STE2004S 102 x 65 single-chip LCD controller/driver Features Description ■ 102 x 65 bits display data RAM ■ Programmable MUX rate ■ Programmable frame rate ■ X,Y programmable carriage return ■ Dual partial display mode ■ Row by row scrolling The STE2004S is a low power CMOS LCD controller driver. Designed to drive a 65 rows by 102 columns graphic display, it provides all necessary functions in a single chip, including on-chip LCD supply and bias voltages generators, resulting in a minimum of externals components and in a very low power consumption. ■ N-line inversion ■ Automatic data RAM blanking procedure ■ Selectable input interface: – I2C Bus Fast and Hs-mode (read and write) – 8000 and 8080 Parallel Interfaces (read and write) – 3-lines and 4-lines SPI Interface (read and write) – 3-lines 9 bit Serial Interface (read and write) STE2004S features six standard interfaces (3-lines Serial, 3-lines SPI, 4-lines SPI, 68000 Parallel, 8080 parallel and I2C) for interfacing with the host micro-controller. OSC_IN FR_IN FR_OUT VSENSE SLAVE VLCD CMOS compatible inputs ■ Fully integrated oscillator requires no external components ■ Designed for chip-on-glass (COG) applications. ■ Low power consumption, suitable for battery operated systems ■ Logic supply voltage range from 1.7 to 3.6V ■ High voltage generator supply voltage range from 1.75 to 4.5V ■ Display supply voltage range from 4.5 to 14.5V ■ Backward compatibility with STE2001/2/4 January 2007 R0 to R64 COLUMN DRIVERS ROW DRIVERS DATA LATCHES SHIFT REGISTER CLOCK HIGH VOLTAGE GENERATOR 65 x 102 RAM VLCDSENSE Fully integrated configurable LCD bias voltage generator with: – Selectable multiplication factor (up to 5X) – Effective sensing for high precision output – Eight selectable temperature compensation coefficients ■ MASTER SLAVE SYNC BIAS VOLTAGE GENERATOR RES ■ TIMING GENERATOR OSC OSC_OUT CO to C101 RESET SCROLL LOGIC TEST VSSAUX VDD1,2 DATA REGISTER INSTRUCTION REGISTER VSS DISPLAY CONTROL LOGIC TEST_MODE TEST_VREF ICON_MODE EXT SEL 3 I2C BUS 9 Bit SERIAL 3 & 4 Line SPI Parallel 8080 Parallel 68K SEL 2 SEL 1 SA1 SAO SDOUT SCLK/SCL SDIN/SDA_IN SDA_OUT DB0 E/WR R/W- RD to DB7 Rev 3 D/C CS LR0047 1/7979 www.st.com 79 Contents STE2004S Contents 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 3.1 Supplies voltages and grounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Internal supply voltage generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.4 Master/slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.5 Bias levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.6 LCD voltage generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.7 Temperature coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.8 Display data RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Bus interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.1 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.1.1 4.2 4.3 5 2/79 Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Serial interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2.1 4-lines SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2.2 3-lines SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2.3 3-lines 9 bits serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3.1 68000-series parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3.2 8080-series parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.1 Reset (RES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2 Power down (PD = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.3 Memory blanking procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.4 Checker board procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.5 Scrolling function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.6 Dual partial display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 STE2004S Contents 6 ID-number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 7.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 7.2 DC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 7.3 AC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 8 Pad coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 9 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3/79 Block diagram STE2004S 1 Block diagram Figure 1. STE2004S block diagram OSC_IN TIMING GENERATOR OSC OSC_OUT FR_IN FR_OUT MASTER SLAVE SYNC VLCD COLUMN DRIVERS ROW DRIVERS DATA LATCHES SHIFT REGISTER HIGH VOLTAGE GENERATOR 65 x 102 RAM VLCDSENSE RES R0 to R64 CLOCK BIAS VOLTAGE GENERATOR VSENSE SLAVE CO to C101 RESET SCROLL LOGIC TEST VSSAUX VDD1,2 DATA REGISTER INSTRUCTION REGISTER VSS DISPLAY CONTROL LOGIC TEST_MODE TEST_VREF ICON_MODE EXT SEL 3 I2C BUS 9 Bit SERIAL 3 & 4 Line SPI Parallel 8080 Parallel 68K SEL 2 SEL 1 SA1 SAO SDOUT SCLK/SCL SDIN/SDA_IN SDA_OUT DB0 E/WR R/W- RD to DB7 4/79 D/C CS LR0047 STE2004S 2 Pin description Pin description Table 1. Pin description N° Pad Type Function R0 to R64 1-6 109-141 O LCD row driver output C0 to C101 6-107 O LCD column driver output VSS 192-203 GND VDD1 156-163 Supply IC positive power supply VDD2 164-171 Supply Internal generator supply voltages. VLCD 205-209 Supply Voltage multiplier output Ground pads. Voltage multiplier regulation input. VLCDOUT sensing for output voltage fine tuning VLCDSENSE 204 Supply VSENSE_SLAVE 145 Supply Voltage reference for slave charge pump VSSAUX 190-177-147 O Ground reference for pins configuration VDD1AUX 142 O VDD1 reference for pins configuration Interface mode selection - cannot be left floating SEL3 SEL2 SEL1 Interface I2C GND/VSSAUX GND/VSSAUX GND/VSSAUX SEL1,2,3 152 153 154 GND/VSSAUX GND/VSSAUX I VDD1 SPI 4-Lines 8 bit GND/VSSAUX VDD1 GND/VSSAUX SPI 3-Lines 8 bit GND/VSSAUX VDD1 VDD1 Serial 3-Lines 9 bit VDD1 GND/VSSAUX GND/VSSAUX Parallel 8080-series VDD1 GND/VSSAUX Parallel 68000-series VDD1 Extended instruction set selection - cannot be left floating EXT_SET 151 Ext pad config Instruction set selected GND or VSSAUX BASIC VDD1 EXTENDED I Extended instruction set selection - cannot be left floating ICON_MODE 155 SDOUT 180 SDIN - SDAIN 179 I Icon mode pad config Icon mode status GND or VSSAUX DISBLED VDD1 ENABLED O Serial and SPI data output - if unused must be left floating I SDIN - Serial and SPI interface data input - cannot be left floating I SDAIN - I2C bus data in - cannot be left floating 5/79 Pin description STE2004S Table 1. Pin description (continued) N° SCLK - SCL Pad Type Function I SCLK - Serial and SPI interface clock - cannot be left floating I SCL - I2C bus clock - cannot be left floating 181 SDA_OUT 178 O I2C Bus data out - if unused must be left floating SA0 149 I I2C slave address BIT 0 - cannot be left floating SA1 148 I I2C slave address BIT 1- cannot be left floating 182-189 I/O DB0 to DB7 R/W - RD Parallel interface 8 bit data bus - cannot be left floating I R/W - 68000 Series Parallel interface read and write control input - cannot be left floating I RD - 8080 Series Parallel interface read enable clock input - cannot be left floating 175 E / WR 176 I E - 68000 Series Parallel interface read and write clock input - cannot be left floating E / WR 176 I WR - 8080 Series Parallel interface - write enable clock input - cannot be left floating RES 172 I Reset input. Active Low. D/C 174 I Interface data/command selector- cannot be left floating CS 173 I Serial and Parallel interfaces ENABLE. When Low the incoming data are clocked In. Cannot be left floating TEST_MODE 191 I Test Pad - 50 kohm internal pull-down must be connected to VSS/VSSAUX TEST_VREF 146 O Test Pad - must be left floating Oscillator Input: OSCIN 144 OSC_IN Configuration High Internal oscillator enabled Low Internal oscillator disabled External Oscillator Internal oscillator disabled I OSCOUT 210 O Internal/external oscillator out - if unused must be left floating FR_OUT 211 O Master slave frame inversion synchronization - f unused must be left floating FR_IN 143 I Master slave frame inversion synchronization - cannot be left floating Master/slave configuration bit:- cannot be left floating M/S 6/79 100 I M/S PIN OSC_OUT FR_OUT FR_IN Charge Pump High ENABLED Enabled Disabled AuxVsense disabled Low ENABLED Enabled Enabled Charge pump in slave mode or ext power STE2004S Pin description ROW 6 ROW 27 Chip mechanical drawing MARK_1 ROW 5 ROW28 ROW31 ROW 0 COL 0 FR_OUT OSC_OUT MARK_3 STE2004S VLCD VLCDSENSE VSS TEST_MODE VSSAUX D0 D1 D2 D3 D4 D5 D6 D7 SCLK - SCL SDOUT SDIN - SDAIN SDAOUT COL 50 VSSAUX E - WR (0,0) R/W - RD Y COL 51 D/C CS X RES MARK_4 VDD2 VDD1 ICON SEL1 SEL2 SEL3 EXT_SET M/S SA0 SA1 VSSAUX TEST VREF VSENSE_SLAVE OSC_IN FR_IN VDD1_AUX COL 101 ROW 32 ROW64/ICON ROW63 ROW 37 ROW60 MARK_2 ROW 59 LR0048 ROW 38 Figure 2. 7/79 Pin description STE2004S Figure 3. Improved ALTH and PLESKO driving method VLCD V2 V3 ∆V1(t) ∆V2(t) ROW 0 R0 (t) V4 V5 VSS VLCD V2 V3 ROW 1 R1 (t) V4 V5 VSS VLCD V2 V3 COL 0 C0 (t) V4 V5 VSS VLCD V2 V3 COL 1 C1 (t) V4 V5 VSS VLCD - VSS V3 - VSS Vstate1(t) V4 - V5 0V VSS - V5 VLCD - V2 0V V3 - VSS V4 - VLCD VSS - VLCD VLCD - VSS V3 - VSS Vstate2(t) VLCD - V2 0V V3 - VSS V4 - V5 0V VSS - V5 V4 - VLCD VSS - VLCD ..... 64 0 1 2 3 4 5 6 7 8 9 ....... 0 1 2 3 4 5 6 7 8 9 ....... FRAME n ∆V1(t) = C1(t) - R0(t) ∆V2(t) = C1(t) - R1(t) 8/79 ..... 64 FRAME n + 1 D00IN1154 STE2004S Circuit description 3 Circuit description 3.1 Supplies voltages and grounds VDD2 supplies voltages to the internal voltage generator (see below). If the internal voltage generator is not used, this should be connected to VDD1 pad. VDD1 supplies the rest of the IC. VDD1 supply voltage could be different form VDD2. V 3.2 DD2 ⋅ VLCD- + 200mV ≥2 -------------------------(n + 4) Internal supply voltage generator The IC has a fully integrated (no external capacitors required) charge pump for the liquid crystal display (LCD) supply voltage generation. The multiplying factor can be programmed to be: Auto, X5, X4, X3, X2, using the ’set CP multiplication’ command. If auto is set, the multiplying factor is automatically selected to have the lowest current consumption in every condition, allowing an input voltage that changes over time and a constant VLCD voltage. The output voltage (VLCD) is tightly controlled through the VLCDSENSE pad. For this voltage, eight different temperature coefficients (TC, rate of change with temperature) can be programmed using the bits TC1, TC0, T2, T1, T0, to ensure there is no contrast degradation over the LCD operating range. An external supply could be connected to VLCD to supply the LCD without using the internal generator. In such event the internal voltage generator must be programmed to zero (PRS = [0;0], Vop = 0 - reset condition) and the charge pump (CP[0;0]) set to 5x or quto mode. 3.3 Oscillator A fully integrated oscillator (requires no external components) is present to provide the clock for the display system. When used the OSC pad must be connected to VDD1 pad. An external oscillator could be used and fed into the OSC pin. If an external oscillator is used, it must be always present when STE2004S is not in power down mode. An oscillator out is provided on the OSCOUT Pad to cascade two or more drivers. 