers with the same function are located in the same position of the instruction set. The registers related to the normal mode are accessible when normal mode (PE=0) is selected, the others are accessible when the partial display mode is enabled (PE=1). To Setup PRS[1:0], Vop[6:0], BS[2:0], CP[2:0] values the instruction flow proposed in Fig.46 must be followed. To setup Partial Display Sectors Start Address and Partial Display Mode no particular instruction flow has to be followed. . PD2 PD1 PD0 SECTION 1 SECTION2 0 0 0 0 8 + Icon Row 0 0 1 8 0 + Icon Row 0 1 0 8 8 + Icon Row 0 1 1 0 16 + Icon Row 1 0 0 16 0 + Icon Row 1 0 1 8 16 + Icon Row 1 1 0 16 8 + Icon Row 1 1 1 16 16 + Icon Row RESET STATE 000 19/51 STE2002 Bus Interfaces To provide the widest flexibility and ease of use the STE2002 features three different methods for interfacing the host Controller. To select the desired interface the SEL1 and SEL2 pads need to be connected to a logic LOW (connect to GND) or a logic HIGH (connect to VDD). All the I/O pins of the unused interfaces must be connected to GND. All interfaces are working while the STE2002 is in Power Down . SEL2 SEL1 Interface Note 0 0 I2C 0 1 Serial Read and Write 1 0 Parallel Read and Write 1 1 Read and Write; Fast and High Speed Mode Not Used I2C Interface The I2C interface is a fully complying I2C bus specification, selectable to work in both Fast (400kHz Clock) and High Speed Mode (3.4MHz). This bus is intended for communication between different Ics. It consists of two lines: one bi-directional for data signals (SDA) and one for clock signals (SCL). Both the SDA and SCL lines must be connected to a positive supply voltage via an active or passive pull-up. The following protocol has been defined: - Data transfer may be initiated only when the bus is not busy. - During data transfer, the data line must remain stable whenever the clock line is high. Changes in the data line while the clock line is high will be interpreted as control signals. Accordingly, the following bus conditions have been defined: BUS not busy: Both data and clock lines remain High. Start Data Transfer: A change in the state of the data line, from High to Low, while the clock is High, define the START condition. Stop Data Transfer: A Change in the state of the data line, from low to High, while the clock signal is High, defines the STOP condition. Data Valid: The state of the data line represents valid data when after a start condition, the data line is stable for the duration of the High period of the clock signal. The data on the line may be changed during the Low period of the clock signal. There is one clock pulse per bit of data. Each data transfer is initiated with a start condition and terminated with a stop condition. The number of data bytes transferred between the start and the stop conditions is not limited. The information is transmitted bytewide and each receiver acknowledges with the ninth bit. By definition, a device that gives out a message is called "transmitter", the receiving device that gets the signals is called "receiver". The device that controls the message is called "master". The devices that are controlled by the master are called "slaves" Acknowledge. Each byte of eight bits is followed by one acknowledge bit. This acknowledge bit is a low level put on the bus by the receiver, whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also, a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA_IN line during the acknowledge clock pulse. Of course, setup and hold time must be taken into account. A master receiver must signal an endof-data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this case, the transmitter must leave the data line High to enable the master to generate the STOP 20/51 STE2002 condition. Connecting SDA_IN and SDA_OUT together the SDA line become the standard data line. Having the acknowledge output (SDAOUT) separated from the serial data line is advantageous in Chip-On-Glass (COG) applications. In COG applications where the track resistance from the SDAOUT pad to the system SDA line can be significant, a potential divider is generated by the bus pull-up resistor and the Indium Tin Oxide (ITO) track resistance. It is possible that during the acknowledge cycle the STE2002 will not be able to create a valid logic 0 level. By splitting the SDA input from the output the device could be used in a mode that ignores the acknowledge bit. In COG applications where the acknowledge cycle is required, it is necessary to minimize the track resistance from the SDACK pad to the system SDA line to guarantee a valid LOW level. To be compliant with the I2C-bus Hs-mode specification the STE2002 is able to detect the