TI TLC5733AIPM

TLC5733A
20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER
WITH HIGH-PRECISION CLAMP
SLAS104A – JULY 1995 – REVISED NOVEMBER 1996
D
D
D
D
D
D
D
D
3-Channel CMOS ADC
5-V Single-Supply Operation or 5-V Analog
Supply with Digital Supply from
2.7 V to 5.25 V
8-Bit Resolution
Differential Linearity Error . . . ± 0.5 LSB Max
Linearity Error . . . ± 0.75 LSB Max
Maximum Conversion Rate
20 Megasamples per Second
(MSPS) Min
Analog Input Voltage Range
2 VI(PP) Min
64-Pin Shrink QFP Package
D
D
D
D
D
D
D
Analog Input Bandwidth . . . >14 MHz
Suitable for YUV or RGB Applications
Digital Clamp Optimized for NTSC or PAL
YUV Component
High-Precision Clamp . . . ± 1 LSB
Automatic Clamp Pulse Generator
Output-Data Format Multiplexer
Low Power Consumption
description
The TLC5733A is a 3-channel 8-bit semiflash analog-to-digital converter (ADC) that operates from a single 5-V
power supply. It converts a wide-band analog signal (such as a video signal) to digital data at sampling rates
up to 20 MSPS minimum. The TLC5733A contains a feed-back type high-precision clamp circuit for each ADC
channel for video (YUV) applications and a clamp pulse generator that detects COMPOSITE SYNC† pulses
automatically. A clamp pulse can also be supplied externally. The output-data format multiplexer selects a ratio
of Y:U:V of 4:4:4, 4:1:1, or 4:2:2. For RGB applications, the 4:4:4 output format without clamp function can be
used. The TLC5733A is characterized for operation from – 20°C to 75°C.
AVAILABLE OPTIONS
TA
– 20°C to 75°C
PACKAGE
QUAD FLATPACK
TLC5733AIPM
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
† COMPOSITE SYNC refers to the externally generated synchronizing signal that is a combination of vertical and horizontal sync information
used in display and TV systems.
Copyright  1996, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
TLC5733A
20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER
WITH HIGH-PRECISION CLAMP
SLAS104A – JULY 1995 – REVISED NOVEMBER 1996
GND A
AIN
A AV CC
RT A
CLPV A
CLP OUT A
INIT
CLPEN
CLK
EXTCLP
CLP OUT B
CLPV B
RT B
B AV CC
BIN
GND B
PM PACKAGE
(TOP VIEW)
1
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
2
47
3
46
4
45
5
44
6
43
7
42
8
41
9
40
10
39
11
38
12
37
13
36
14
35
15
34
33
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
BD8
BD7
BD6
BD5
BD4
BD3
BD2
BD1
QB DGND
DVDD
CLP OUT C
CLPV C
RT C
C AV CC
CIN
GND C
RB A
OE A
NT/PAL
TEST
QA DGND
AD8
AD7
AD6
AD5
AD4
AD3
AD2
AD1
QA DVDD
DGND
QB DVDD
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
RB B
OE B
MODE0
MODE1
QC DGND
CD1
CD2
CD3
CD4
CD5
CD6
CD7
CD8
QC DVDD
OE C
RB C
TLC5733A
20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER
WITH HIGH-PRECISION CLAMP
SLAS104A – JULY 1995 – REVISED NOVEMBER 1996
functional block diagram
CLK A
AIN
RT A
ADC
(Sampling
Comparators)
8
8
8
AD1 – 8
Output Data
Latch
8
RB A
CLPV A
Clamp
Circuit
CLP OUT A
OE A
CLK B
8
BIN
RT B
ADC
(Sampling
Comparators)
8
8
BD1 – 8
Output Data
Latch
8
RB B
CLPV B
Clamp
Circuit
Multiplexer
For
Output Format
CLP OUT B
OE B
CLK C
CIN
RT C
8
ADC
(Sampling
Comparators)
8
8
CD1 – 8
Output Data
Latch
8
RB C
CLPV C
CLP OUT C
Clamp
Circuit
OE C
EXTCLP
CLPEN
NT/PAL
Clock
Generator
Control For
INT/EXT
Clamp Circuit
CLK
POST OFFICE BOX 655303
Output
Format
Selector
and Test
MODE0
MODE1
TEST
INIT
• DALLAS, TEXAS 75265
3
TLC5733A
20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER
WITH HIGH-PRECISION CLAMP
SLAS104A – JULY 1995 – REVISED NOVEMBER 1996
Terminal Functions
TERMINAL
NAME
A AVCC
AD8 – AD1
NO.