3.4 Master/slave mode STE2004S supports the master slave working mode for both control logic and charge pump. This function allows to drive matrix such as 204x65 or 102x130 using two synchronized STE2004S and the internal charge pump of both devices. If M/S is connected to VDD1, the driver is configured to work in master mode. When STE2004S is in master mode, the Vsense_Slave pin is disabled and the VLCD value can be controlled using Vop bits. The master time generator outputs the relevant timing references on FR_OUT and OSC_OUT. If M/S is connected to GND, the driver is configured to work in slave mode. When STE2004S is in slave mode, the VLCD configuration set by Vop registers and the thermal compensation slope set by TC register, are neglected. The VLCD value generated is equal to the voltage value present on the Vsense_Slave pin so the slave configuration can follow 9/79 Circuit description STE2004S the master configuration. The only recognized configuration is Vop=0 that forces the charge pump to be in off state whatever is the value of Vsense_aux. To synchronize the master and slave timing circuits, the slave driver FR_IN pad must be connected to master driver FR_OUT pad, and slave driver OSC_IN pad must be connected to the master driver OSC_OUT Pad (Figure 4.). This connection ensures a synchronization at both frame level (R0 on the master is driven together with the Slave R0 driver) and at oscillator level (same frame frequency on the master and on the slave). If the synchronization at frame level is not required, FR_IN pin must be connected toVDD1 or to VDD1_aux (Figure 5.). During the power up procesure, the master device must be forced to exit from power down before the slave device. To enter into PowerDown mode, the slave device must be forced into power down state before master device. Figure 4. Master slave logic connection with frame synchronization STE2004S VDD1AUX OSCIN FRIN OSCOUT STE2004S FROUT FRIN OSCIN OSCOUT FROUT LR0219 Figure 5. Master slave logic connection without frame synchronization STE2004S VDD1AUX OSCIN FRIN OSCOUT STE2004S OSCIN FROUT VDD1AUX 3.5 OSCOUT FROUT FRIN LR0220 Bias levels To properly drive the LCD, six (Including VLCD and VSS) different voltage (Bias) levels are generated. The ratios among these levels and VLCD, should be selected according to the MUX ratio (m). They are established according to the following (Figure 6.) V 10/79 n+3 n+2 2 1 , ------------- V , ------------- V , ------------- V , ------------- V ,V LCD n + 4 LCD n + 4 LCD n + 4 LCD n + 4 LCD SS STE2004S Circuit description Figure 6. Bias level generator VLCD R n+3 ·VLCD n+4 R n+2 ·VLCD n+4 nR 2 ·VLCD n+4 R 1 ·VLCD n+4 R VSS D00IN1150 providing an 1/(n+4) ratio, with n calculated from: n= m–3 For m = 65, n = 5, a 1/9 ratio is set. For m = 49, n =4, a 1/8 ratio is set. The STE2004S provides three bits (BS0, BS1, BS2) for programming the bias ratio as shown below: Table 2. Bias ratio programmable bits BS2 BS1 BS0 n 0 0 0 7 0 0 1 6 0 1 0 5 0 1 1 4 1 0 0 3 1 0 1 2 1 1 0 1 1 1 1 0 The following table shows the bias level for m = 65 and m = 49: 11/79 Circuit description STE2004S Table 3. Bias level m=65 and m=49 3.6 Symbol m = 65 (1/9) m = 49 (1/8) V1 VLCD VLCD V2 8/9*VLCD 7/8*VLCD V3 7/9*VLCD 6/8*VLCD V4 2/9*V VLCD 2/8*VLCD V5 1/9 *VLCD 1/8*VLCD V6 VSS VSS LCD voltage generation The LCD voltage at reference temperature (To = 27°C) can be set using the VOP register content according to the following formula: VLCD(T=To) = VLCDo = (Ai+VOP · B) (i=0,1,2) with the following values: Table 4. LCD voltage generation Symbol Value Unit Note Ao 2.95 V PRS = [0;0] A1 6.83 V PRS = [0;1] A2 10.71 V PRS = [1;0] B 0.0303 V To 27 °C Note that the three PRS values produce three adjacent ranges for VLCD. If the VOP register and PRS bits are set to zero the internal voltage generator is switched off. The proper value for the VLCD is a function of the liquid crystal threshold voltage (Vth) and of the multiplexing rate. A general expression for this is: 1+ m V LCD = --------------------------------------- ⋅ V th 1 -⎞ 2 ⋅ ⎛ 1 – -------⎝ m⎠ For MUX Rate m = 65 the ideal VLCD is: VLCD(to) = 6.85 · Vth than: 12/79 ( 6.85 ⋅ Vth – A i ) V op = -------------------------------------------0.03 STE2004S 3.7 Circuit description Temperature coefficients As the viscosity, and therefore the contrast, of the LCD are subject to change with temperature, the LCD voltage must be varied with temperature. STE2004S provides eight different temperature coefficients to change the VLCD in a linear fashion against temperature. selectable through T2, T1 and T0 bits. Only four of the temperature coefficients are available through the basic instruction set. Table 5. Temperature coefficients with basic instruction set NAME TC1 TC0 Value Unit TC0 0 0 -0.0· 10-3 1/ °C -3 1/°C TC2 0 1 -0.7 · 10 TC3 1 0 -1.05· 10-3 1/°C 1 10-3 1/°C TC6 1 -2.1 · Table 6. Temperature coefficients NAME T2 T1 T0 Value Unit TC0 0 0 0 -0.0· 10-3 1/ °C TC1 0 TC2 0 0 1 1 0 -0.35 · 10-3 1/°C -0.7 · 10-3 1/°C 10-3 1/°C TC3 0 1 1 -1.05· TC4 1 0 0 -1.4 · 10-3 1/°C 1 -1.75· 10-3 1/°C -2.1 · 10-3 1/°C -2.3· 10-3 1/°C TC5 1 TC6 1 TC7 Figure 7. 1 0 1 0 1 1 Temperature coefficients VLCD B A2 A0 + B A1 A1 00h 01h 02h 03h 04h 05h …. 7Ch 7Dh 7Eh 7Fh 00h 01h 02h 03h 04h 05h …. PRS = [0;0] 7Ch 7Dh 7Eh 7Fh 00h 01h 02h 03h 04h 05h …. 7Ch 7Dh 7Eh 7Fh PRS = [0;1] PRS = [1;0] VO Finally, the VLCD voltage at a given (T) temperature can be calculated as: VLCD(T) = VLCDo · [1 + (T-To) · TC] 13/79 Circuit description 3.8 STE2004S Display data RAM The STE2004S, provides an 102X65 bits static RAM to store display data. This is organized into 9 (Bank0 to Bank8) banks with 102 bytes. One of these banks can be used for icons. RAM access is accomplished in either one of the bus interfaces provided (see below). Allowed addresses are X0 to X101 (Horizontal) and Y0 to Y8 (Vertical). There are four address mode provided to write to RAM: ● Normal Horizontal (MX=0 and V=0), having the column with address X= 0 located on the left of the memory map. The X pointer is increased after each byte written. After the last column address (X=X-Carriage), Y address pointer jumps to the following bank and X restarts from X=0. (Figure 8.) ● Normal Vertical (MX=0 and V=1), having the column with address X= 0 located on the left of the memory map. The Y pointer is increased after each byte written. After the last Y bank address (Y=Y-Carriage), X address pointer jumps to next column and Y restarts from Y=0 (Figure 9). ● Mirrored Horizontal (MX=1 and V=0), having the column with address X= 0 located on the right of the memory map. The X pointer is increased after each byte written. After the last column address (X=X-Carriage), Y address pointer jumps to the next bank and X restarts from X=0 (Figure 10.). ● Mirrored Vertical (MX=1 and V=1), having the column with address X= 0 located on the right of the memory map. The Y pointer is increased after each byte written. After the last Y bank address (Y=Y-Carriage), the X pointer jumps to next column and Y restarts from Y=0 (Figure 11.). After the last allowed address (X;Y)=(X-Carriage; Y-Carriage), the address pointers always jumps to the cell with address (X;Y) = (0;0) (Figure 12. Figure 13. Figure 14. Figure 15.). Data bytes in the memory could have the MSB either on top (D0 = 0, Figure 16.) or on the bottom (D0=1, Figure 17.). The STE2004S also allows the normal output address to be altered. The display is mirrored along the X axis if a logic one MY bit is set. Only the memory read process is altered, the content is not affected in memory. When ICON MODE=1 the icon row is not mirrored with MY and is not scrolled. When ICON MODE=0 the icon row is like an other graphic line and is mirrored and scrolled. When the partial display mode is disabled, there are three multiplex ratios available (MUX 33, MUX 49 and MUX 65). Only a subset of writable rows are output on row drivers in MUX 33,49 and 65 modes. When Y-Carriage<MUX/8, if MUX 49 is selected only the first 49 memory rows are visualized; if MUX 33 selected, only the first 33 memory rows. The unused output row and column drivers must be left floating. When Y-Carriage<=MUX/8 the icon bank is located to BANK 8 in MUX 65 Mode, to BANK6 in MUX 49 Mode, and to BANK 4 in MUX 33 Mode. In MUX 33 and MUX 49 modes and Y-Carriage>MUX/8, only lines 33 and 49 are visualized. The lines of DDRAM connected on the output drivers using the scrolling function (Range: 0Y-Carriage*8) are selectable. When Y-Carriage>MUX/8 lines, the icon row is moved in DDRAM to the first row of the bank, corresponding to the Y-CARRIAGE Return value, being always connected on the same output Driver. 14/79 STE2004S Circuit description When MY=0, the icon Row is output on R64 in MUX 65 mode, on R56 in MUX 49, and on R48 in MUX33. When MY=1, and ICON MODE=0, the icon Row is output on R0 whatever the MUX rate. Figure 8. Automatic data RAM writing sequence with V=0 and data RAM normal format (MX=0)(a) 0 BANK BANK BANK BANK BANK BANK BANK BANK BANK 1 2 3 98 99 100 101 0 1 2 3 4 5 6 7 8 LR0049 Figure 9. Automatic data RAM writing sequence with V=1 and data RAM normal format (MX=0)(a) 0 BANK BANK BANK BANK BANK BANK BANK BANK BANK 1 2 3 98 99 100 101 0 1 2 3 4 5 6 7 8 LR0050 a. X Carriage=101; Y-Carriage = 8 15/79 Circuit description STE2004S Figure 10. Automatic data RAM writing sequence with V=0 and data RAM mirrored format (MX=1)(a) 101 BANK BANK BANK BANK BANK BANK BANK BANK BANK 100 99 98 3 2 1 0 0 1 2 3 4 5 6 7 8 LR0051 Figure 11. Automatic data RAM writing sequence with V=1 and data RAM mirrored format (MX=1)(a) 101 BANK BANK BANK BANK BANK BANK BANK BANK BANK 100 99 98 3 2 1 0 0 1 2 3 4 5 6 7 8 LR0052 Figure 12. Automatic data RAM writing sequence with X-Y carriage return (V=0; MX=0) 0 1 2 3 X CARR 98 99 100 101 BANK 0 BANK 1 BANK 2 Y CARR BANK 7 BANK 8 LR0053 16/79 STE2004S Circuit description Figure 13. Automatic data RAM writing sequence with X-Y carriage return (V=1; MX=0) X CARR 0 1 2 98 3 99 100 101 BANK 0 BANK 1 BANK 2 Y CARR BANK 7 BANK 8 LR0054 Figure 14. Automatic data RAM writing sequence with X-Y carriage return (V=0; MX=1) X CARR 101 100 99 98 3 2 1 0 BANK 0 BANK 1 BANK 2 Y CARR BANK 7 BANK 8 LR0055 Figure 15. Automatic data RAM writing sequence with X-Y carriage return (V=1; MX=1) X CARR 101 100 99 98 3 2 1 0 BANK 0 BANK 1 BANK 2 Y CARR BANK 7 BANK 8 LR0056 17/79 Circuit description STE2004S Figure 16. Data RAM Byte organization with D0 = 0 MSB 0 LSB BANK BANK BANK BANK BANK BANK BANK BANK BANK 1 2 3 98 99 100 101 0 1 2 3 4 5 6 7 8 LR0057 Figure 17. Data RAM byte organization with D0 = 1 LSB 0 MSB BANK BANK BANK BANK BANK BANK BANK BANK BANK 1 2 3 98 99 100 101 0 1 2 3 4 5 6 7 8 LR0058 18/79 STE2004S Circuit description Figure 18. Memory rows vs. row drivers mapping ICON_MODE=1 and MUX 65 Y Address D3 D2 D1 D0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 Y-CARRIAGE 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 X address 0 D a t a Line