special sequence "S00001xxx". After this sequence no acknowledge pulse is generated. Since no internal modification are applied to work in Hs-mode, the device is able to work in Hs-mode without detecting the master code. Figure 29. Bit transfer and START,STOP conditions definition DATA LINE STABLE DATA VALID CLOCK DATA START CONDITION CHANGE OF DATA ALLOWED STOP CONDITION D00IN1151 Figure 30. Acknowledgment on the I2C-bus CLOCK PULSE FOR ACKNOWLEDGEMENT START SCLK FROM MASTER 1 DATA OUTPUT BY TRANSMITTER MSB 2 8 9 LSB DATA OUTPUT BY RECEIVER D00IN1152 Communication Protocol The STE2002 is an I2C slave. The access to the device is bi-directional since data write and status read are allowed. Four are the device addresses available for the device. All have in common the first 5 bits (01111). The two least significant bit of the slave address are set by connecting the SA0 and SA1 inputs to a logic 0 or to a logic 1. To start the communication between the bus master and the slave LCD driver, the master must initiate a START condition. Following this, the master sends an 8-bit byte, shown in Fig. 30, on the SDA bus line (Most significant bit first). This consists of the 7-bit Device select Code, and the 1-bit Read/Write Designator (R/W). All slaves with the corresponding address acknowledge in parallel, all the others will ignore the I2C-bus transfer. Writing Mode. If the R/W bit is set to logic 0 the STE2002 is set to be a receiver. After the slaves acknowledge one or more command word follows to define the status of the device. A command word is composed by two bytes. The first is a control byte which defines the Co and D/C values, 21/51 STE2002 the second is a data byte (fig 31). The Co bit is the command MSB and defines if after this command will follow one data byte and an other command word or if will follow a stream of data (Co = 1 Command word, Co = 0 Stream of data). The D/C bit defines whether the data byte is a command or RAM data (D/C = 1 RAM Data, D/ C = 0 Command). If Co =1 and D/C = 0 the incoming data byte is decoded as a command, and if Co =1 and D/C =1, the following data byte will be stored in the data RAM at the location specified by the data pointer. Every byte of a command word must be acknowledged by all addressed units. After the last control byte, if D/C is set to a logic 1 the incoming data bytes are stored inside the STE2002 Display RAM starting at the address specified by the data pointer. The data pointer is automatically updated after every byte written and in the end points to the last RAM location written. Every byte must be acknowledged by all addressed units. Reading Mode. If the R/W bit is set to logic 1 the chip will output data immediately after the slave address. If the D/C bit sent during the last write access, is set to a logic 0, the byte read is the status byte. Figure 31. Communication Protocol WRITE MODE STE2002 ACK STE2002 ACK S S S 0 1 1 1 1 A A 0 A 1 DC Control Byte A 1 0 R/W Co SLAVE ADDRESS STE2002 ACK DATA Byte A 0 DC Control Byte A Co COMMAND WORD STE2002 ACK LAST CONTROL BYTE STE2002 ACK DATA Byte A P N> 0 BYTE MSB........LSB READ MODE STE2002 ACK S S S 0 1 1 1 1 A A 1 A 1 0 R/W MASTER ACK P S S R 0 1 1 1 1 A A / 1 0 W STE2002 SLAVE ADDRESS C D 0 0 0 0 0 0 A o C CONTROL BYTE SERIAL INTERFACE The STE2002 serial Interface is a bidirectional link between the display driver and the application supervisor. It consists of five lines: two for data signals (SDIN, SOUT), one for clock signals (SCLK), one for the peripheral enable (SCE) and one for mode selection (SD/C). The serial interface is active only if the SCE line is set to a logic 0. When SCE line is high the serial peripheral power consumption is zero. While SCE pin is high the serial interface is kept in reset. The STE2002 is always a slave on the bus and receive the communication clock on the SCLK pin from the master. Information are exchanged byte-wide. During data transfer, the data line is sampled on the positive SCLK edge. SD/C line status indicates whether the byte is a command (SD/C =0) or RAM data (SD/C =1);it is read on the eighth SCLK clock pulse during every byte transfer. 