I/O
DESCRIPTION
62
I
Analog supply voltage of ADC A
6 – 13
O
Data output of ADC A (LSB: AD1, MSB:AD8)
AIN
63
I
Analog input of ADC A
B AVCC
51
I
Analog supply voltage of ADC B
17 – 24
O
Data output of ADC B (LSB: BD1, MSB:BD8)
50
I
Analog input of ADC B
BD8 – BD1
BIN
C AVCC
30
I
Analog supply voltage of ADC C
36 – 43
O
Data output of ADC C (LSB:CD1, MSB: CD8)
When MODE0 = L, MODE1 = L, CD8 outputs MSB flag of BD8 – BD5
When MODE0 = L, MODE1 = L, CD7 outputs MSB flag of BD8 – BD5
When MODE0 = L, MODE1 = H, CD8 outputs B channel flag of CD8 – BD1
When MODE0 = L, MODE1 = H, CD8 outputs B channel flag of CD8 – BD1
CIN
31
I
Analog input of ADC C
CLK
56
I
Clock input. The clock frequency is normally 4 × the frequency subcarrier (fsc) for most video systems (see
Table 3). The nominal clock frequency is 14.31818 MHz for National Television System Committee (NTSC)
and 17.745 MHz for phase alteration line (PAL).
CLPEN
57
I
Clamp enable. When using an internal clamp pulse, CLPEN should be high. When using an external clamp
pulse, CLPEN should be low.
CLP OUT A
59
O
Clamping bias current of ADC A. A resistor-capacitor combination that sets the clamp timing.
CLP OUT B
54
O
Clamping bias current of ADC B. A resistor-capacitor combination that sets the clamp timing.
CLP OUT C
27
O
Clamping bias current of ADC C. A resistor-capacitor combination that sets the clamp timing.
CLPV A
60
O
Clamping level of ADC A. A capacitor is connected to CLPV A to set the clamp timing. The clamp level at
CLPV A is connected to an output code of 16 (0010000).
CLPV B
53
O
Clamping level of ADC B. A capacitor is connected to CLPV B to set the clamp timing. The clamp level at
CLPV B is connected to an output code of 128 (1000000).
CLPV C
28
O
Clamping level of ADC C. A capacitor is connected to CLPV C to set the clamp timing. The clamp level at
CLPV C is connected to an output code of 128 (1000000).
DGND
15
I
Digital ground
DVDD
26
I
Digital supply voltage
EXTCLP
55
I
External clamp pulse input. When EXTCLP and CLPEN are low, the internal clamp circuit cannot be used.
The external clamp pulse when used is active high.
GND A
64
I
Ground of ADC A
GND B
49
I
Ground of ADC B
GND C
32
I
Ground of ADC C
INIT
58
I
Output initialized. The output data is synchronous when INIT is taken high from low. INIT is a control terminal
that allows the external system to initialize the TLC5733A data conversion cycle. INIT is usually used at
power up or system reset.
MODE0
46
I
Output format mode selector 0. When MODE1 is low and MODE0 is low, output data format1 is selected.
When MODE1 is low and MODE0 is high, output data format2 is selected. When MODE1 is high and
MODE0 is low, output data format3 is selected. A high level on MODE1 and a high level on MODE0 is not
used.
MODE1
45
I
Output format mode selector 1. When MODE1 is low and MODE0 is low, output data format1 is selected.
When MODE1 is low and MODE0 is high, output data format2 is selected. When MODE1 is high and
MODE0 is low, output data format3 is selected. A high level on MODE1 and a high level on MODE0 is not
used.
NT/ PAL
3
I
NTSC/PAL control. NTSC/PAL should be low for NTSC and high for PAL.
OE A
2
I
Output enable A. OE A enables the output of ADC A.
OE B
47
I
Output enable B. OE B enables the output of ADC B.
CD8 – CD1
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5733A
20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER
WITH HIGH-PRECISION CLAMP
SLAS104A – JULY 1995 – REVISED NOVEMBER 1996
Terminal Functions (Continued)
TERMINAL
NAME
NO.
I/O
DESCRIPTION
OE C
34
I
Output enable C. OE C enables the output of ADC C.
QA DGND
5
I
Digital ground for output of ADC A
QA DVDD
14
I
Digital supply voltage for output of ADC A
QB DGND
25
I
Digital ground for output of ADC B
QB DVDD
16
I
Digital supply voltage for output of ADC B
QC DGND
44
I
Digital ground for output of ADC C
QC DVDD
35
I
Digital supply voltage for output of ADC C
RB A
1
I
Bottom reference voltage of ADC A. The nominal externally applied dc voltage between RT A and RB A is
2 V for video signals.
RB B
48
I
Bottom reference voltage of ADC B. The nominal externally applied dc voltage between RT B and RB B is
2 V for video signals.
RB C
33
I
Bottom reference voltage of ADC C. The nominal externally applied dc voltage between RT C and RB C
is 2 V for video signals.
RT A
61
I
Top reference voltage of ADC A. The nominal externally applied dc voltage between RT A and RB A is 2
V for video signals.
RT B
52
I
Top reference voltage of ADC B. The nominal externally applied dc voltage between RT B and RB B is 2
V for video signals.
RT C
29
TEST
4
Top reference voltage of ADC C. The nominal externally applied dc voltage between RT C and RB C is 2
V for video signals.