Address D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH Page 0 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 00H 01H 02H 03H 04H 05H 06H Scrolling Pointer ROW Output Normal Reverse direction direction R0 R63 R1 R62 R2 R61 R3 R60 R4 R59 R5 R58 R6 R57 R7 R56 R8 R55 R9 R54 R10 R53 R11 R52 R12 R51 R13 R50 R14 R49 R15 R48 R16 R47 R17 R46 R18 R45 R19 R44 R20 R43 R21 R42 R22 R41 R23 R40 R24 R39 R25 R38 R26 R37 R27 R36 R28 R35 R29 R34 R30 R33 R31 R32 R32 R31 R33 R30 R34 R29 R35 R28 R36 R27 R37 R26 R38 R25 R39 R24 R40 R23 R41 R22 R42 R21 R43 R20 R44 R19 R45 R18 R46 R17 R47 R16 R48 R15 R49 R14 R50 R13 R51 R12 R52 R11 R53 R10 R54 R9 R55 R8 R56 R7 R57 R6 R58 R5 R59 R4 R60 R3 R61 R2 R62 R1 R63 R0 R64 R64 5FH 60H 61H 62H 63H 64H 65H lr0268 COL Output Normal Direction Reverse Direction C C O O L L 0 1 C C O O L L 101 100 C O L 2 C O L 99 C O L 3 C O L 98 C O L 4 C O L 97 C O L 5 C O L 96 C O L 6 C O L 95 C O L 95 C O L 6 C O L 96 C O L 5 C O L 97 C O L 4 C O L 98 C O L 3 C O L 99 C O L 2 C O L 100 C O L 1 C O L 101 C O L 0 19/79 Circuit description STE2004S Figure 19. Memory rows vs. row drivers mapping ICON_MODE=0 and MUX 65 Y Address D3 D2 D1 D0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 Y-CARRIAGE 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 X address 0 COL Output 20/79 D a t a Line Address D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH 40H Normal Direction Reverse Direction Page 0 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 00H 01H 02H 03H 04H 05H 06H C C O O L L 0 1 C C O O L L 101 100 C O L 2 C O L 99 C O L 3 C O L 98 C O L 4 C O L 97 C O L 5 C O L 96 C O L 6 C O L 95 Scrolling Pointer ROW Output Normal Reverse direction direction R0 R64 R1 R63 R2 R62 R3 R61 R4 R60 R5 R59 R6 R58 R7 R57 R8 R56 R9 R55 R10 R54 R11 R53 R12 R52 R13 R51 R14 R50 R15 R49 R16 R48 R17 R47 R18 R46 R19 R45 R20 R44 R21 R43 R22 R42 R23 R41 R24 R40 R25 R39 R26 R38 R27 R37 R28 R36 R29 R35 R30 R34 R31 R33 R32 R32 R33 R31 R34 R30 R35 R29 R36 R28 R37 R27 R38 R26 R39 R25 R40 R24 R41 R23 R42 R22 R43 R21 R44 R20 R45 R19 R46 R18 R47 R17 R16 R48 R49 R15 R50 R14 R51 R13 R52 R12 R53 R11 R54 R10 R55 R9 R56 R8 R57 R7 R58 R6 R59 R5 R60 R4 R61 R3 R62 R2 R63 R1 R64 R0 5FH 60H 61H 62H 63H 64H 65H C O L 95 C O L 6 C O L 96 C O L 5 C O L 97 C O L 4 C O L 98 C O L 3 C O L 99 C O L 2 C O L 100 C O L 1 C O L 101 C O L 0 lr0269 STE2004S Circuit description Figure 20. Memory rows vs. Row drivers mapping ICON_MODE=1, Y-Carriage<=6 and MUX 49 Y Address D3 D2 D1 D0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 X address 0 Y-CARRIAGE COL Output D a t a Line Address D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 Normal Direction Reverse Direction 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH Page 0 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 00H 01H 02H 03H 04H 05H 06H C C O O L L 0 1 C C O O L L 101 100 C O L 2 C O L 99 C O L 3 C O L 98 C O L 4 C O L 97 C O L 5 C O L 96 C O L 6 C O L 95 Scrolling Pointer ROW Output Normal Reverse direction direction R0 R55 R1 R54 R2 R53 R3 R52 R4 R51 R5 R50 R6 R49 R7 R48 R8 R47 R9 R46 R10 R45 R11 R44 R12 R43 R13 R42 R14 R41 R15 R40 R16 R39 R17 R38 R18 R37 R19 R36 R20 R35 R21 R34 R22 R33 R23 R32 R23 R32 R22 R33 R21 R34 R20 R35 R19 R36 R18 R37 R17 R38 R16 R39 R15 R40 R14 R41 R13 R42 R12 R43 R11 R44 R10 R45 R9 R46 R8 R47 R7 R48 R6 R49 R5 R50 R4 R51 R3 R52 R2 R53 R1 R54 R0 R55 R56 R56 5FH 60H 61H 62H 63H 64H 65H C O L 95 C O L 6 C O L 96 C O L 5 C O L 97 C O L 4 C O L 98 C O L 3 C O L 99 C O L 2 C O L 100 C O L 1 C O L 101 C O L 0 lr0270 21/79 Circuit description STE2004S Figure 21. Memory rows vs. row drivers ;apping ICON_MODE=0, Y-Carriage<=6 and MUX 49 Y Address D3 D2 D1 D0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 X address 0 Y-CARRIAGE COL Output 22/79 D a t a Line Address D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 Normal Direction Reverse Direction 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH Page 0 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 00H 01H 02H 03H 04H 05H 06H C C O O L L 1 0 C C O O L L 101 100 C O L 2 C O L 99 C O L 3 C O L 98 C O L 4 C O L 97 C O L 5 C O L 96 C O L 6 C O L 95 Scrolling Pointer ROW Output Normal Reverse direction direction R0 R56 R1 R55 R2 R54 R3 R53 R4 R52 R5 R51 R6 R50 R7 R49 R8 R48 R9 R47 R10 R46 R11 R45 R12 R44 R13 R43 R14 R42 R15 R41 R16 R40 R17 R39 R18 R38 R19 R37 R20 R36 R21 R35 R22 R34 R23 R33 R32 R32 R23 R33 R22 R34 R21 R35 R20 R36 R19 R37 R18 R38 R17 R39 R16 R40 R15 R41 R14 R42 R13 R43 R12 R44 R11 R45 R10 R46 R9 R47 R8 R48 R7 R49 R6 R50 R5 R51 R4 R52 R3 R53 R2 R54 R1 R55 R0 R56 5FH 60H 61H 62H 63H 64H 65H C O L 95 C O L 6 C O L 96 C O L 5 C O L 97 C O L 4 C O L 98 C O L 3 C O L 99 C O L 2 C O L 100 C O L 1 C O L 101 C O L 0 lr0271 STE2004S Circuit description Figure 22. Memory rows vs. row drivers mapping ICON_MODE=0, Y-carriage=7, scrolling pointer>07h and MUX 49 Y Address D3 D2 D1 D0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 X address 0 Y-CARRIAGE COL Output D a t a Line Address D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 Normal Direction Reverse Direction 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH Page 0 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 00H 01H 02H 03H 04H 05H 06H C C O O L L 0 1 C C O O L L 101 100 C O L 2 C O L 99 C O L 3 C O L 98 C O L 4 C O L 97 C O L 5 C O L 96 C O L 6 C O L 95 Scrolling Pointer ROW Output Normal Reverse direction direction R0 R56 R1 R55 R2 R54 R3 R53 R4 R52 R5 R51 R6 R50 R7 R49 R8 R48 R9 R47 R10 R46 R11 R45 R12 R44 R13 R43 R14 R42 R15 R41 R16 R40 R17 R39 R18 R38 R19 R37 R20 R36 R21 R35 R22 R34 R23 R33 R32 R32 R23 R33 R22 R34 R21 R35 R20 R36 R19 R37 R18 R38 R17 R39 R16 R40 R15 R41 R14 R42 R13 R43 R12 R44 R11 R45 R10 R46 R9 R47 R8 R48 R7 R49 R6 R50 R5 R51 R4 R52 R3 R53 R2 R54 R1 R55 R0 R56 5FH 60H 61H 62H 63H 64H 65H C O L 95 C O L 6 C O L 96 C O L 5 C O L 97 C O L 4 C O L 98 C O L 3 C C C O O O L L L 99 100 101 C C C O O O L L L 0 2 1 lr0275 23/79 Circuit description STE2004S Figure 23. Memory rows vs. row drivers mapping ICON_MODE=1, Y-Carriage=7, scrolling pointer>07h and MUX 49 Y Address D3 D2 D1 D0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 X address 0 Y-CARRIAGE COL Output 24/79 D a t a Line Address D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 Normal Direction Reverse Direction 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH Page 0 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 00H 01H 02H 03H 04H 05H 06H C C O O L L 0 1 C C O O L L 101 100 C O L 2 C O L 99 C O L 3 C O L 98 C O L 4 C O L 97 C O L 5 C O L 96 C O L 6 C O L 95 Scrolling Pointer ROW Output Normal Reverse direction direction R0 R55 R1 R54 R2 R53 R3 R52 R4 R51 R5 R50 R6 R49 R7 R48 R8 R47 R9 R46 R10 R45 R11 R44 R12 R43 R13 R42 R14 R41 R15 R40 R16 R39 R17 R38 R18 R37 R19 R36 R20 R35 R21 R34 R22 R33 R23 R32 R23 R32 R22 R33 R21 R34 R20 R35 R19 R36 R18 R37 R17 R38 R16 R39 R15 R40 R14 R41 R13 R42 R12 R43 R11 R44 R10 R45 R9 R46 R8 R47 R7 R48 R6 R49 R5 R50 R4 R51 R3 R52 R2 R53 R1 R54 R0 R55 R56 R56 5FH 60H 61H 62H 63H 64H 65H C O L 95 C O L 6 C O L 96 C O L 5 C O L 97 C O L 4 C O L 98 C O L 3 C C C O O O L L L 99 100 101 C C C O O O L L L 0 2 1 lr0276 STE2004S Circuit description Figure 24. Memory rows vs. row drivers mapping ICON_MODE=1, Y-carriage=8, Scrolling pointer<10h and MUX 49 Y Address D3 D2 D1 D0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 X address 0 Y-CARRIAGE COL Output D a t a Line Address D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 Normal Direction Reverse Direction 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH Page 0 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 00H 01H 02H 03H 04H 05H 06H C C O O L L 0 1 C C O O L L 101 100 C O L 2 C O L 99 C O L 3 C O L 98 C O L 4 C O L 97 C O L 5 C O L 96 C O L 6 C O L 95 Scrolling Pointer ROW Output Normal Reverse direction direction R0 R55 R1 R54 R2 R53 R3 R52 R4 R51 R5 R50 R6 R49 R7 R48 R8 R47 R9 R46 R10 R45 R11 R44 R12 R43 R13 R42 R14 R41 R15 R40 R16 R39 R17 R38 R18 R37 R19 R36 R20 R35 R21 R34 R22 R33 R23 R32 R23 R32 R22 R33 R21 R34 R20 R35 R19 R36 R18 R37 R17 R38 R16 R39 R15 R40 R14 R41 R13 R42 R12 R43 R11 R44 R10 R45 R9 R46 R8 R47 R7 R48 R6 R49 R5 R50 R4 R51 R3 R52 R2 R53 R1 R54 R0 R55 R56 R56 5FH 60H 61H 62H 63H 64H 65H C O L 95 C O L 6 C O L 96 C O L 5 C O L 97 C O L 4 C O L 98 C O L 3 C C C O O O L L L 99 100 101 C C C O O O L L L 0 2 1 LR0273 25/79 Circuit description STE2004S Figure 25. Memory rows vs. row drivers mapping ICON_MODE=0, Y-carriage=8, Scrolling pointer<10h and MUX 49 Y Address D3 D2 D1 D0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 X address 0 Y-CARRIAGE COL Output 26/79 D a t a Line Address D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 Normal Direction Reverse Direction 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH Page 0 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 00H 01H 02H 03H 04H 05H 06H C C O O L L 0 1 C C O O L L 101 100 C O L 2 C O L 99 C O L 3 C O L 98 C O L 4 C O L 97 C O L 5 C O L 96 C O L 6 C O L 95 Scrolling Pointer ROW Output Normal Reverse direction direction R0 R56 R1 R55 R2 R54 R3 R53 R4 R52 R5 R51 R6 R50 R7 R49 R8 R48 R9 R47 R10 R46 R11 R45 R12 R44 R13 R43 R14 R42 R15 R41 R16 R40 R17 R39 R18 R38 R19 R37 R20 R36 R21 R35 R22 R34 R23 R33 R32 R32 R23 R33 R22 R34 R21 R35 R20 R36 R19 R37 R18 R38 R17 R39 R16 R40 R15 R41 R14 R42 R13 R43 R12 R44 R11 R45 R10 R46 R9 R47 R8 R48 R7 R49 R6 R50 R5 R51 R4 R52 R3 R53 R2 R54 R1 R55 R0 R56 5FH 60H 61H 62H 63H 64H 65H C O L 95 C O L 6 C O L 96 C O L 5 C O L 97 C O L 4 C O L 98 C O L 3 C C C O O O L L L 99 100 101 C C C O O O L L L 0 2 1 LR0274 STE2004S Circuit description Figure 26. Memory rows vs. row drivers mapping ICON_MODE=1, Y-carriage<=4 and MUX33 Y Address D3 D2 D1 D0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 X address 0 Y-CARRIAGE COL Output D a t a Line Address D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 Normal Direction Reverse Direction 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH Page 0 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 00H 01H 02H 03H 04H 05H 06H C C O O L L 0 1 C C O O L L 101 100 C O L 2 C O L 99 C O L 3 C O L 98 C O L 4 C O L 97 C O L 5 C O L 96 C O L 6 C O L 95 Scrolling Pointer ROW Output Normal Reverse direction direction R0 R47 R1 R46 R2 R45 R3 R44 R4 R43 R5 R42 R6 R41 R7 R40 R8 R39 R9 R38 R10 R37 R11 R36 R12 R35 R13 R34 R14 R33 R15 R32 R15 R32 R14 R33 R13 R34 R12 R35 R11 R36 R10 R37 R9 R38 R8 R39 R7 R40 R6 R41 R5 R42 R4 R43 R3 R44 R2 R45 R1 R46 R0 R47 R48 R48 5FH 60H 61H 62H 63H 64H 65H C O L 95 C O L 6 C O L 96 C O L 5 C O L 97 C O L 4 C O L 98 C O L 3 C C C O O O L L L 99 100 101 C C C O O O L L L 0 2 1 LR0272 27/79 Circuit description STE2004S Figure 27. Memory rows vs. row drivers mapping ICON_MODE=0, Y-carriage<=4 and MUX 33 Y Address D3 D2 D1 D0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 X address 0 Y-CARRIAGE COL Output 28/79 D a t a Line Address D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 Normal Direction Reverse Direction 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH Page 0 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 00H 01H 02H 03H 04H 05H 06H C C O O L L 0 1 C C O O L L 101 100 C O L 2 C O L 99 C O L 3 C O L 98 C O L 4 C O L 97 C O L 5 C O L 96 C O L 6 C O L 95 Scrolling Pointer ROW Output Normal Reverse direction direction R0 R48 R1 R47 R2 R46 R3 R45 R4 R44 R5 R43 R6 R42 R7 R41 R8 R40 R9 R39 R10 R38 R11 R37 R12 R36 R13 R35 R14 R34 R15 R33 R32 R32 R15 R33 R14 R34 R13 R35 R12 R36 R11 R37 R10 R38 R9 R39 R8 R40 R7 R41 R6 R42 R5 R43 R4 R44 R3 R45 R2 R46 R1 R47 R0 R48 5FH 60H 61H 62H 63H 64H 65H C O L 95 C O L 6 C O L 96 C O L 5 C O L 97 C O L 4 C O L 98 C O L 3 C C C O O O L L L 99 100 101 C C C O O O L L L 0 2 1 LR0272 STE2004S Circuit description Figure 28. Row drivers vs. LCD panel interconnection in MUX65 mode ICON MUX 65 COLUMN DRIVERS ROW DRIVERS R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 STE2004S R 0 R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 ROW DRIVERS LR0109 Figure 29. Row drivers vs. LCD panel interconnection in MUX49 mode ICON MUX 49 COLUMN DRIVERS ROW DRIVERS R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 STE2004S R 0 R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 ROW DRIVERS LR0108 29/79 Circuit description STE2004S Figure 30. Row drivers vs. LCD panel interconnection in MUX33 mode ICON MUX 33 COLUMN DRIVERS ROW DRIVERS 30/79 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 STE2004S R 0 R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 ROW DRIVERS LR0107 STE2004S 4 Bus interfaces Bus interfaces To provide the widest flexibility and ease of use the STE2004S features six different methods for interfacing the host controller. To select the desired interface the SEL1, SEL2 and SEL3 pads need to be connected to a logic LOW (connect to GND) or a logic HIGH (connect to VDD). All the I/O pins of the unused interfaces must be connected to GND. All interfaces work while the STE2004S is in power down. Table 7. Bus interfaces 4.1 SEL3 SEL2 SEL1 Interface Note 0 0 0 I2C 0 0 1 SPI 4 lines 8 bit Read and write 0 1 0 SPI 3 lines 8 bit Read and write 0 1 1 Serial 3 lines 9 bit Read and write 1 0 0 Parallel 8080-series Read and write 1 0 1 Parallel 68000-series Read and write Read and write; fast and high speed mode I2C Interface The I2C interface is a fully complying I2C bus specification, selectable to work in both Fast (400kHz Clock) and High Speed Mode (3.4MHz). This bus is intended for communication between different LCs. It consists of two lines: one bi-directional for data signals (SDA) and one for clock signals (SCL). Both the SDA and SCL lines must be connected to a positive supply voltage via an active or passive pull-up. The following protocol has been defined: – Data transfer may be initiated only when the bus is not busy. – During data transfer, the data line must remain stable whenever the clock line is high. Changes in the data line while the clock line is high are interpreted as control signals. Accordingly, the following bus conditions have been defined: BUS not busy: Both data and clock lines remain High. Start Data Transfer: A change in the state of the data line, from High to Low, while the clock is High, define the START condition. Stop Data Transfer: A Change in the state of the data line, from low to High, while the clock signal is High, defines the STOP condition. Data Valid: The state of the data line represents valid data when after a start condition, the data line is stable for the duration of the High period of the clock signal. The data on the line may be changed during the Low period of the clock signal. There is one clock pulse per bit of data. Each data transfer is initiated with a start condition and terminated with a stop condition. The number of data bytes transferred between the start and the stop conditions is not 31/79 Bus interfaces STE2004S limited. The information is transmitted byte-wide and each receiver acknowledges with the ninth bit. By definition, a device that gives out a message is called "transmitter", the receiving device that gets the signals is called "receiver". The device that controls the message is called "master". The devices that are controlled by the master are called "slaves" Acknowledge. Each byte of eight bits is followed by one acknowledge bit. This acknowledge bit is a low level put on the bus by the receiver, whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also, a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA_IN line during the acknowledge clock pulse. Of course, setup and hold time must be taken into account. A master receiver must signal an end-of-data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this case, the transmitter must leave the data line High to enable the master to generate the STOP condition. Connecting SDA_IN and SDA_OUT together the SDA line become the standard data line. Having the acknowledge output (SDAOUT) separated from the serial data line is advantageous in Chip-On-Glass (COG) applications. In COG applications where the track resistance from the SDAOUT pad to the system SDA line can be significant, a potential divider is generated by the bus pull-up resistor and the Indium Tin Oxide (ITO) track resistance. It is possible that during the acknowledge cycle the STE2004S will not be able to create a valid logic 0 level. By splitting the SDA input from the output the device could be used in a mode that ignores the acknowledge bit. In COG applications where the acknowledge cycle is required, it is necessary to minimize the track resistance from the SDACK pad to the system SDA line to guarantee a valid LOW level. To be compliant with the I2C-bus Hs-mode specification the STE2004S is able to detect the special sequence "S00001xxx". After this sequence no acknowledge pulse is generated. Since no internal modification are applied to work in Hs-mode, the device is able to work in Hs-mode without detecting the master code. Figure 31. Bit transfer and start,stop conditions definition DATA LINE STABLE DATA VALID CLOCK DATA START CONDITION 32/79 CHANGE OF DATA ALLOWED STOP CONDITION LR0069 STE2004S Bus interfaces Figure 32. Acknowledgment on the I2C-bus CLOCK PULSE FOR ACKNOWLEDGEMENT START SCLK FROM MASTER 1 DATA OUTPUT BY TRANSMITTER MSB 2 8 9 LSB DATA OUTPUT BY RECEIVER LR0070 4.1.1 Communication protocol The STE2004S is an I2C slave. The access to the device is bi-directional as data write and status read are allowed. The STE2004S has four device addresses. All have the first 5 bits (01111) in common. The two least significant bit of the slave address are set by connecting the SA0 and SA1 inputs to a logic 0 or logic 1. To start the communication between the bus master and the slave LCD driver, the master must initiate a START condition. Following this, the master sends an 8-bit byte, on the SDA bus line (most significant bit first). This consists of the 7-bit device select code, and the 1-bit read/write designator (R/W). All slaves with the corresponding address acknowledge in parallel, while the rest ignore the I2C-bus transfer. Writing mode When the R/W bit is set to logic 0, the STE2004S is set to be a receiver. After the slaves acknowledge, one or more command word follows to define the status of the device. A command word is composed of three bytes. The first is a control byte which defines the Co and D/C values, the second and third are data bytes. The Co bit is the command MSB and defines whether this command is followed by two data bytes and and another command word, or if a stream of data follows (Co = 1 Command word, Co = 0 Stream of data). The D/C bit defines whether the data byte is a command or RAM data (D/C = 1 RAM Data, D/C = 0 Command). If Co =1 and D/C = 0, the incoming data byte is decoded as a command, and if Co =1 and D/C =1, the following data byte is stored in the data RAM at the location specified by the data pointer. Every byte of a command word must be acknowledged by all addressed units. After the last control byte, if D/C is set to a logic 1, the incoming data bytes are stored inside the STE2004S display RAM starting at the address specified by the data pointer. The data pointer is automatically updated after every byte written and in the end points to the last RAM location written. Every byte must be acknowledged by all addressed units. 33/79 Bus interfaces STE2004S Reading mode If the R/W bit is set to logic 1 the chip outputs data immediately after the slave address. If the D/C bit during the last write access is set to a logic 0, the byte read is the status byte. Figure 33. Communication protocol WRITE MODE DRIVER ACK DRIVER ACK S S S 0 1 1 1 1 A A 0 A 1 DC Control Byte A 1 0 R/W Co SLAVE ADDRESS DRIVER ACK DATA Byte A 0 DC Control Byte A Co COMMAND WORD DRIVER ACK LAST CONTROL BYTE DRIVER ACK DATA Byte A P N> 0 BYTE MSB........LSB READ MODE DRIVER ACK S S S 0 1 1 1 1 A A 1 A 1 0 R/W 4.2 MASTER ACK P S S R 0 1 1 1 1 A A / 1 0 W DRIVER SLAVE ADDRESS H H H C D 0 0 0 A E [1] [0] o C CONTROL BYTE LR0008 Serial interfaces STE2004S can feature three different serial synchronized interfaces with the host controller. It is possible to select a 3-lines SPI, a 4-lines SPI or 3-line 9 bits serial interface. 4.2.1 4-lines SPI interface The STE2004S 4-lines serial interface is a bidirectional link between the display driver and the application supervisor. It consists of four lines: one/two for data signals (SDIN, SOUT), one for clock signals (SCLK), one for the peripheral enable (CS) and one for mode selection (SD/C). The serial interface is active only if the CS line is set to a logic 0. When CS line is high the serial peripheral power consumption is zero. While CS pin is high the serial interface is kept in reset. The STE2004S is always a slave on the bus and receives the communication clock on the SCLK pin from the master. Information is exchanged byte-wide. During data transfer, the data line is sampled on the positive SCLK edge. SD/C line status indicates whether the byte is a command (SD/C =0) or a data (SD/C =1); SD/C line is read on the eighth SCLK clock pulse during every byte transfer. If CS stays low after the last bit of a command/data byte, the serial interface expects the MSB of the next byte at the next SCLK positive edge. A reset pulse on RES pin interrupts the transmission. No data is written into the data RAM and all the internal registers are cleared. If CS is low after the positive edge of RES, the serial interface is ready to receive data. Throughout SDOUT, the driver I2C slave address or the status byte can be read. The command sequence to read the I2C slave address or the status byte is shown in Figure 34., Figure 35., 34/79 STE2004S Bus interfaces Figure 36.. SDOUT is in high impedance in steady state and during data write. It is possible to short circuit SDOUT and SDIN and read the I2C address or status byte without any additional lines. Figure 34. 4-lines serial bus protocol - one byte transmission CS D/C SCLK MSB SDIN LSB LR0071 Figure 35. 4-lines serial bus protocol - several byte transmission CS D/C SCLK DB7 SDIN DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5 LR0072 Figure 36. 