22/51 STE2002 If SCE stays low after the last bit of a command/data byte, the serial interface expects the MSB of the next byte at the next SCLK positive edge. A reset pulse on RES pin interrupts the transmission. No data is written into the data RAM and all the internal registers are cleared. If SCE is low after the positive edge of RES, the serial interface is ready to receive data. Throughout SOUT can be read only the driver I2C slave address. The Command sequence that allows to read I2C slave address is reported in Fig. 34 & 35. SOUT is in High impedance in steady state and during data write. It is possible to short circuit DOUT and SDIN and read I2C address without any additional lines. Figure 32. Serial bus protocol - one byte transmission SCE D/C SCLK SDIN MSB LSB D00IN1159 Figure 33. Serial bus protocol - several byte transmission SCE D/C SCLK SDIN DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5 D00IN1160 Figure 34. Serial bus protocol - several byte transmission SCE D/C SCLK SDIN DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care DB7 DB6 DB5 D00IN1160 SOUT High-Z Command Write DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 High-Z I2C Address Read 23/51 STE2002 Figure 35. Reading Sequence READING SEQUENCE Write a "00000000" Instruction SOUT Buffer becomes active (Low Impedence) Source 8 pulses on SCLK and Read the I2C Address or Status Byte On SOUT 1 SOUT Buffer Configured in High Impedence END OF READING SEQUENCE note: 1) these data are not read by the display Diver 2) SDIN and SOUT can be short circuited if the processor can configure serial output buffers in high impedence during data read. LR0078 Parallel Interface The STE2002 parallel Interface is a bidirectional link between the display driver and the application supervisor. It consists of eleven lines: eight data lines (from DB7 to DB0) and three control lines. The control lines are: enable (E) for data latch, PD/C for mode selection and R/W for reading or writing. The data lines and the control line values are internally latched on E rising edge (fig. 50). When the parallel interface is selected, if R/W line is set to “one”, D0-D7 lines are configured as output drivers (low impedence) and it is possible to read the driver I2C address (Fig. 51) 24/51 STE2002 Table 1. STE2001-like instruction Set Instruction D/C R/W Description B7 B6 B5 B4 B3 B2 B1 B0 0 H=0 or H=1 0 0 0 0 0 0 0 0 0 Function Set 0 0 0 0 1 MX MY PD V Read Status Byte 0 1 PD A1 A2 D E MX MY DO (I2C interface only) Write Data 1 0 D7 D6 D5 D4 D3 D2 D1 D0 Writes data to RAM Memory Blank 0 0 0 0 0 0 0 0 0 1 Starts Memory Blank Procedure Scroll 0 0 0 0 0 0 0 0 1 DIR Scrolls by one Row UP or DOWN VLCD Range Setting 0 0 0 0 0 0 0 1 0 PRS VLDC programming range selection [0] Display Control 0 0 0 0 0 0 1 D 0 E Select Display Configuration Set CP Factor 0 0 0 0 0 1 0 S2 S1 S0 Charge Pump Multiplication factor Set RAM Y 0 0 0 1 0 0 Y3 Y2 Y1 Y0 Set Horizontal (Y) RAM Address Set RAM X 0 0 1 X6 X5 X4 X3 X2 X1 X0 Set Vertical (X) RAM Address Read I2C Address (with Serial Interface only) H[0] Power Down Management; Entry Mode; H=0 H=1 Checker Board 0 0 0 0 0 0 0 0 0 1 Starts Checker Board Procedure Multiplex Select 0 0 0 0 0 0 0 0 1 MUX Selects MUX factor TC Select 0 0 0 0 0 0 0 1 Output Address 0 0 0 0 0 0 1 DO Bias Ratios 0 0 0 0 0 1 0 BS2 BS1 BS0 Reserved 0 0 0 1 X X X Set VOP 0 0 1 X TC1 TC0 Set Temperature Coefficient for VLDC A1 X A2 X OP6 OP5 OP4 OP3 OP2 OP1 OP0 No function Set desired Bias Ratios Not to be used VOP register Write instruction 25/51 STE2002 Table 2. Extended Instruction Set Instruction D/C R/W Description B7 B6 B5 B4 B3 B2 B1 B0 H Independent Instructions NOP 0 0 0 0 0 0 0 0 0 0 Function Set 0 0 0 0 1 MX MY PD H[1] H[0] Read Status Byte 0 1 PD 0 0 D E MX MY DO (I2C interface only) Write Data 1 0 D7 D6 D5 D4 D3 D2 D1 D0 Writes data to RAM Memory Blank 0 0 0 0 0 1 Starts Memory Blank Procedure 1 DIR Scrolls by one Row UP or DOWN PRS PRS [1] [0] VLDC programming range selection Read I2C Address (with Serial Interface only) Power Down Management; Entry Mode; Extended Instruction Set H=[0;0] RAM Commands 0 0 0 0 Scroll 0 0 0 0 0 0 0 0 VLCD Range Setting 0 0 0 0 0 0 0 1 Display Control 0 0 0 0 0 0 1 D 0 E Select Display Configuration Set CP Factor 0 0 0 0 0 1 0 S2 S1 S0 Charge Pump Multiplication factor Set RAM Y 0 0 0 1 0 0 Y3 Y2 Y1 Y0 Set Horizontal (Y) RAM Address Set RAM X 0 0 1 X6 X5 X4 X3 X2 X1 X0 Set Vertical (X) RAM Address H=[0;1] Checker Board 0 0 0 0 0 0 0 0 0 1 Starts Checker Board Procedure 0 0 0 0 0 0 0 0 1 V Vertical Addressing Mode TC Select 0 0 0 0 0 0 0 1 Data Format 0 0 0 0 0 0 1 DO Bias Ratios 0 0 0 0 0 1 0 BS2 BS1 BS0 0 0 0 1 X X X 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 FR1 FR0 0 0 0 0 0 0 1 0 M[1] M[0] 0 0 0 0 0 1 0 0 0 0 1 PD Y5 PD Y4 PD Y3 PD Y2 PD Y1 PDY 0 1st Sector Start Address 0 0 1 PD Y6 PD Y5 PD Y4 PD Y3 PD Y2 PD Y1 PD Y0 2nd Sector Start Address 0 0 0 0 0 0 0 0 0 1 Scrolling Pointer Reset 0 0 0 0 0 0 0 0 1 X Not Used 0 0 0 0 0 0 0 1 X X Not Used 0 0 0 0 0 0 1 T2 T1 T0 Set Temperature Coefficient for VLDC 0 0 0 0 0 1 X X X X Not Used 1 0 0 Set VOP X TC1 TC0 Set Temperature Coefficient for VLDC 0 X 0 X OP6 OP5 OP4 OP3 OP2 OP1 OP0 MSB Position Set desired Bias Ratios Reserved VOP register Write instruction H=[1;0] Partial Mode 0 1 1 PE PD2 PD1 PD0 Software RESET Partial Enable Frame rate Control Mux Ratio Partial Display Config H=[1;1] 26/51 0 0 0 0 0 1 YC-3 YC-2 YC-1 YC-0 Y-CARRIAGE RETURN XC-6 XC-5 XC-4 XC-3 XC-2 XC-1 XC-0 X CARRIAGE RETURN STE2002 Table 3. Explanations of Table 2 symbols RESET STATE BIT 0 1 DIR Scroll by one down Scroll by one up PD Device fully working Device in power down 1 V Horizontal addressing Vertical addressing 0 MX Normal X axis addressing X axis address is mirrored. 0 MY Image is displayed not vertically mirrored Image is displayed vertically mirrored 0 DO MSB on TOP MSB on BOTTOM 0 PE Partial Display disabled Partial Display enabled 0 H[0] Select page 0 Select page 1 0 MUX MUX 65 MUX 33 0 Table 4. PAGE NUMBER H[1] H[0] 0 0 Page 0 DESCRIPTION 0 1 Page 1 1 0 Page 2 1 1 Page 3 RESET STATE Page 0 Table 5. DISPLAY MODE D E 0 0 display blank DESCRIPTION RESET STATE 0 1 all display segments on D=0 1 0 normal mode E=0 1 1 inverse video mode Table 6. FRAME RATE CONTROL FR[1] FR[0] DESCRIPTION 0 0 65Hz 0 1 70Hz 1 0 75Hz 1 1 80Hz RESET STATE 75Hz Table 7. VLCD RANGE SELECTION PRS[1] PRS[0] DESCRIPTION 0 0 2.94 0 1 6.78 1 0 10.62 1 1 Not Used RESET STATE 27/51 STE2002 Table 8. MULTIPLEXING RATIO M[1] M[0] DESCRIPTION 0 0 49 0 1 65 1 0 81 1 1 Not Used RESET STATE 01 Table 9. TEMPERATURE COEFFICIENT T2 T1 T0 DESCRIPTION 0 0 0 VLCD temperature Coefficient 0 0 0 1 VLCD temperature Coefficient 1 0 1 0 VLCD temperature Coefficient 2 0 1 1 VLCD temperature Coefficient 3 1 0 0 VLCD temperature Coefficient 4 1 0 1 VLCD temperature Coefficient 5 1 1 0 VLCD temperature Coefficient 6 1 1 1 VLCD temperature Coefficient 7 RESET STATE 000 Table 10. TC1 TC0 DESCRIPTION 0 0 VLCD temperature Coefficient 0 0 1 VLCD temperature Coefficient 2 1 0 VLCD temperature Coefficient 3 1 1 VLCD temperature Coefficient 6 RESET STATE 00 Table 11. CHARGE PUMP MULTIPLICATION FACTOR CP2 CP1 CP0 DESCRIPTION 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 Multiplication Factor X2 Multiplication Factor X3 Multiplication Factor X4 Multiplication Factor X5 Multiplication Factor X6 1 0 1 NOT USED 1 1 0 NOT USED 1 1 1 AUTOMATIC RESET STATE 000 Table 12. BIAS RATIO BS2 BS1 BS0 DESCRIPTION 0 0 0 Bias Ratio equal to 7 0 0 1 Bias Ratio equal to 6 0 1 0 Bias Ratio equal to 5 0 1 1 Bias Ratio equal to 4 1 0 0 Bias Ratio equal to 3 1 0 1 Bias Ratio equal to 2 1 1 0 Bias Ratio equal to 1 1 1 1 Bias Ratio equal to 0 28/51 RESET STATE 000 STE2002 Table 13. Y CARRIAGE RETURN REGISTER Y-C[3] Y-C[2] Y-C[1] Y-C[0] DESCRIPTION RESET STATE 0 0 0 0 0 0 0 1 Y-CARRIAGE =1 0 0 1 0 Y-CARRIAGE =2 0 0 1 1 Y-CARRIAGE =3 0 1 0 0 Y-CARRIAGE =4 0 1 0 1 Y-CARRIAGE =5 . . . . 1 0 1 0 Y-CARRIAGE =10 1 0 1 1 Y-CARRIAGE =11 1 1 0 0 Y-CARRIAGE =12 1000 Table 14. PARTIAL DISPLAY CONFIGURATION PD2 PD1 PD0 SECTION 1 SECTION2 0 0 0 0 8 + Icon Row 0 0 1 8 0 + Icon Row 0 1 0 8 8 + Icon Row 0 1 1 0 16 + Icon Row 1 0 0 16 0 + Icon Row 1 0 1 8 16 + Icon Row 1 1 0 16 8 + Icon Row 1 1 1 16 16 + Icon Row RESET STATE 000 29/51 STE2002 Figure 36. Host Processor Interconnection with I2C Interface SCL SDAIN STE2002 µP SDAOUT VSSAUX RES E PD/C D0 D1 D2 D3 D4 D5 D6 D7 R/W VSSAUX SCLK SCE SD/C SDIN SDOUT BSY_FLG VDD2 VDD1 OSCIN VDD1 / GND / VSSAUX ICON_MODE SEL1 GND / VSSAUX SEL2 VDD1 VDD1 / GND / VSSAUX EXT_SET SA0 VDD1 / GND / VSSAUX SA1 VSSAUX TEST_10 TEST_9 TEST_8 TEST_7 TEST_6 TEST_5 TEST_4 TEST_3 TEST_2 TEST_1 Figure 37. Host Processor Interconnection with Serial Interface SCL SDAIN STE2002 µP SDAOUT VSSAUX RES E PD/C D0 D1 D2 D3 D4 D5 D6 D7 R/W VSSAUX SCLK SCE SD/C SDIN SDOUT BSY_FLG VDD2 VDD1 OSCIN ICON_MODE SEL1 SEL2 EXT_SET VDD1 GND / VSSAUX VDD1 SA0 VDD1 / GND / VSSAUX SA1 VSSAUX VDD1 / GND / VSSAUX TEST_10 TEST_9 TEST_8 TEST_7 TEST_6 TEST_5 TEST_4 TEST_3 TEST_2 TEST_1 30/51 VDD1 / GND / VSSAUX STE2002 Figure 38. Host Processor Interconnection with Parallel Interface SCL SDAIN µP SDAOUT STE2002 VSSAUX RES E PD/C D0 D1 D2 D3 D4 D5 D6 D7 R/W VSSAUX SCLK SCE SD/C SDIN SDOUT BSY_FLG VDD2 VDD1 OSCIN ICON_MODE VDD1 / GND / VSSAUX SEL1 GND / VSSAUX VDD1 VDD1 VDD1 / GND / VSSAUX SEL2 EXT_SET SA0 SA1 VSSAUX TEST_10 VDD1 / GND / VSSAUX TEST_9 TEST_8 TEST_7 TEST_6 TEST_5 TEST_4 TEST_3 TEST_2 TEST_1 Figure 39. Application Schematic Using an External LCD Voltage Generator I/O VDD VDD2 40 VDD1 100nF VSS VSS2 128 81x 128 DISPLAY VSS1 1µF VLCDSENSE 41 VLCDOUT VLCD VLCDIN 31/51 STE2002 Figure 40. Application Schematic using the Internal LCD Voltage Generator and two separate supplies I/O VDD2 VDD2 VDD1 100nF VSS VDD1 40 100nF VSS2 128 81x 128 DISPLAY VSS1 1µF VLCDSENSE 41 VLCDOUT VLCDIN Figure 41. Application Schematic using the Internal LCD Voltage Generator and a single supply I/O VDD VDD2 40 VDD1 100nF VSS