4-lines serial bus protocol - I2C address or status byte read CS SCLK SDIN DB7 DB6 DB5 Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care High-Z DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 High-Z High-Z DB7 DB6 DB5 DB2 DB1 DB0 High-Z DB4 DB3 DB2 DB1 DB0 D/C ID Number SDOUT DB4 DB3 STATUS BYTE Command Write DATA Read LR00076 35/79 Bus interfaces Figure 37. STE2004S 4-lines SPI reading sequence READING SEQUENCE Write a "00000000" Instruction SDOUT Buffer becomes active (Low Impedence) Source 8 pulses on SCLK and 1 Read the ID Number or the Status Byte On SDOUT SDOUT Buffer Configured in High Impedence END OF READING SEQUENCE note: 1) these data are not read by the display Diver 2) SDIN and SDOUT can be short circuited if the processor can configure serial output buffers in high impedence during data read. LR0078 4.2.2 3-lines SPI interface The STE2004S 3-lines serial interface is a bidirectional link between the display driver and the application supervisor. It consists of three lines: one/two for data signals (SDIN,SDOUT), one for clock signals (SCLK) and one for peripheral enable (CS). If the R/W bit is set to logic 0 the STE2004S is set to be a receiver. One or more command words follow to define the status of the device. A command word is composed by two bytes. The first is a control byte which defines Co, D/C, R/W H[1;0] and HE values, the second is a data byte (Figure 38.). The Co bit is the command MSB and defines whether the command is followed by one data byte and an other command word, or if it is followed by a stream of commands, or a steam of DDRAM data (Co = 1 Command word, Co = 0 Stream of data). The D/C bit defines whether the data byte is a command or DDRAM data (D/C = 1 RAM Data, D/C = 0 Command). The H[1;0] bits define the instruction Set Page if HE bit =1. If HE bit is set to 0, H[1;0] values are neglected and it is possible to update the instruction set page number using only the related instruction in the instruction set. If Co =1 and D/C = 0, the incoming data byte is decoded as a command, and if Co =1 and D/C =1, the following data byte is stored in the data RAM at the location specified by the data pointer. After the last control byte, if D/C is set to a logic 1, the incoming data bytes are stored inside the STE2004S display data RAM starting at the address specified by the data pointer. The data pointer is automatically updated after every byte written and in the end points to the last RAM location written. 36/79 STE2004S Bus interfaces Throughout SDOUT can be read the driver I2C slave address or the status byte. The command sequence that allows to read I2C slave address or the status byte is shown in Figure 39. and Figure 40.. If the R bit is set to logic 0 and D/C=0, the I2C slave address is read. If the R bit is set to logic 1 and D/C=0, the the I2C slave address is read. SDOUT is in high impedance in steady state and during data write. It is possible to short circuit SDOUT and SDIN and read the I2C address or status byte without any additional line. Figure 38. 3-lines serial interface protocol in writing mode WRITE MODE 1 Control Byte Co 0 DATA Byte Control Byte Co LAST CONTROL BYTE COMMAND WORD R H H H C D / 0 0 E [1] [0] o CW DATA Byte CONTROL BYTE N> 0 BYTE MSB........LSB Control Byte 0 0 DATA Byte LAST CONTROL BYTE TRANSFERRED ONLY COMMANDS DATA Byte DATA Byte = Command N> 0 BYTE MSB........LSB if D/C=0 DATA Byte = DDRAM Data if D/C=1 Control Byte 0 1 DATA Byte LAST CONTROL BYTE TRANSFERRED ONLY DDRAM DATA DATA Byte N> 0 BYTE MSB........LSB LR0002 Figure 39. 3-lines SPI interface protocol in reading mode CS SCLK SDIN DB7 Co=1 DB6 DB5 D/C=0 R/W=1 "Command" "Read" DB4 DB3 DB2 High-Z DB1 DB0 Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 High-Z DB2 DB1 DB0 High-Z ID-Number SDOUT High-Z DB7 DB6 DB5 DB4 DB3 STATUS BYTE Command Write DATA Read LR0077 37/79 Bus interfaces Figure 40. STE2004S 3-lines SPI reading sequence READING SEQUENCE Set Co bit =1, D/C Bit =0 R/W Bit =1 SDOUT Buffer become active (Low Impedence) Source 8 pulses on SCLK and 1 Read the ID-Number or the Status Byte On SDOUT SDOUT Buffer Configured in High Impedence END OF READING SEQUENCE note: 1) these data are not read by the display Diver 2) SDIN and SDOUT can be short circuited if the processor can configure serial output buffers in high impedence during data read. LR0079 4.2.3 3-lines 9 bits serial interface The STE2004S 3-lines serial interface is a bidirectional link between the display driver and the application supervisor. It consists of three lines: one/two for data signals (SDIN, SDOUT), one for clock signals (SCLK) and one for peripheral enable (CS). The serial interface is active only if the CS line is set to a logic 0. When CS line is high the serial peripheral power consumption is zero. While CS pin is high the serial interface is kept in reset. The STE2004S is always a slave on the bus and receives the communication clock on the SCLK pin from the master. Information is exchanged word-wide. The word is composed of 9 bits. The first bit is named SD/C and indicates whether the following byte is a command (SD/C =0) or data byte (SD/C =1). During data transfer, the data line is sampled on the positive SCLK edge. If CS stays low after the last bit of a command/data byte, the serial interface expects the SD/C bit of the next word at the next SCLK positive edge. A reset pulse on RES pin interrupts the transmission. No data is written into the data RAM and all the internal registers are cleared. If CS is low after the positive edge of RES, the serial interface is ready to receive data. Throughout SDOUT, only the driver I2C slave address or the status byte can be read. The command sequence that the I2C slave address or status byte to be read is shown in Figure 43. and Figure 44.. SDOUT is in high impedance in steady state and during data write. 38/79 STE2004S Bus interfaces It is possible to short circuit SDOUT and SDIN, and read the I2C address or status byte without any additional line. Figure 41. 3-lines serial bus protocol - one byte transmission CS SCLK SDIN SD/C MSB LSB LR0073 Figure 42. 3-lines serial bus protocol - several byte transmission CS SCLK SDIN D/C DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 D/C DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 D/C DB7 DB6 LR0074 Figure 43. 3-lines serial interface protocol in Reading Mode CS SCLK SDIN SD/C DB7 DB6 DB5 DB4 DB3 High-Z DB2 DB1 DB0 Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 High-Z DB2 DB1 DB0 High-Z ID-Number SDOUT High-Z DB7 DB6 DB5 DB4 DB3 STATUS BYTE Command Write DATA Read LR0075 39/79 Bus interfaces STE2004S Figure 44. 3-lines serial reading sequence READING SEQUENCE Write a "00000000" Instruction SDOUT Buffer becomes active (Low Impedence) Source 9 pulses on SCLK and 1 Read the ID Number or the Status Byte On SDOUT SDOUT Buffer Configured in High Impedence END OF READING SEQUENCE note: 1) these data are not read by the display Diver 2) SDIN and SDOUT can be short circuited if the processor can configure serial output buffers in high impedence during data read. LR0080 4.3 Parallel interface The STE2004S selectable parallel interfaces are 68000-series and 8080-series. They are both an 8-bits bi-directional link between the display driver and the application supervisor. Both parallel interfaces can be read the I2C driver slave address or the status byte. 4.3.1 68000-series parallel interface If CS is low after the positive edge of RES, the 68000 parallel interface is ready to receive or transmit data. While CS pin is high the 68000 parallel interface is kept in reset. Write mode If R/W line is set to 0, data is latched on the E falling edge. Read mode When R/W line is set to 1, data is output on the D0-D7 bus on the E rising edge. The data bus is set in high impedance mode when E is set to logic 0. The I2C address or status byte is output on D0-D7 bus, according to R bit value. 40/79 STE2004S Bus interfaces Figure 45. 68000-series parallel interface protocol - one byte transmission CS R/W D/C E D0 to D7 LR0004 Figure 46. 68000-series parallel interface bus protocol - several bytes transmission CS R/W D/C E D0 to D7 LR0081 Figure 47. 68000-series parallel interface protocol in reading mode CS D/C R/W E D0 to D7 LR0082 41/79 Bus interfaces STE2004S Figure 48. 68000-series parallel interface protocol in reading mode (several bytes) CS D/C R/W E D0 to D7 Note 1) Data Bus is configured in high impedence mode after evry RD rising edge 2) Always the same data is output on D0-D7 4.3.2 LR0046 8080-series parallel interface If CS is low after the positive edge of RES, the 8080 parallel interface is ready to receive or transmit data. While CS pin is high the 8080 parallel interface is kept in reset. Write mode Data are latched on WR rising edge. Read mode Data is output on the D0-D7 bus on the RD rising edge. The data bus is set in high impedance mode when RD is set to logic 1. The I2C address or status byte is output on D0-D7 bus, accordingly to R bit value. Figure 49. 8080-series parallel bus protocol - one byte transmission CS D/C RD WR D0 to D7 LR0083 42/79 STE2004S Bus interfaces Figure 50. 8080-series parallel bus protocol - several bytes transmission CS D/C RD WR D0 to D7 LR0084 Figure 51. 8080-series parallel interface protocol in reading mode CS D/C RD WR D0 to D7 LR0085 Figure 52. 