VSS2 128 VSS1 1µF VLCDSENSE VLCDOUT VLCDIN 32/51 41 81 x 128 DISPLAY STE2002 Figure 42. Power-Up sequence Tvdd Tw(res) TLogic (res) BOOSTER OFF RESET POWER ON TABLE INTERNAL LOADED RESET VDD2 VDD1 RES SCE SCLK SDIN SD/C PD/C E R/W D0 - D7 HOST D0 - D7 DRIVER Hi-Z SCL SDAIN SOUT SDA OUT Hi-Z OSCIN (HOST) OSC OUT (DRIVER) BSY FLG LR0116 33/51 STE2002 Figure 43. Power-OFF Sequence Tw(res) VDD2 VDD1 RES SCLK SDIN SD/C PD/C E SCE SCl SDAIN R/W D0 - D7 HOST D0 - D7 DRIVER Hi-Z SOUT SDA OUT Hi-Z OSCIN (HOST) OSC OUT (DRIVER) BSY FLG RESET TABLE LOADED LR0117 34/51 STE2002 Figure 44. Initialization with built-in Booster SETUP NORMAL DISPLAY MODE CONFIGURATION SET Driver in Power Down(PD=1) SET Driver in Normal Display Mode (PE=0) SET PRS[1:0], Vop[6:0], BS[2:0], CP[2:0], FR[1:0], TC, M[1:0] for Normal Display Operation Switch "ON" Booster and Display Control Logic (PD=0) END OF NORMAL DISPLAY MODE CONFIG. Figure 45. Dual Partial Display Enabling Instruction Flow ENABLE DUAL PARTIAL DISPLAY SET 1st Sector Start Address SET 2nd Sector Start Address OPTIONAL1 SET PE=1 END OF ENABLING DUAL PARTIAL DISPLAY 35/51 STE2002 Figure 46. Dual Partial Display Mode configuration or Duty Change SETUP PARTIAL DISPLAY CONFIGURATION SET Driver in Power Down(PD=1) SET Driver in Partial Display Mode (PE=1) SET PRS[1:0], Vop[6:0], BS[2:0], CP[2:0] for Partial Display Operation SET Partial Display Configuration (PD[2:0]) SET 1st Sector Start Address SET 2nd Sector Start Address SET Driver in Normal Mode (PE=0) END OF PARTIAL DISPLAY CONFIG. 36/51 OPTIONAL STE2002 Figure 47. DATA RAM to display Mapping DISPLAY DATA RAM GLASS TOP VIEW bank 0 bank 1 DISPLAY DATA RAM = "1" DISPLAY DATA RAM = "0" bank 2 LCD bank 3 bank 7 bank 8 ICOR ROW D00IN1155 Table 15. Test Pin Configuration Test Numb. Pin Configuration TEST_1 TEST_2 TEST_3 TEST_4 OPEN TEST_5 TEST_6 TEST_7 TEST_8 TEST_9 TEST_10 GND TEST_11 TEST_12 TEST_13 TEST_14 GND 37/51 STE2002 ABSOLUTE MAXIMUM RATINGS Symbol Parameter Value Unit VDD1 Supply Voltage Range - 0.5 to + 5 V VDD2 Supply Voltage Range - 0.5 to + 7 V VLCD LCD Supply Voltage Range - 0.5 to + 12 V ISS Supply Current - 50 to +50 mA Vi Input Voltage (all input pads) -0.5 to VDD2 + 0.5 V Iin DC Input Current - 10 to + 10 mA Iout DC Output Current - 10 to + 10 mA Ptot Total Power Dissipation (Tj = 85°C) 300 mW Po Power Dissipation per Output 30 mW Tj Operating Junction Temperature -40 to + 85 °C Storage Temperature - 65 to 150 °C Tstg ELECTRICAL CHARACTERISTICS DC OPERATION (VDD1 = 1.7 to 3.6 V; VDD2 = 1.75 to 4.2V; Vss1,2 = 0V; VLCD = 4.5 to 11 V; Tamb =-40 to 85°C; unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. Unit Supply Voltages VDD1 Supply Voltage note 9 1.7 3.6 V VDD2 Supply Voltage LCD Voltage Internally generated 1.75 4.2 V LCD Supply Voltage LCD Voltage Supplied externally 4.5 11 V Internally generated; note 1 4.5 11 V VDD1 = 2.8V; VLCD = 7.6V; fsclk = 0;Tamb = 25°C; note 3. 15 20 30 µA 120 150 µA 1 µA VLCDIN VLCDOUT LCD Supply Voltage I(VDD1) Supply Current VDD1 = 2.8V; VLCD = 7.6V; fsclk = 1Mhz;Tamb = 25°C; note 3, 8. OSC_IN=GND; parallel port I(VDD2) Voltage Generator Supply Current I(VDD1,2) Total Supply Current with VOP = 0 and PRS = [0:0] with external VLCD VDD2= 2.8V;VLCD=7.6V; fsclk= 0; Tamb = 25°C; no display load; 4x charge pump; note 2,3,6, 10 35 µA VDD1,VDD2= 2.8V; VLCD = 7.6V; 4x charge pump; fsclk = 0;Tamb = 25°C; no display load; note 2,3,6 25 65 µA 3 5 µA 10 15 µA Power down Mode with internal or External VLCD. Note 4 I(VLDCIN) External LCD Supply Voltage Current VDD =2.8V; VLCD =7.6V;no display load; fsclk = 0; Tamb = 25°C; note 3. 5 Logic Outputs V0H High logic Level Output Voltage IOH=-500µA 0.8VDD1 VDD1 V VOL Low logic Level Output Voltage IOL=500µA VSS 0.2VDD1 V 38/51 STE2002 ELECTRICAL CHARACTERISTICS (continued) DC OPERATION (VDD1 = 1.7 to 3.6 V; VDD2 = 1.75 to 4.2V; Vss1,2 = 0V; VLCD = 4.5 to 11 V; Tamb =-40 to 85°C; unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. Unit Logic Inputs VIL Logic LOW voltage level VIH Logic HIGH Voltage Level Iin Input Current Vin = VSS1 or VDD1 VSS 0.3VDD1 V 0.7VDD1 VDD2 V -1 1 µA VSS 0.3VDD1 V 0.7VDD1 VDD1 +0.5V V Logic Inputs/Outputs VIL Logic LOW voltage level VIH Logic HIGH Voltage Level Column and Row Driver Rrow ROW Output Resistance VLCD = 10V; 3K 5K kohm Rcol Column Output resistance VLCD = 10V; 5K 10K kohm Vcol Column Bias voltage accuracy No load -50 +50 mV Vrow Row Bias voltage accuracy -50 +50 mV -1.5 1.5 % LCD Supply Voltage VLCD LCD Supply Voltage accuracy; Internally generated TC0 Temperature coefficient VDD = 2.8V; VLCD = 10V; fsclk=0; Tamb=25°C; no display load; note 2, 3, 6 & 7; VOP = 61h, PRS = 2hex -0.0·10-3 1/°C TC1 -0.35·10-3 1/°C TC2 -0.7·10-3 1/°C TC3 -1.05·10-3 1/°C TC4 -1.4 ·10-3 1/°C TC5 -1.75·10-3 1/°C TC6 -2.1·10-3 1/°C TC7 -2.3·10-3 1/°C Notes: 1. 