8080-series parallel interface protocol in reading mode (several bytes) CS D/C RD WR D0 to D7 LR0045 Note 1) Data Bus is configured in high impedence mode after every RD rising edge 2) Always the same data is output on D0-D7 43/79 Instruction set 5 STE2004S Instruction set Two different instructions formats are provided: – With D/C set to LOW : commands are sent to the control circuitry. – With D/C set to HIGH : the data RAM is addressed. Two different instruction sets are embedded: the STE2001-like instruction set and the extended instruction set. To select the STE2001-like instruction set, the EXT pad must be connected to a logic LOW (connect to GND). To select the extended instruction set, the EXT pad must be connected to a logic HIGH (connect to VDD1). The instruction syntax is summarized in Table 8. (basic-set) and Table 9. (extended set). Table 8. STE2001/2-like instruction set Instruction D/C R/W B7 B6 B5 B4 B3 B2 B1 B0 Description 0 Read I2C address or status byte (with 3-lines serial and 4-lines SPI only) H=0 or H=1 Read command 0 0 0 0 0 0 0 0 0 Function set 0 0 0 0 1 MX MY PD V Status byte 0 1 PD BSY 0 D E MX MY DO ID code 0 1 0 0 1 1 1 1 ID1 ID0 Write data 1 0 D7 D6 D5 D4 D3 D2 D1 D0 Writes data to RAM Memory blank 0 0 0 0 0 0 0 0 0 1 Starts memory blank procedure Scroll 0 0 0 0 0 0 0 0 1 DIR Scrolls by one row up or down VLCD range setting 0 0 0 0 0 0 0 1 0 Display control 0 0 0 0 0 0 1 D 0 E Select display configuration Set CP factor 0 0 0 0 0 1 0 S2 S1 S0 Charge pump multiplication factor Set RAM Y 0 0 0 1 0 0 Y3 Y2 Y1 Y0 Set horizontal (Y) RAM address Set RAM X 0 0 1 X6 X5 X4 X3 X2 X1 X0 Set vertical (X) RAM address Power down H[0] management; entry mode; (I2C interface only) H=0 44/79 PRS[ VLDC programming 0] range selection STE2004S Instruction set Table 8. STE2001/2-like instruction set Instruction D/C R/W B7 B6 B5 B4 B3 B2 B1 B0 Description Checker board 0 0 0 0 0 0 0 0 0 1 Duty 0 0 0 0 0 0 0 0 1 TC select 0 0 0 0 0 0 0 1 TC1 TC0 Data order 0 0 0 0 0 0 1 DO 0 0 Bias ratios 0 0 0 0 0 1 0 BS2 BS1 Reserved 0 0 0 1 X X X X X X Set VOP 0 0 1 OP6 OP5 OP4 OP3 OP2 OP1 OP0 B6 B5 B4 B3 B2 B1 B0 Description 0 Read I2C address or status byte (with 3-lines serial and 4-lines SPI only) H=1 Starts checker board procedure MUX Selects duty factor Set temperature coefficient for VLDC BS0 Set desired bias ratios Not to be used VOP register write instruction Table 9. Extended instruction set Instruction D/C R/W B7 H independent instructions Read command 0 0 0 0 0 0 0 0 0 0 0 0 0 1 MX MY PD H[1] Page selector, power H[0] down management; entry mode Status byte 0 1 PD BSY 0 D E MX MY DO ID code 0 1 0 0 1 1 1 1 ID1 ID0 Write data 1 0 D7 D6 D5 D4 D3 D2 D1 D0 Writes data to RAM H=[0;0] RAM commands Memory blank 0 0 0 0 0 0 0 0 0 1 Starts memory blank procedure Scroll 0 0 0 0 0 0 0 0 1 DIR Scrolls by one row up or down VLCD range setting 0 0 0 0 0 0 0 1 Display control 0 0 0 0 0 0 1 D 0 E Select display configuration Set CP factor 0 0 0 0 0 1 0 S2 S1 S0 Charge pump multiplication factor Set RAM Y 0 0 0 1 0 0 Y3 Y2 Y1 Y0 Set horizontal (Y) RAM address Set RAM X 0 0 1 X6 X5 X4 X3 X2 X1 X0 Set vertical (X) RAM address PRS[ PRS[ VLDC programming 1] 0] range selection 45/79 Instruction set STE2004S Table 9. Extended instruction set Instruction D/C R/W B7 B6 B5 B4 B3 B2 B1 B0 Description 0 0 0 0 0 0 0 0 0 1 Starts checker board procedure 0 0 0 0 0 0 0 0 1 V Vertical addressing mode TC select 0 0 0 0 0 0 0 1 TC1 TC0 Set temperature coefficient for VLDC Data order 0 0 0 0 0 0 1 DO 0 0 Bias ratios 0 0 0 0 0 1 0 BS2 BS1 Read mode, 0 0 0 1 0 0 R 0 0 0 Set VOP 0 0 1 OP6 OP5 OP4 OP3 OP2 OP1 OP0 Driver control 0 0 0 0 0 0 0 0 0 1 Software reset Display control 0 0 0 0 0 0 0 0 1 PE Partial enable 0 0 0 0 0 0 0 1 FR1 FR0 Frame rate control 0 0 0 0 0 0 1 0 M[1] M[0] MUX ratio 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 Scrolling pointer reset 0 0 0 0 0 0 0 0 1 X Not used 0 0 0 0 0 0 0 1 X X Not used 0 0 0 0 0 0 1 T2 T1 T0 Set temperature coefficient for VLDC 0 0 0 0 0 1 NW3 NW2 NW1 NW0 N-Line inversion 0 0 0 1 0 0 YC-3 YC-2 YC-1 YC-0 Y carriage return 0 0 1 H=[0;1] Checker board MSB position BS0 Set desired bias ratios VOP register write instruction H=[1;0] Partial mode PDC2 PDC1 PDC0 Partial display config PDY5 PDY4 PDY3 PDY2 PDY1 PDY0 1st Sector start address PDY6 PDY5 PDY4 PDY3 PDY2 PDY1 PDY0 2nd Sector start address H=[1;1] 46/79 XC-6 XC-5 XC-4 XC-3 XC-2 XC-1 XC-0 X carriage return STE2004S Instruction set Table 10. Explanations of Table 8 and Table 9 symbols Bit 0 1 Reset state DIR Scroll by one down Scroll by one up H[0] Select page 0 Select page 1 0 PD Device fully working Device in power down 1 V Horizontal addressing Vertical addressing 0 MX Normal X axis addressing X axis address is mirrored. 0 MY Image is displayed not vertically mirrored Image is displayed vertically mirrored 0 DO MSB on TOP MSB on BOTTOM 0 PE Partial Display disabled Partial Display enabled 0 MUX MUX 65 mode MUX 33 mode 0 R Read ID-Number / I2C address Read status byte 0 Table 11. Page selection H[1] H[0] Description 0 0 Page 0 0 1 Page 1 1 0 Page 2 1 1 Page 3 Reset state Page 0 Table 12. Display mode D E Description Reset state 0 0 Display blank 0 1 Qll display segments on E=0 1 0 Normal mode D=0 1 1 Inverse video mode Table 13. Frame rate control FR[1] FR[0] Description 0 0 65Hz 0 1 70Hz 1 0 75Hz 1 1 80Hz Reset state 75Hz 47/79 Instruction set STE2004S Table 14. Vlcd range selection PRS[1] PRS[0] Description 0 0 0 1 6.78 1 0 10.62 1 1 10.62 Reset state 2.94 Table 15. Multiplexing ratio M[1] M[0] Description 0 0 49 0 1 65 1 0 33 1 1 Not Allowed Reset state 01 Table 16. Temperature coefficient (T0, T1, T2) T2 T1 T0 Description 0 0 0 VLCD temperature coefficient 0 0 0 1 VLCD temperature coefficient 1 0 1 0 VLCD temperature coefficient 2 0 1 1 VLCD temperature coefficient 3 1 0 0 VLCD temperature coefficient 4 1 0 1 VLCD temperature coefficient 5 1 1 0 VLCD temperature coefficient 6 1 1 1 VLCD temperature coefficient 7 Reset state 000 Table 17. Temperature coefficient (TC0, TC1) 48/79 TC1 TC0 Description 0 0 VLCD temperature coefficient 0 0 1 VLCD temperature coefficient 2 0 1 VLCD temperature coefficient 3 1 1 VLCD temperature coefficient 6 Reset state 00 STE2004S Instruction set Table 18. Charge pump multiplication factor CP2 CP1 CP0 Description 0 0 0 Multiplication factor X2 0 0 1 Multiplication factor X3 0 1 0 Multiplication factor X4 0 1 1 Multiplication factor X5 1 0 0 Not used 1 0 1 Not used 1 1 0 Not used 1 1 1 Automatic Reset state 000 Table 19. Bias ratio BS2 BS1 BS0 Description 0 0 0 Bias ratio equal to 7 0 0 1 Bias ratio equal to 6 0 1 0 Bias ratio equal to 5 0 1 1 Bias ratio equal to 4 1 0 0 Bias ratio equal to 3 1 0 1 Bias ratio equal to 2 1 1 0 Bias ratio equal to 1 1 1 1 Bias ratio equal to 0 Reset state 000 Table 20. Y Carriage return register Y-C[3] Y-C[2] Y-C[1] Y-C[0] Description 0 0 0 0 Y-CARRIAGE =0 0 0 0 1 Y-CARRIAGE =1 0 0 1 0 Y-CARRIAGE =2 0 0 1 1 Y-CARRIAGE =3 0 1 0 0 Y-CARRIAGE =4 . . . . 0 1 1 0 Y-CARRIAGE =6 0 1 1 1 Y-CARRIAGE =7 1 0 0 0 Y-CARRIAGE =8 Reset state 1000 49/79 Instruction set STE2004S Table 21. Partial display configuration PD2 PD1 PD0 Section 1 Section 2 0 0 0 0 8 + Icon row 0 0 1 8 0 + Icon row 0 1 0 8 8 + Icon row 0 1 1 0 16 + Icon row 1 0 0 16 0 + Icon row 1 0 1 8 16 + Icon row 1 1 0 16 8 + Icon row 1 1 1 16 16 + Icon row Reset state 000 Table 22. N-Line inversion 5.1 NW3 NW2 NW1 NW0 Description 0 0 0 0 0-Line inversion (Frame inversion) 0 0 0 1 2-Line inversion 0 0 1 0 3-Line inversion 0 0 1 1 4-Line inversion : : : : : 1 1 1 0 15-Line inversion 1 1 1 1 16-Line inversion Reset state 0000 Reset (RES) At power-on, all internal registers are configured with the default value. The RAM content is not defined. A reset pulse on the RES pad (active low) re-initializes the internal registers content see Table 10. All on-going communication with the host controller is interrupted if a reset pulse is applied. After the power-on, the software reset instruction can be used to reload the reset configuration into the internal registers. The default configuration is: – Horizontal addressing (V = 0) – Multiplexing ratio (M[1:0]=0 - MUX 65) – Normal instruction set (H[1:0] = 0) – Frame rate (FR[1:0]=”75Hz”) – Normal display (MX = MY = 0) – Power down (PD = 1) – Display blank (E = D = 0) – Dual partial display disabled (PE=0) – Address counter X[6: 0] = 0 and Y[4: 0] = 0 – VOP=0 – Temperature coefficient (TC[1: 0] = 0) – Y-CARRIAGE=8 – Bias system (BS[2: 0] = 0) – X-CARRIAGE=101 A memory blank instruction can be used to clear the DDRAM content. 50/79 STE2004S 5.2 Instruction set Power down (PD = 1) At power down, all LCD outputs are kept at VSS (display off). Bias generator and VLCD generator are off (VLCDOUT output is discharged to VSS, and then VLCDOUT can be disconnected). The internal oscillator is in off state. An external clock can be provided. The RAM contents is not cleared. 5.3 Memory blanking procedure This instruction fills the memory with "blank" patterns, in order to delete patterns randomly generated in memory when starting up the device. It substitutes (102X8) single "write" instructions. The procedure can only be programmed if: PD bit = 0 No instruction can be programmed for a period equivalent to 102X8 internal write cycles (102X8X1/fclock). The start of the memory blanking procedure is between one and two fclock cycles from the last active edge (E falling edge for the parallel interface, last SCLK rising edge for the serial and SPI interfaces, last SCL rising edge for the I2C interface). 5.4 Checker board procedure This instruction fills the memory with "checker-board" pattern, allowing developers to create a complex module test configuration using one instruction. It can only be programmed if: PD bit = 0 No instruction can be programmed for a period equivalent to 102X8 internal write cycles (102X8X1/fclock). The start of checker-board procedure is between one and two fclock cycles from the last active edge (E falling edge for the parallel interface, last SCLK rising edge for the serial and SPI interfaces, last SCL rising edge for the I2C interface). 5.5 Scrolling function The STE2004S can scroll the graphics display in units of raster-rows. The scrolling function changes the correspondence between the rows of the logical memory map and the output row drivers. The scroll function does not affect the data ram contentm it is only related to the visualization process. The information output on the drivers is related to the row reading sequence (the 1st row read is output on R0, the 2nd on R1 and so on). Scrolling means reading the matrix starting from a row that is sequentially increased or decreased. After every scrolling command the offset between the memory address and the memory scanning pointer is increased or decreased by one. The offset range changes in accordance with MUX Rate. After 64th/65th scrolling commands in MUX 65 mode, or after the 48th/49th scrolling commands in MUX 49 mode, or after 32nd/33rd scrolling command in MUX 33 mode, the offset between the memory address and the memory scanning pointer is again zero (Cyclic Scrolling). A Reset Scrolling Pointer instruction can be executed to force the offset between the memory address and the memory scanning pointer to zero. If ICON MODE =1, the Icon Row is not scrolled. If ICON MODE=0 the last row is like a general purpose row and it is scrolled as other lines. 51/79 Instruction set STE2004S If the DIR bit is set to a logic 0, the offset register is increased by one and the raster is scrolled from top down. If the DIR bit is set to a logic 1, the offset register is decreased by one and the raster is scrolled from bottom-up. Table 23. Scrolling function 5.6 MUX Rate Icon mode Description Icon row driver with MY=0 MUX 33 1 Icon row not scrooled R48 MUX 33 0 33 line graphic matrix R48 MUX 49 1 Icon row not scrooled R56 MUX 49 0 49 line graphic matrix R56 MUX 65 1 Icon row not scrooled R64 MUX 65 0 65 line graphic matrix R64 Dual partial display If the PE bit is set to a logic one the dual partial display mode is enabled. There are eight partial display modes available. The offset of the two partial display zones is row by row programmable. The icon row is accessed last in each partial display frame. Two sets of register for the HV-generator parameters are provided (PRS[1:0], Vop[6:0], BS[2:0], CP[2:0]), allowing normal mode and partial display mode to be switched using one instruction. The HV generator is automatically reconfigured using the parameters related to the enabled mode. The parameters of the two sets of registers with the same function are located in the same position of the instruction set. The registers related to the normal mode are accessible when normal mode (PE=0) is selected, the others are accessible when the partial display mode is enabled (PE=1). To setup the PRS[1:0], Vop[6:0], BS[2:0], CP[2:0] values, follow the instruction flow proposed in Figure 54. To setup partial display sectors start qddress and partial display mode no particular instruction flow has to be followed. Figure 53. Dual partial display enabling instruction flow ENABLE DUAL PARTIAL DISPLAY SET 1st Sector Start Address SET 2nd Sector Start Address SET PE=1 END OF ENABLING DUAL PARTIAL DISPLAY 52/79 OPTIONAL1 STE2004S Instruction set Figure 54. Dual partial display mode configuration or duty change SETUP PARTIAL DISPLAY CONFIGURATION SET Driver in Power Down(PD=1) SET Driver in Partial Display Mode (PE=1) SET PRS[1:0], Vop[6:0], BS[2:0], CP[2:0] for Partial Display Operation SET Partial Display Configuration (PDC[2:0]) SET 1st Sector Start Address SET 2nd Sector Start Address OPTIONAL SET Driver in Normal Mode (PE=0) END OF PARTIAL DISPLAY CONFIG. Table 24. Partial display configurations PDC2 PDC1 PDC0 Section 1 Section2 0 0 0 0 8 + Icon Row 0 0 1 8 0 + Icon Row 0 1 0 8 8 + Icon Row 0 1 1 0 16 + Icon Row 1 0 0 16 0 + Icon Row 1 0 1 8 16 + Icon Row 1 1 0 16 8 + Icon Row 1 1 1 16 16 + Icon Row Reset state 000 53/79 ID-number 6 STE2004S ID-number The STE2004S lets you program a driver identification number (ID-Number), so more than one LCD module with different configuration parameters can be managed on one platform. There are four programmable device ID-numbers: 00111100, 00111101, 0011110 and 0011111. All have the first 6 bits (001111) in common. The two least significant bits can be used to connect the SA0 and SA1 inputs to a VSS or VDD1. The driver ID-number can be read through all communication interfaces. The way to read the ID-number changes according the interface selected. The readout protocol for each interface is described in Chapter 4. Figure 55. I2C interface interconnection in master/ slave mode STE2004S RES SCL STE2004S SDAOUT SDAIN RES SCL SDAOUT SDAIN LR0214 NOTE: MASTER and SLAVE I2C AADDRESS MUST BE DIFFERENT RES SCL SDA Figure 56. I3-lines SPI and 3-lines serial interfaces interconnection in master slave mode STE2004S RES CS SCLK SDIN SDOUT STE2004S RES CS SCLK SDIN SDOUT LR0215 RES MASTER SCLK CS 54/79 SD SLAVE CS STE2004S ID-number Figure 57. 4-lines SPI interface interconnection in master slave mode STE2004S RES CS D/C SCLK SDIN STE2004S RES SDOUT D/C CS SCLK SDIN SDOUT LR0216 RES MASTER D/C CS SCLK SD SLAVE CS Figure 58. 8080-series and 68000-series interface interconnection in master slave mode STE2004S STE2004S RES CS D/C RW-RD E-WR D7-D0 RES D/C CS RW-RD E-WR D7-D0 LR0217 8 LINES RES MASTER D/C CS RW-RD E-WR D7-D0 8 LINES SLAVE CS 55/79 ID-number STE2004S Figure 59. Host processor interconnection with I2C interface VSS TEST_MODE µP VSSAUX D0 D1 D2 D3 D4 D5 D6 D7 STE2004S SCLK -SCL SDOUT SDIN-SDAIN SDAOUT VSSAUX E - WR R/W - RD D/C CS RES VDD2 VDD1 ICON SEL1 SEL2 SEL3 EXT_SET M/S SA0 SA1 VSSAUX TEST VREF ANALOG VDD DIGITAL VDD VDD1 / VSSAUX VSSAUX VDD1 / VSSAUX VDD1 VDD1 / VSSAUX VDD1 / VSSAUX VSENSE_SLAVE OSC_IN FR_IN VDD1_AUX LR0110 Figure 60. Host processor interconnection with 4-line SPI interface VSS TEST_MODE STE2004S µP VSSAUX D0 D1 D2 D3 D4 D5 D6 D7 SCLK-SCL SDOUT SDIN-SDAIN SDAOUT VSSAUX E - WR R/W - RD D/C CS RES VDD2 VDD1 ICON SEL1 SEL2 SEL3 EXT_SET M/S SA0 SA1 VSSAUX TEST VREF ANALOG VDD DIGITAL VDD VDD1 / VSSAUX VDD1 VSSAUX VDD1 / VSSAUX VDD1 VDD1 / VSSAUX VDD1 / VSSAUX VSENSE_SLAVE OSC_IN FR_IN VDD1_AUX LR0111 56/79 STE2004S ID-number Figure 61. Host processor interconnection with 3-line SPI interface VSS TEST_MODE µP VSSAUX D0 D1 D2 D3 D4 D5 D6 D7 STE2004S SCLK-SCL SDOUT SDIN-SDAIN SDAOUT VSSAUX E - WR R/W - RD D/C CS RES VDD2 VDD1 ICON SEL1 SEL2 SEL3 EXT_SET M/S SA0 SA1 VSSAUX TEST VREF ANALOG VDD DIGITAL VDD VDD1 / VSSAUX VSSAUX VDD1 VSSAUX VDD1 / VSSAUX VDD1 VDD1 / VSSAUX VDD1 / VSSAUX VSENSE_SLAVE OSC_IN FR_IN VDD1_AUX LR0112 Figure 62. Host processor interconnection with 3-line serial interface VSS TEST_MODE STE2004S µP VSSAUX D0 D1 D2 D3 D4 D5 D6 D7 SCLK-SCL SDOUT SDIN-SDAIN SDAOUT VSSAUX E - WR R/W - RD D/C CS RES VDD2 VDD1 ICON SEL1 SEL2 SEL3 EXT_SET M/S SA0 SA1 VSSAUX TEST VREF ANALOG VDD DIGITAL VDD VDD1 / VSSAUX VDD1 VDD1 VSSAUX VDD1 / VSSAUX VDD1 VDD1 / VSSAUX VDD1 / VSSAUX VSENSE_SLAVE OSC_IN FR_IN VDD1_AUX LR0113 57/79 ID-number STE2004S Figure 63. Host processor interconnection with 8080-series parallel interface VSS TEST_MODE STE2004S µP VSSAUX D0 D1 D2 D3 D4 D5 D6 D7 SCLK-SCL SDOUT SDIN-SDAIN SDAOUT VSSAUX E - WR R/W - RD D/C CS RES VDD2 VDD1 ICON SEL1 SEL2 SEL3 EXT_SET M/S SA0 SA1 VSSAUX TEST VREF ANALOG VDD DIGITAL VDD VDD1 / VSSAUX VSSAUX VSSAUX VDD1 VDD1 / VSSAUX VDD1 VDD1 / VSSAUX VDD1 / VSSAUX VSENSE_SLAVE OSC_IN FR_IN VDD1_AUX LR0114 Figure 64. Host processor interconnection with 6800 VSS TEST_MODE STE2004S µP VSSAUX D0 D1 D2 D3 D4 D5 D6 D7 SCLK-SCL SDOUT SDIN-SDAIN SDAOUT VSSAUX E - WR R/W - RD D/C CS RES VDD2 VDD1 ICON SEL1 SEL2 SEL3 EXT_SET M/S SA0 SA1 VSSAUX TEST VREF ANALOG VDD DIGITAL VDD VDD1 / VSSAUX VDD1 VSSAUX VDD1 VDD1 / VSSAUX VDD1 VDD1 / VSSAUX VDD1 / VSSAUX VSENSE_SLAVE OSC_IN FR_IN VDD1_AUX LR0115 58/79 STE2004S ID-number Figure 65. Application schematic using the internal LCD voltage generator and two separate supplies I/O VDD2 VDD2 VDD1 1µF VSS VDD1 32 1µF VSS 102 VLCDSENSE 33 65 x 102 DISPLAY 1µF VLCD Figure 66. Application schematic using the internal LCD voltage generator and a single supply I/O VDD VDD2 32 VDD1 1µF VSS VSS 102 VLCDSENSE 33 65 x 102 DISPLAY 1µF VLCD 59/79 ID-number STE2004S Figure 67. Power-ON timing diagram Tvdd Tw(res) Tlogic(res) VDD2 VDD1 RES CS SCLK SDIN D/C E R/W D0 - D7 HOST D0 - D7 DRIVER Hi-Z SCL- SDAIN SDOUT SDA OUT Hi-Z OSCIN, FR_IN (HOST) OSC OUT, FR_OUT (DRIVER) RESET POWER ON BOOSTER Acceptance INTERNAL OFF RESET Time LR0208 60/79 STE2004S ID-number Figure 68. Power-OFF timing diagram TVDD VDD2 VDD1 RES CLK-SCL SDIN-SDAIN D/C E CS R/W D0 - D7 HOST D0 - D7 DRIVER Hi-Z SDOUT SDA-OUT Hi-Z OSCIN (HOST) OSC OUT FR_OUT (DRIVER) FR_IN RESET TABLE LOADED LR0207 61/79 ID-number STE2004S Figure 69. Initialization with built-in booster SETUP NORMAL DISPLAY MODE CONFIGURATION SET Driver in Power Down(PD=1) SET Driver in Normal Display Mode (PE=0) SET Operative Voltage for Normal Display Operation ( Vop[6:0] - PRS[1;0]) SET Bias Raio for Normal Display Operation (BS[2:0]) SET Temperature Compensation for Normal Display Operation (T[2:0] or TC[1:0]) SET Multiplexing Rate M[1:0) SET Charge Pump for Normal Display Operation (CP[1:0]) Switch "ON" Booster and Display Control Logic (PD=0) END OF NORMAL DISPLAY MODE CONFIG. LR0218 62/79 STE2004S ID-number Figure 70. Data RAM to display mapping DISPLAY DATA RAM GLASS TOP VIEW bank 0 bank 1 DISPLAY DATA RAM = "1" DISPLAY DATA RAM = "0" bank 2 LCD bank 3 bank 7 bank 8 ICOR ROW D00IN1155 Table 25. Test pin configuration Test Pin Pin Configuration TEST_VREF OPEN TEST_MODE GND 63/79 Electrical characteristics STE2004S 7 Electrical characteristics 7.1 Absolute maximum ratings Table 26. Absolute maximum ratings Symbol Parameter Value Unit VDD1 Supply voltage range - 0.5 to + 5 V VDD2 Supply voltage range - 0.5 to + 7 V VLCD LCD supply voltage range - 0.5 to + 15 V ISS Supply current - 50 to +50 mA Vi Input voltage (all input pads) -0.5 to VDD1 + 0.5 V Iin DC input current - 10 to + 10 mA Iout DC output current - 10 to + 10 mA Ptot Total power dissipation (Tj = 85°C) 300 mW Po Power dissipation per output 30 mW Tj Operating junction temperature(1) -25 to + 85 °C Storage temperature - 65 to 150 °C Tstg 1. Device behavior and characterization are measured over this temperature range during internal qualification of the product. During production testing, however, device performance is measured at a fixed ambient temperature - typically 25°C. 7.2 DC operation VDD1 = 1.7 to 3.6 V; VDD2 = 1.75 to 4.5 V; Vss1,2 = 0V; VLCD = 4.5 to 15 V; Tamb =25°C; unless otherwise specified. Table 27. DC operation Symbol Parameter Test condition Min. Typ. Max. Unit 3.6 V VDD2 V Supply voltages 1.7 VDD1 Supply voltage(1) VDD2 Supply voltage LCD voltage internally generated 1.75 4.5 V LCD supply voltage LCD voltage supplied externally 4.5 14.5 V LCD supply voltage Internally generated(2) 4.5 14.5 V Supply current VDD1 = 2.8V; VLCD = 10V; fsclk = 0; Parallel Port (3) (5) 15 20 40 µA Supply current write mode VDD2 = 2.8V; VLCD = 10V; fsclk = 1Mhz; OSC_IN=GND(3) 100 200 µA VLCD I(VDD1) 64/79 STE2004S Electrical characteristics Table 27. DC operation (continued) Symbol Parameter Test condition Min. Typ. with VOP = 0 and PRS = [0:0] with external VLCD(4) I(VDD2) I(VDD1,2) I(VLDCIN) Max. Unit 5 µA Voltage generator supply VDD2 = 2.8V; current VLCD = 10V; fsclk=0; no display load; 5x charge pump(5)(3) (6) 60 150 µA VDD2 = 2.8V; VLCD = 10V; 5x charge pump; fsclk = 0; no display load(5) (3) (6) 80 190 µA Power down mode with internal or external VLCD(7) 3 15 µA 25 µA Total supply current External LCD supply voltage current VDD =2.8V; VLCD =10V; no display load; fsclk = 0;(3) Logic outputs V0H High logic level output voltage IOH=-500µA 0.8VDD1 VDD1 V VOL Low logic level output voltage IOL=+500µA VSS 0.2VDD1 V Logic inputs VIL Logic low voltage level VSS 0.3 VDD1 V VIH Logic high voltage level 0.7 VDD1 VDD2 V Iin Input current -1 1 µA Vin = VSS1 or VDD1 Logic inputs/outputs VIL Logic low voltage level VSS 0.3 VDD1 V VIH Logic high voltage level 0.7 VDD1 VDD1 + 0.5 V 65/79 Electrical characteristics STE2004S Table 27. DC operation (continued) Symbol Parameter Test condition Min. Typ. Max. Unit Column and row driver Rrow ROW output resistance 3K 5K kohm Rcol Column output resistance 5K 10K kohm Vcol Column bias voltage accuracy -50 +50 mV Vrow Row bias voltage accuracy -50 +50 mV -2 +2 % No load LCD supply voltage VLCD LCD supply voltage accuracy; internally generated VDD = 2.8V; VLCD = 10V; fsclk=0; no display load(5)(3) (6) (8) VOP=69h, PRS=2Hex(9) -0.0· 10-3 TC0 1/°C 10-3 1/°C -0.7 · 10-3 1/°C -1.05· 10-3 1/°C TC4 -1.4 · 10-3 1/°C TC5 -1.75· 10-3 1/°C -2.1 · 10-3 1/°C -2.3· 10-3 1/°C TC1 -0.35 · TC2 TC3 Temperature coefficient TC6 TC7 1. VDD1<=VDD2 2. The maximum possible VLCD voltage that can be generated is dependent on voltage, temperature and (display) load. 3. When fsclk = 0 there is no interface clock. 4. If external VLCD, the display load current is not transmitted to IDD 5. Internal clock 6. Tolerance depends on the temperature; (typically zero at Tamb = 25°C), maximum tolerance values are measured at the temperature range limit. 