2. 3. 4. 5. 6. The maximum possible VLCD voltage that can be generated is dependent on voltage, temperature and (display) load. Internal clock When fsclk = 0 there is no interface clock. Power-down mode. During power-down all static currents are switched-off. f external VLCD, the display load current is not transmitted to IDD Tolerance depends on the temperature; (typically zero at T amb = 27°C), maximum tolerance values are measured at the temperature range limit. 7. For TC0 to TC7 8. Data Byte Writing Mode 9.VDD1 ≤ VDD2 39/51 STE2002 ELECTRICAL CHARACTERISTICS AC OPERATION (VDD1 = 1.7 to 3.6V; VDD2 = 1.75 to 4.2V; Vss1,2 = 0V; VLCD = 4.5 to 11V; Tamb =-40 to 85°C; unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. Unit 64 72 80 kHz 100 kHz INTERNAL OSCILLATOR FOSC Internal Oscillator frequency FEXT External Oscillator frequency FFRAME Frame frequency Tw(RES) RES LOW pulse width TLOGIC VDD = 2.8V; Tamb = -20 to +70 °C 20 fosc or fext = 72 kHz; note 1 75 Hz µs 5 Reset Pulse Rejection 1 µs Internal Logic Reset Time 5 µs (RES) TVDD VDD1 vs. VDD2 Delay µs 0 Figure 48. RESET timing diagram Tw(res) Tlogic(res) VDD2 VDD1 RES INPUTS I/O (HOST) I/O (DRIVER) Hi-Z INTERFACE OUTPUT Hi-Z OSCIN (HOST) OSC OUT (DRIVER) BSY FLG RESET TABLE LOADED 40/51 LR0118 STE2002 ELECTRICAL CHARACTERISTICS AC OPERATION (VDD1 = 1.7 to 3.6V; VDD2 = 1.75 to 4.2V; Vss1,2 = 0V; VLCD = 4.5 to 11V; Tamb =-40 to 85°C; unless otherwise specified) Symbol I2C Parameter Test Condition Min. Typ. Max. Unit BUS INTERFACE (See note 4) FSCL SCL Clock Frequency Fast Mode DC 400 kHz High Speed Mode; Cb=100pF (max);VDD1=2 DC 3.4 MHz High Speed Mode; Cb=400pF (max); VDD1=2 DC 1.7 MHz 400 KHz Fast Mode; VDD1=1.7V TSU;STA Set-up time (repeated) START condition Note 2, 3, Cb=100pF 160 ns THD;STA Hold time (repeated) START condition Note 2, 3, Cb=100pF 160 ns TLOW LOW period of the SCLH clock Note 2, 3, Cb=100pF 160 ns THIGH HIGH period of the SCLH clock Note 2, 3, Cb=100pF 60 ns TSU;DAT Data set-up time Note 2, 3, Cb=100pF 10 ns THD;DAT Data hold time Note 2, 3; Cb=100pF 40 ns Tr;CL Rise time of SCLH signal Note 2, 3; Cb=100pF 10 ns TrCL1 Rise time of SCLH signal after a Note 2, 3, Cb=100pF repeated START condition and after an acknowledge bit 10 ns TfCL Fall time of SCLH signal Note 2, 3, Cb=100pF 10 ns TrDA Rise time of SDAH signal Note 2, 3, 4, Cb=100pF 10 ns TfDA Fall time of SDAH signal Note 2, 3, 4, Cb=100pF 10 TrDA Rise time of SDAH signal Note 2, 3, 4, Cb=400pF 20 TfDA Fall time of SDAH signal Note 2, 3, 4, Cb=400pF 20 TSU;STO Set-up time for STOP condition Note 2, 3, Cb=100pF Cb Capacitive load for SDAH and SCLH Cb Capacitive load for SDAH + SDA line and SCLH + SCL line 80 ns ns 160 ns 400 pF 400 pF 160 ns 100 Figure 49. I2C-bus timings Sr Sr P tfDA trDA SDAH tHD;DAT tSU;STA tSU;DAT tHD;STA SCLH tfCL trCL trCL1 tHIGH tLOW (1) tLOW tHIGH trCL1 (1) D00IN1153 = MCS current source pull-up = Rp resistor pull-up 41/51 STE2002 ELECTRICAL CHARACTERISTICS (continued) AC OPERATION (VDD1 = 1.7 to 3.6V; VDD2 = 1.75 to 4.2V; Vss1,2 = 0V; VLCD = 4.5 to 11V; Tamb =-40 to 85°C; unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. Unit PARALLEL INTERFACE TCY(EN) Enable Cycle Time TW(EN) VDD1 = 1.7V; Write; note 2, 6 150 ns Enable Pulse width 60 ns TSU(A) Address Set-up Time 30 ns TH(A) Address Hold Time 40 ns TSU(D) Data Set-Up Time 30 ns TH(D) Data Hold Time 30 ns TSU(D) Data Set-Up Time in read Mode THU(D) Data Hold Time In Read mode 100 100 Figure 50. Parallel interface Write timing PD/C tSU(A) tW(en) th(A) E tSU(D) tHO(D) tCY(en) DB0-DB7 R/W WRITE Figure 51. Parallel interface Read timing PD/C Don't Care tSU(A) tW(en) th(A) E tHOR(D) tSUR(D) tCY(en) DB0-DB7 R/W 42/51 READ ns ns STE2002 ELECTRICAL CHARACTERISTICS (continued) AC OPERATION (VDD1 = 1.7 to 3.6V; VDD2 = 1.75 to 4.2V; Vss1,2 = 0V; VLCD = 4.5 to 11V; Tamb =-40 to 85°C; unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. Unit SERIAL INTERFACE TCYC Clock Cycle SCLK TPWH1 SCLK pulse width HIGH TPWL1 VDD1 = 1.7V; Write; note 2, 6 150 ns 60 ns SCLK Pulse width LOW 60 ns TS2 SCE setup time 30 ns TH2 SCE hold time 50 ns TPWH2 SCE minimum high time 50 ns TS3 SD/C setup time 30 ns TH3 SD/C hold time 40 ns TS4 SDIN setup time 30 ns TH4 SDIN hold time 40 ns TS5 SOUT Access Time 100 ns TH5 SOUT Disable Time vs. SCLK 100 ns TH6 SOUT Disable Time vs. SCE 100 ns Figure 52. Serial interface Timing tS2 tH2 tPWH2 CS tS3 tH3 D/C tCYC tPWL1 tWH1 tS2 SCLK tS4 tH4 SDIN tS5 tH5 tH6 SOUT LR0001 f osc Notes: 1. F fra me = ---------- 960 2. All timing values are valid within the operating supply voltage and ambient temperature ranges and referenced to