7. Power-down mode. During power-down all static currents are switched-off. 8. For TC0 to TC7 9. Data byte writing mode 66/79 STE2004S 7.3 Electrical characteristics AC operation VDD1 = 1.7 to 3.6 V; VDD2 = 1.75 to 4.5 V; Vss1,2 = 0V; VLCD = 4.5 to 15 V; Tamb =25°C; unless otherwise specified. Table 28. AC operation Symbol Parameter Test condition Min. Typ. Max. Unit 61 72 83 kHz 100 kHz Internal oscillator (Figure 71) FOSC Internal oscillator frequency FEXT External oscillator frequency FFRAME Frame frequency VDD = 2.8V 20 fosc or fext = 72 kHz(1) RES LOW pulse width Tw(RES) TLOGIC 75 Hz µs 5 Reset pulse rejection 1 µs Internal logic reset time 5 µs (RES) TVDD I2C VDD1 vs. VDD2 Delay bus interface (Figure FSCL µs 0 72)(2) (3) SCL clock frequency Fast mode DC 400 kHz High speed mode; Cb=100pF (max);(4) VDD1=2 DC 3.4 MHz High speed mode; Cb=400pF (max)(4); VDD1=2 DC 1.7 MHz 400 KHz Fast Mode (4);VDD1=1.7V TSU;STA Set-up time (repeated) START condition Cb = 100pF(5) (6) 160 ns THD;STA Hold time (repeated) START condition Cb = 100pF(5) (6) 160 ns TLOW Low period of SCLH clock Cb = 100pF(5) (6) 160 ns THIGH High period of SCLH clock Cb = 100pF(5) (6) 160 ns Data set-up time Cb = 100pF(5) (6) 60 ns Cb = 100pF(5) (6) 10 ns Tr;CL Rise time of SCLH signal Cb = 100pF(5) (6) 10 ns Tr;CL1 Rise time of SCLH signal after a repeated START Cb = 100pF(5) (6) condition and aftyer an acknowledge bit 10 ns Tf;CL Fall time of SCLH signal Cb = 100pF(5) (6) 10 ns TSU;DAT THD;DAT Data hold time 67/79 Electrical characteristics STE2004S Table 28. AC operation Symbol Parameter Test condition 10 Cb = 100pF(5) (6) 10 (5) (6) 20 (5) (6) Tr;DA Rise time of SCLH signal Cb = 100pF Tf;DA Fall time of SDAH signal Tr;DA Tf;DA TSU;STO Min. (5) (6) Rise time of SDAH signal Cb = 400pF Fall time of SDAH signal Cb = 400pF 20 Setup time for STOP condition Cb = 100pF(5) (6) 160 Cb Capacitive load for SDAH and SCLH Cb Capacitive load for SDAH +SDA line and SCLH +SCL line 100 Typ. Max. Unit ns 80 ns ns 160 ns ns 400 pF 400 pF Parallel interface (Figure 73, Figure 74) TCYC System cycle time TCLW VDD1 = 1.7V; read and write 125 ns Control low pulse width (WR) 20 ns TCHW Control high pulse width (WR) 75 ns TCLR Control low pulse width (RD) 40 ns TCHR Control high pulse width (RD) 55 ns TEWHW Enable high pulse width (Write) 60 ns TEWLW Enable low pulse width (Write) 60 ns TEWHR Enable high pulse width (Read) 60 ns TEWLR Enable low pulse width (Read) 60 ns TSU(A) Address set-up time 10 ns TH(A) Address hold time 10 ns TSU1 Data set-up time 30 ns TH1 Data hold time 30 ns TSU2 Read access time TH2 Output disable time 68/79 0 40 ns 30 ns STE2004S Electrical characteristics Table 28. AC operation Symbol Parameter Test condition Min. Typ. Max. Unit Serial interface (Figure 75) FSCLK Clock frequency TCYC VDD1 = 1.7V; 8 MHz Clock cycle SCLK 125 ns TPWH1 SCLK pulse width HIGH 60 ns TPWL1 SCLK pulse width LOW 60 ns TS2 CS setup time VDD1 = 1.7V 40 ns TH2 CS hold time VDD1 = 1.7V 50 ns TPWH2 CS minimum high time VDD1 = 1.7V 50 ns TS3 SD/C setup time 30 ns TH3 SD/C hold time 30 ns TS4 SDIN setup time 30 ns TH4 SDIN hold time 40 ns TS5 SDOUT access time TH5 SDOUT disable time vs. SCLK TH6 SDOUT disable time vs. CS 30 ns 0 20 ns 0 20 ns f osc 1. F frame = ---------960 2. For bus line loads Cb between 100 and 400pF the timing parameters must be linearly interpolated 3. Trise and Tfall (30%-70%) -10ns 4. CVLCD is the filtering capacitor on VLCD 5. All timing values are valid within the operating supply voltage and ambient temperature ranges and referenced to VIL and VIH with an input voltage swing of VSS to VDD 6. Cb is the capacitive load for each bus line. 69/79 Electrical characteristics STE2004S Figure 71. Reset timing diagram Tw(res) Tlogic(res) VDD2 VDD1 RES INPUTS I/O (HOST) I/O (DRIVER) Hi-Z INTERFACE OUTPUT Hi-Z OSCIN FR_IN (HOST) OSC OUT FR_OUT (DRIVER) RESET TABLE LOADED LR0209 Figure 72. I2C-bus timings Sr Sr P tfDA trDA SDAH tHD;DAT tSU;STA tSU;DAT tHD;STA SCLH tfCL trCL trCL1 tHIGH tLOW = MCS current source pull-up = Rp resistor pull-up 70/79 (1) tLOW tHIGH trCL1 (1) LR0093 STE2004S Electrical characteristics Figure 73. 68000-series parallel interface timing D/C R/W tSU(A) tH(A) CS tCYC tEWHR, tEWHW E tEWLR, tEWLW tSU1 tH1 D0 to D7 (Write) tSU2 tH2 D0 to D7 (Read) Figure 74. 8080-series parallel interface timing D/C tSU(A) tH (A) CS tCYC tCLR , tCLW WR, RD tCHR , tCHW tSU1 tH1 D0 to D7 (Write) tSU2 tH2 D0 to D7 (Read) 71/79 Pad coordinates STE2004S Figure 75. Serial interface timing tS2 tH2 tPWH2 CS tH3 tS3 D/C tCYC tPWL1 tWH1 tS2 SCLK tS4 tH4 SDIN tS5 tH5 tH6 SOUT LR0096 8 Pad coordinates See Table 29: Pad coordinates and Table 30: Alignment marks coordinates. 72/79 STE2004S Pad coordinates Table 29. Pad coordinates No Pad placements Name X Y No Pad placements Name X Y 1 R5 -2632.5 -532.8 34 C27 -1147.5 -532.8 2 R4 -2587.5 -532.8 35 C28 -1102.5 -532.8 3 R3 -2542.5 -532.8 36 C29 -1057.5 -532.8 4 R2 -2497.5 -532.8 37 C30 -1012.5 -532.8 5 R1 -2452.5 -532.8 38 C31 -967.5 -532.8 6 R0 -2407.5 -532.8 39 C32 -922.5 -532.8 7 C0 -2362.5 -532.8 40 C33 -877.5 -532.8 8 C1 -2317.5 -532.8 41 C34 -832.5 -532.8 9 C2 -2272.5 -532.8 42 C35 -787.5 -532.8 10 C3 -2227.5 -532.8 43 C36 -742.5 -532.8 11 C4 -2182.5 -532.8 44 C37 -697.5 -532.8 12 C5 -2137.5 -532.8 45 C38 -652.5 -532.8 13 C6 -2092.5 -532.8 46 C39 -607.5 -532.8 14 C7 -2047.5 -532.8 47 C40 -562.5 -532.8 15 C8 -2002.5 -532.8 48 C41 -517.5 -532.8 16 C9 -1957.5 -532.8 49 C42 -472.5 -532.8 17 C10 -1912.5 -532.8 50 C43 -427.5 -532.8 18 C11 -1867.5 -532.8 51 C44 -382.5 -532.8 19 C12 -1822.5 -532.8 52 C45 -337.5 -532.8 20 C13 -1777.5 -532.8 53 C46 -292.5 -532.8 21 C14 -1732.5 -532.8 54 C47 -247.5 -532.8 22 C15 -1687.5 -532.8 55 C48 -202.5 -532.8 23 C16 -1642.5 -532.8 56 C49 -157.5 -532.8 24 C17 -1597.5 -532.8 57 C50 -112.5 -532.8 25 C18 -1552.5 -532.8 58 C51 112.5 -532.8 26 C19 -1507.5 -532.8 59 C52 157.5 -532.8 27 C20 -1462.5 -532.8 60 C53 202.5 -532.8 28 C21 -1417.5 -532.8 61 C54 247.5 -532.8 29 C22 -1372.5 -532.8 62 C55 292.5 -532.8 30 C23 -1327.5 -532.8 63 C56 337.5 -532.8 31 C24 -1282.5 -532.8 64 C57 382.5 -532.8 32 C25 -1237.5 -532.8 65 C58 427.5 -532.8 33 C26 -1192.5 -532.8 66 C59 472.5 -532.8 73/79 Pad coordinates STE2004S Table 29. Pad coordinates No Pad placements Name X Y No Pad placements Name X Y 67 C60 517.5 -532.8 100 C93 2002.5 -532.8 68 C61 562.5 -532.8 101 C94 2047.5 -532.8 69 C62 607.5 -532.8 102 C95 2092.5 -532.8 70 C63 652.5 -532.8 103 C96 2137.5 -532.8 71 C64 697.5 -532.8 104 C97 2182.5 -532.8 72 C65 742.5 -532.8 105 C98 2227.5 -532.8 73 C66 787.5 -532.8 106 C99 2272.5 -532.8 74 C67 832.5 -532.8 107 C100 2317.5 -532.8 75 C68 877.5 -532.8 108 C101 2362.5 -532.8 76 C69 922.5 -532.8 109 R32 2407.5 -532.8 77 C70 967.5 -532.8 110 R33 2452.5 -532.8 78 C71 1012.5 -532.8 111 R34 2497.5 -532.8 79 C72 1057.5 -532.8 112 R35 2542.5 -532.8 80 C73 1102.5 -532.8 113 R36 2587.5 -532.8 81 C74 1147.5 -532.8 114 R37 2632.5 -532.8 82 C75 1192.5 -532.8 115 R38 2773.8 -472.5 83 C76 1237.5 -532.8 116 R39 2773.8 -427.5 84 C77 1282.5 -532.8 117 R40 2773.8 -382.5 85 C78 1327.5 -532.8 118 R41 2773.8 -337.5 86 C79 1372.5 -532.8 119 R42 2773.8 -292.5 87 C80 1417.5 -532.8 120 R43 2773.8 -247.5 88 C81 1462.5 -532.8 121 R44 2773.8 -202.5 89 C82 1507.5 -532.8 122 R45 2773.8 -157.5 90 C83 1552.5 -532.8 123 R46 2773.8 -112.5 91 C84 1597.5 -532.8 124 R47 2773.8 -67.5 92 C85 1642.5 -532.8 125 R48 2773.8 -22.5 93 C86 1687.5 -532.8 126 R49 2773.8 22.5 94 C87 1732.5 -532.8 127 R50 2773.8 67.5 95 C88 1777.5 -532.8 128 R51 2773.8 112.5 96 C89 1822.5 -532.8 129 R52 2773.8 157.5 97 C90 1867.5 -532.8 130 R53 2773.8 202.5 98 C91 1912.5 -532.8 131 R54 2773.8 247.5 99 C92 1957.5 -532.8 132 R55 2773.8 292.5 74/79 STE2004S Pad coordinates Table 29. Pad coordinates No Pad placements Name X Y No Pad placements Name X Y 133 R56 2773.8 337.5 166 VDD2 877.5 532.8 134 R57 2773.8 382.5 167 VDD2 832.5 532.8 135 R58 2773.8 427.5 168 VDD2 787.5 532.8 136 R59 2773.8 472.5 169 VDD2 742.5 532.8 137 R60 2632.5 532.8 170 VDD2 697.5 532.8 138 R61 2587.5 532.8 171 VDD2 652.5 532.8 139 R62 2542.5 532.8 172 _RES 337.5 532.8 140 R63 2497.5 532.8 173 -CS 247.5 532.8 141 R64/ICON 2452.5 532.8 174 D/C 157.5 532.8 142 VDD1 AUX 2227.5 532.8 175 RW-RD 67.5 532.8 143 FR IN 2182.5 532.8 176 E-WR -22.5 532.8 144 OSC IN 2137.5 532.8 177 VSSAUX -67.5 532.8 145 Vsns_Slave 2092.5 532.8 178 SDA_OUT -157.5 532.8 146 TEST_VREF 1777.5 532.8 179 SDIN_SDAIN -202.5 532.8 147 VSSAUX 1732.5 532.8 180 SDOUT -247.5 532.8 148 SA1 1687.5 532.8 181 SCLK_SCL -337.5 532.8 149 SA0 1642.5 532.8 182 D7 -382.5 532.8 150 M/S 1597.5 532.8 183 D6 -427.5 532.8 151 EXT_SET 1552.5 532.8 184 D5 -472.5 532.8 152 SEL3 1507.5 532.8 185 D4 -517.5 532.8 153 SEL2 1462.5 532.8 186 D3 -562.5 532.8 154 SEL1 1417.5 532.8 187 D2 -607.5 532.8 155 ICON 1372.5 532.8 188 D1 -652.5 532.8 156 VDD1 1327.5 532.8 189 D0 -697.5 532.8 157 VDD1 1282.5 532.8 190 VSSAUX -742.5 532.8 158 VDD1 1237.5 532.8 191 TEST_MODE -1102.5 532.8 159 VDD1 1192.5 532.8 192 VSS -1147.5 532.8 160 VDD1 1147.5 532.8 193 VSS -1192.5 532.8 161 VDD1 1102.5 532.8 194 VSS -1237.5 532.8 162 VDD1 1057.5 532.8 195 VSS -1282.5 532.8 163 VDD1 1012.5 532.8 196 VSS -1327.5 532.8 164 VDD2 967.5 532.8 197 VSS -1372.5 532.8 165 VDD2 922.5 532.8 198 VSS -1417.5 532.8 75/79 Pad coordinates STE2004S Table 29. Pad coordinates No Pad placements No Name X Y Pad placements Name X Y 199 VSS -1462.5 532.8 220 R23 -2773.8 292.5 200 VSS -1507.5 532.8 221 R22 -2773.8 247.5 201 VSS -1552.5 532.8 222 R21 -2773.8 202.5 202 VSS -1597.5 532.8 223 R20 -2773.8 157.5 203 VSS -1642.5 532.8 224 R19 -2773.8 112.5 204 VLCD_SNS -1867.5 532.8 225 R18 -2773.8 67.5 205 VLCD -1912.5 532.8 226 R17 -2773.8 22.5 206 VLCD -1957.5 532.8 227 R16 -2773.8 -22.5 207 VLCD -2002.5 532.8 228 R15 -2773.8 -67.5 208 VLCD -2047.5 532.8 229 R14 -2773.8 -112.5 209 VLCD -2092.5 532.8 230 R13 -2773.8 -157.5 210 OSC_OUT -2227.5 532.8 231 R12 -2773.8 -202.5 211 FR_OUT -2272.5 532.8 232 R11 -2773.8 -247.5 212 R31 -2497.5 532.8 233 R10 -2773.8 -292.5 213 R30 -2542.5 532.8 234 R9 -2773.8 -337.5 214 R29 -2587.5 532.8 235 R8 -2773.8 -382.5 215 R28 -2632.5 532.8 236 R7 -2773.8 -427.5 216 R27 -2773.8 472.5 237 R6 -2773.8 -472.5 217 R26 -2773.8 427.5 218 R25 -2773.8 382.5 219 R24 -2773.8 337.5 1. I2C bus AC characteristics are tested by correlation Table 30. Alignment marks coordinates 76/79 Marks X Y mark1 -2780.55 -539.55 mark2 2780.55 -539.55 mark3 -2160.0 539.55 mark4 484.89 539.55 STE2004S Pad coordinates Figure 76. Alignment marks dimensions 35 µm 85 µm Table 31. Bumps Dimensions Bumps size 28µmX97µmX17.5µm Pad size 35µm X 104µm Pad pitch 45µm Spacing between bumps 17µm Table 32. Die mechanical dimensions Die Size (X x Y) 5.815mm x 1.333mm Wafers thickness 500µm 77/79 Ordering information 9 STE2004S Ordering information Table 33. Ordering information Part numbers STE2004S DIE2 10 Type Bumped dice on waffle pack Revision history Table 34. Document revision history 78/79 Date Revision Changes 24-Jan-2006 1 Initial release. 12-Dec-2006 2 – Junction temperature range in Table 26: Absolute maximum ratings set to: -25 to + 85 and added a footnote. – Globally set Tamb = 25°C – Moved Table 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 from Chapter 6: ID-number to Chapter 5: Instruction set where Table 8 and Table 9 are referenced. – Ordering information moved from cover page to Chapter 9. 31-Jan-2007 3 Added Chapter 1: Block diagram and corrected the document title. STE2004S Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 79/79