VIL and VIH with an input voltage swing of VSS to VDD 3. Cb is the capacitive load for each bus line. 4. For bus line loads Cb between 100 and 400pF the timing parameters must be linearly interpolated 5. CVLCD is the filtering Capacitor on VLCDOUT 6. T rise and T fall (30%-70%) = 10 ns 43/51 STE2002 Table 16. Pad Coordinates Table 16. Pad Coordinates (continued) NAME PAD X (µm) Y(µm) NAME PAD X (µm) Y(µm) C0 1 -3275.0 -946.5 C31 32 -1725.0 -946.5 C1 2 -3225.0 -946.11 C32 33 -1675.0 -946.5 C2 3 -3175.0 -946.5 C33 34 -1625.0 -946.5 C3 4 -3125.0 -946.5 C34 35 -1575.0 -946.5 C4 5 -3075.0 -946.5 C35 36 -1525.0 -946.5 C5 6 -3025.0 -946.5 C36 37 -1475.0 -946.5 C6 7 -2975.0 -946.5 C37 38 -1425.0 -946.5 C7 8 -2925.0 -946.5 C38 39 -1375.0 -946.5 C8 9 -2875.0 -946.5 C39 40 -1325.0 -946.5 C9 10 -2825.0 -946.5 C40 41 -1275.0 -946.5 C10 11 -2775.0 -946.5 C41 42 -1225.0 -946.5 C11 12 -2725.0 -946.5 C42 43 -1175.0 -946.5 C12 13 -2675.0 -946.5 C43 44 -1125.0 -946.5 C13 14 -2625.0 -946.5 C44 45 -1075.0 -946.5 C14 15 -2575.0 -946.5 C45 46 -1025.0 -946.5 C15 16 -2525.0 -946.5 C46 47 -975.0 -946.5 C16 17 -2475.0 -946.5 C47 48 -925.0 -946.5 C17 18 -2425.0 -946.5 C48 49 -875.0 -946.5 C18 19 -2375.0 -946.5 C49 50 -825.0 -946.5 C19 20 -2325.0 -946.5 C50 51 -775.0 -946.5 C20 21 -2275.0 -946.5 C51 52 -725.0 -946.5 C21 22 -2225.0 -946.5 C52 53 -675.0 -946.5 C22 23 -2175.0 -946.5 C53 54 -625.0 -946.5 C23 24 -2125.0 -946.5 C54 55 -575.0 -946.5 C24 25 -2075.0 -946.5 C55 56 -525.0 -946.5 C25 26 -2025.0 -946.5 C56 57 -475.0 -946.5 C26 27 -1975.0 -946.5 C57 58 -425.0 -946.5 C27 28 -1925.0 -946.5 C58 59 -375.0 -946.5 C28 29 -1875.0 -946.5 C59 60 -325.0 -946.5 C29 30 -1825.0 -946.5 C60 61 -275.0 -946.5 C30 31 -1775.0 -946.5 C61 62 -225.0 -946.5 44/51 STE2002 Table 16. Pad Coordinates (continued) Table 16. Pad Coordinates (continued) NAME PAD X (µm) Y(µm) NAME PAD X (µm) Y(µm) C62 63 -175.0 -946.5 C93 94 +1575.0 -946.5 C63 64 -125.0 -946.5 C94 95 +1625.0 -946.5 C64 65 +125.0 -946.5 C95 96 +1675.0 -946.5 C65 66 +175.0 -946.5 C96 97 +1725.0 -946.5 C66 67 +225.0 -946.5 C97 98 +1775.0 -946.5 C67 68 +275.0 -946.5 C98 99 +1825.0 -946.5 C68 69 +325.0 -946.5 C99 100 +1875.0 -946.5 C69 70 +375.0 -946.5 C100 101 +1925.0 -946.5 C70 71 +425.0 -946.5 C101 102 +1975.0 -946.5 C71 72 +475.0 -946.5 C102 103 +2025.0 -946.5 C72 73 +525.0 -946.5 C103 104 +2075.0 -946.5 C73 74 +575.0 -946.5 C104 105 +2125.0 -946.5 C74 75 +625.0 -946.5 C105 106 +2175.0 -946.5 C75 76 +675.0 -946.5 C106 107 +2225.0 -946.5 C76 77 +725.0 -946.5 C107 108 +2275.0 -946.5 C77 78 +775.0 -946.5 C108 109 +2325.0 -946.5 C78 79 +825.0 -946.5 C109 110 +2375.0 -946.5 C79 80 +875.0 -946.5 C110 111 +2425.0 -946.5 C80 81 +925.0 -946.5 C111 112 +2475.0 -946.5 C81 82 +975.0 -946.5 C112 113 +2525.0 -946.5 C82 83 +1025.0 -946.5 C113 114 +2575.0 -946.5 C83 84 +1075.0 -946.5 C114 115 +2625.0 -946.5 C84 85 +1125.0 -946.5 C115 116 +2675.0 -946.5 C85 86 +1175.0 -946.5 C116 117 +2725.0 -946.5 C86 87 +1225.0 -946.5 C117 118 +2775.0 -946.5 C87 88 +1275.0 -946.5 C118 119 +2825.0 -946.5 C88 89 +1325.0 -946.5 C119 120 +2875.0 -946.5 C89 90 +1375.0 -946.5 C120 121 +2925.0 -946.5 C90 91 +1425.0 -946.5 C121 122 +2975.0 -946.5 C91 92 +1475.0 -946.5 C122 123 +3025.0 -946.5 C92 93 +1525.0 -946.5 C123 124 +3075.0 -946.5 45/51 STE2002 Table 16. Pad Coordinates (continued) Table 16. Pad Coordinates (continued) NAME PAD X (µm) Y(µm) NAME PAD X (µm) Y(µm) C124 125 +3125.0 -946.5 R67 156 +3571.5 +475.0 C125 126 +3175.0 -946.5 R68 157 +3571.5 +525.0 C126 127 +3225.0 -946.5 R69 158 +3571.5 +575.0 C127 128 +3275.0 -946.5 R70 159 +3571.5 +625.0 R40 129 +3571.5 -875.0 R71 160 +3571.5 +675.0 R41 130 +3571.5 -825.0 R72 161 +3571.5 +725.0 R42 131 +3571.5 -775.0 R73 162 +3571.5 +775.0 R43 132 +3571.5 -725.0 R74 163 +3571.5 +825.0 R44 133 +3571.5 -675.0 R75 164 +3571.5 +875.0 R45 134 +3571.5 -625.0 R76 165 +3275.0 +946.5 R46 135 +3571.5 -575.0 R77 166 +3225.0 +946.5 R47 136 +3571.5 -525.0 R78 167 +3175.0 +946.5 R48 137 +3571.5 -475.0 R79 168 +3125.0 +946.5 R49 138 +3571.5 -425.0 R80/ICON 169 +3075.0 +946.5 R50 139 +3571.5 -375.0 TEST_1 170 +2825.0 +946.5 R51 140 +3571.5 -325.0 TEST_2 171 +2775.0 +946.5 R52 141 +3571.5 -275.0 TEST_3 172 +2725.0 +946.5 R53 142 +3571.5 -225.0 TEST_4 173 +2675.0 +946.5 R54 143 +3571.5 -175.0 TEST_5 174 +2625.0 +946.5 R55 144 +3571.5 -125.0 TEST_6 175 +2575.0 +946.5 R56 145 +3571.5 -75.0 TEST_7 176 +2525.0 +946.5 R57 146 +3571.5 -25.0 TEST_8 177 +2475.0 +946.5 R58 147 +3571.5 +25.0 TEST_9 178 +2425.0 +946.5 R59 148 +3571.5 +75.0 TEST_10 179 +2375.0 +946.5 R60 149 +3571.5 +125.0 VSSAUX 180 +2225.0 +946.5 R61 150 +3571.5 +175.0 SA1 181 +2175.0 +946.5 R62 151 +3571.5 +225.0 SA0 182 +2125.0 +946.5 R63 152 +3571.5 +275.0 EXT 183 +2075.0 +946.5 R64 153 +3571.5 +325.0 SEL2 184 +2025.0 +946.5 R65 154 +3571.5 +375.0 SEL1 185 +1975.0 +946.5 R66 155 +3571.5 +425.0 ICON_MODE 186 +1925.0 +946.5 46/51 STE2002 Table 16. Pad Coordinates (continued) Table 16. Pad Coordinates (continued) NAME PAD X (µm) Y(µm) NAME PAD X (µm) Y(µm) OSC_IN 187 +1875.0 +946.5 VSSAUX 218 +625.0 +946.5 VDD1_1 188 +1825.0 +946.5 R/W 219 +575.0 +946.5 VDD1_2 189 +1825.0 +839.5 D7 220 +525.0 +946.5 VDD1_3 190 +1775.0 +946.5 D6 221 +475.0 +946.5 VDD1_4 191 +1775.0 +839.5 D5 222 +425.0 +946.5 VDD1_5 192 +1725.0 +946.5 D4 223 +375.0 +946.5 VDD1_6 193 +1725.0 +839.5 D3 224 +325.0 +946.5 VDD1_7 194 +1675.0 +946.5 D2 225 +275.0 +946.5 VDD1_8 195 +1675.0 +839.5 D1 226 +225.0 +946.5 VDD1_9 196 +1625.0 +946.5 D0 227 +175.0 +946.5 VDD1_10 197 +1625.0 +839.5 PD/C 228 +125.0 +946.5 VDD1_11 198 +1575.0 +946.5 E 229 +75.0 +946.5 VDD1_12 199 +1575.0 +839.5 RES 230 -75.0 +946.5 VDD2_1 200 +1525.0 +946.5 VSSAUX 231 -225.0 +946.5 VDD2_2 201 +1525.0 +839.5 SDA_OUT 232 -275.0 +946.5 VDD2_3 202 +1475.0 +946.5 SDA_OUT 233 -325.0 +946.5 VDD2_4 203 +1475.0 +839.5 SDA_IN 234 -375.0 +946.5 VDD2_5 204 +1425.0 +946.5 SCL 235 -425.0 +946.5 VDD2_6 205 +1425.0 +839.5 VSS_1 236 -975.0 +946.5 VDD2_7 206 +1375.0 +946.5 VSS_2 237 -975.0 +839.5 VDD2_8 207 +1375.0 +839.5 VSS_3 238 -1025.0 +946.5 VDD2_9 208 +1325.0 +946.5 VSS_4 239 -1025.0 +839.5 VDD2_10 209 +1325.0 +839.5 VSS_5 240 -1075.0 +946.5 VDD2_11 210 +1275.0 +946.5 VSS_6 241 -1075.0 +839.5 VDD2_12 211 +1275.0 +839.5 VSS_7 242 -1125.0 +946.5 BUSY_FLAG 212 +1125.0 +946.5 VSS_8 243 -1125.0 +839.5 SDOUT 213 +975.0 +946.5 VSS_9 244 -1175.0 +946.5 SDIN 214 +925.0 +946.5 VSS_10 245 -1175.0 +839.5 SD/C 215 +875.0 +946.5 VSS_11 246 -1225.0 +946.5 SCE 216 +825.0 +946.5 VSS_12 247 -1225.0 +839.5 SCLK 217 +775.0 +946.5 VSS_13 248 -1275.0 +946.5 47/51 STE2002 Table 16. Pad Coordinates (continued) Table 16. Pad Coordinates (continued) NAME PAD X (µm) Y(µm) NAME PAD X (µm) Y(µm) VSS_14 249 -1275.0 +839.5 VLCDOUT_8 280 -2775.0 +839.5 VSS_15 250 -1325.0 +946.5 VLCDOUT_9 281 -2825.0 +946.5 VSS_16 251 -1325.0 +839.5 VLCDOUT_10 282 -2825.0 +839.5 VSS_17 252 -1375.0 +946.5 R39 283 -3075.0 +946.5 VSS_18 253 -1375.0 +839.5 R38 284 -3125.0 +946.5 VSS_19 254 -1425.0 +946.5 R37 285 -3175.0 +946.5 VSS_20 255 -1425.0 +839.5 R36 286 -3225.0 +946.5 TEST_11 256 -1475.0 +946.5 R35 287 -3275.0 +946.5 TEST_12 257 -1525.0 +946.5 R34 288 -3571.5 +875.0 TEST_13 258 -1575.0 +946.5 R33 289 -3571.5 +825.0 TEST_14 259 -1625.0 +946.5 R32 290 -3571.5 +775.0 OSC_OUT 260 -2175.0 +946.5 R31 291 -3571.5 +725.0 VLCDIN_1 261 -2325.0 +946.5 R30 292 -3571.5 +675.0 VLCDIN_2 262 -2325.0 +839.5 R29 293 -3571.5 +625.0 VLCDIN_3 263 -2375.0 +946.5 R28 294 -3571.5 +575.0 VLCDIN_4 264 -2375.0 +839.5 R27 295 -3571.5 +525.0 VLCDIN_5 265 -2425.0 +946.5 R26 296 -3571.5 +475.0 VLCDIN_6 266 -2425.0 +839.5 R25 297 -3571.5 +425.0 VLCDIN_7 267 -2475.0 +946.5 R24 298 -3571.5 +375.0 VLCDIN_8 268 -2475.0 +839.5 R23 299 -3571.5 +325.0 VLCDIN_9 269 -2525.0 +946.5 R22 300 -3571.5 +275.0 VLCDIN_10 270 -2525.0 +839.5 R21 301 -3571.5 +225.0 VLCDSENSE_1 271 -2575.0 +946.5 R20 302 -3571.5 +175.0 VLCDSENSE_2 272 -2575.0 +839.5 R19 303 -3571.5 +125.0 VLCDOUT_1 273 -2625.0 +946.5 R18 304 -3571.5 +75.0 VLCDOUT_2 274 -2625.0 +839.5 R17 305 -3571.5 +25.0 VLCDOUT_3 275 -2675.0 +946.5 R16 306 -3571.5 -25.0 VLCDOUT_4 276 -2675.0 +839.5 R15 307 -3571.5 -75.0 VLCDOUT_5 277 -2725.0 +946.5 R14 308 -3571.5 -125.0 VLCDOUT_6 278 -2725.0 +839.5 R13 309 -3571.5 -175.0 VLCDOUT_7 279 -2775.0 +946.5 R12 310 -3571.5 -225.0 48/51 STE2002 Table 16. Pad Coordinates (continued) NAME PAD X (µm) Y(µm) R11 311 -3571.5 -275.0 R10 312 -3571.5 -325.0 R9 313 -3571.5 -375.0 R8 314 -3571.5 -425.0 R7 315 -3571.5 -475.0 R6 316 -3571.5 -525.0 R5 317 -3571.5 -575.0 R4 318 -3571.5 -625.0 R3 319 -3571.5 -675.0 R2 320 -3571.5 -725.0 R1 321 -3571.5 -775.0 R0 322 -3571.5 -825.0 ICON 323 -3571.5 -875.0 Figure 53. Alignment marks coordinates X Y MARKS -3574.5 -949.5 mark1 +3574.5 -949.5 mark2 -2250 +949.5 mark3 +1200 +949.5 mark4 Figure 54. Alignment marks dimensions 39 µm 94 µm Table 17. Bumps Bump Number Dimensions Bumps on Single Row Size 1-187 212-235 256-260 283-323 30µm X 98 µm X 17.5 Bumps on Two Rows Size 188-211 236-255 261-282 30µm X 87 µm X 17.5 Pad Size 1-323 43µm X 107µm Pad Pitch 1-323 50µm Spacing between Bumps 1-323 20µm Table 18. Die Mechanical Dimensions Die Size Wafers Thickness 2.07mm x 7.32mm 500µm 49/51 STE2002 Figure 55. DIE ORIENTATION IN TRAY DIE IDENTIFICATION Mark 3 Mark 1 STE2002 Mark 4 Mark 2 Figure 56. TRAY INFORMATION A A Array Size = 13 x5 (65) Units 50/51 STE2002 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics 2002 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com 51/51