I
Test. TEST should be tied low when using this device.
absolute maximum ratings†
Supply voltage, VCC, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V
Reference voltage input range,Vref(RT A), Vref(RT B), Vref(RT C), Vref(RB A),
Vref(RB B), Vref(RB C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AGND to VCC
Analog input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AGND to VCC
Digital input voltage range, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DGND to VDD
Digital output voltage range, VO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DGND to VDD
Operating free-air temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 20°C to 75°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
TLC5733A
20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER
WITH HIGH-PRECISION CLAMP
SLAS104A – JULY 1995 – REVISED NOVEMBER 1996
recommended operating conditions
Supply voltage‡
VCC – AGND
VDD – DGND
AGND – DGND
Reference input voltage, Vref(RT A), Vref(RT B), Vref(RT C)
MIN
NOM
MAX
4.75
5
5.25
2.7
5
5.25
– 100
0
100
mV
VCC
Vref(RT)– 2
Vref(RT)
V
Vref(RB)+2
0
Reference input voltage, Vref(RB A), Vref(RB B), Vref(RB C)
Analog input voltage, VI
0
High-level input voltage, VIH
2
UNIT
V
V
V
V
Low-level input voltage, VIL
0.8
V
High-level pulse duration, tw(H)
25
ns
Low-level pulse duration, tw(L)
25
ns
Setup time for INIT input, tsu1
5
ns
Operating free-air temperature range, TA
– 20
75
°C
‡ Within the electrical and operating characteristics table, when the term VDD is used, all XDVDD terminals are tied together, and when the term
VCC is used, all XAVCC terminals are tied together.
electrical characteristics at VDD = 2.7 V to 5.25 V, VCC = 5 V, Vref(RT) = 2.5 V, Vref(BB) = 0.5 V,
f(CLK) = 20 MHz, TA = 25°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
Rref
Reference voltage resistor
Measured between RT and RB
Ci
Analog input capacitance
IIH
High-level input current
IIL
Low-level input current
VI = 1.5 V + 0.07 Vrms
VDD = MAX†,
VIH = VDD,
VCC = 5V
VDD = MAX†,
VIL = 0,
VCC = 5V
VOH
High-level output voltage
VOL
Low-level output voltage
IOH(lkg)
High-level output leakage current
IOL(lkg)
Low-level output leakage current
ICC
Supply current
All DVDD terminals = 2.7 V to 5.25 V,
IOH = –1 mA
160
220
MAX
VCC = 5V
VDD = MIN†,
VCC = 5V
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
Ω
pF
5
µA
5
DVDD –0.7 V
V
0.8
16
µA
VOL = 0,
fc = 20 MSPS,
NTSC ramp wave input
UNIT
LSB
350
16
All DVDD terminals = 2.7 V to 5.25 V,
IOL = 2 mA
VDD = MAX†,
VOH = VDD,
† Conditions marked MIN or MAX are as stated in recommended operating conditions.
6
TYP
±1
Clamp level accuracy
16
50
75
mA
TLC5733A
20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER
WITH HIGH-PRECISION CLAMP
SLAS104A – JULY 1995 – REVISED NOVEMBER 1996
operating characteristics at VDD = 2.7 V to 5.25 V, VCC = 5 V, Vref(RT) = 2.5 V, Vref(RB) = 0.5 V,
f(CLK) = 20 MHz, TA = 25°C (unless otherwise noted)
PARAMETER
EZS
EFS
Zero-scale error
Full-scale error
TEST CONDITIONS
Vref = REFT – REFB = 2 V
Vref = REFT – REFB = 2 V
MIN
TYP
MAX
UNIT
– 18
– 43
– 68
mV
mV
0
20
VI = 0.5 V to 2.5 V
VI = 0.5 V to 2.5 V
– 20
± 0.4
± 0.75
± 0.4
±1
± 0.3
± 0.5
± 0.3
± 0.75
EL
Linearity error
f(CLK) = 20 MHz,
f(CLK) = 20 MHz,
TA = –20°C to 75°C
ED
Linearity error, differential
f(CLK) = 20 MHz,
f(CLK) = 20 MHz,
TA = –20°C to 75°C
VI = 0.5 V to 2.5 V
VI = 0.5 V to 2.5 V
fc
BW
Maximum conversion rate
VI = 0.5 V – 2.5 V,
At – 1 dB
fI = 1-kHz ramp waveform
Analog input bandwidth
tpd
Digital output delay time
CL = 10 pF
Differential gain
NTSC 40 IRE‡ modulation wave,
Differential phase
NTSC 40 IRE‡ modulation wave,
20
18
Aperture jitter time
Sampling delay time
LSB
MSPS
14
fc = 14.3 MSPS
fc = 14.3 MSPS
LSB
MHz
30
ns
1%
0.7
deg
30
ps
4
ns
‡ Institute of Radio Engineers
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
TLC5733A
20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER
WITH HIGH-PRECISION CLAMP
SLAS104A – JULY 1995 – REVISED NOVEMBER 1996
detailed description
clamp function
The clamp function is optimized for a YUV video signal and has two clamp modes. The first mode uses the
COMPOSITE SYNC signal as the input to the EXTCLP terminal to generate an internal clamp pulse and the
second mode uses an externally generated clamp pulse as the input to the EXTCLP terminal.
In the first mode, the device detects false pulses in the COMPOSITE SYNC signal by monitoring the rising and
falling edges of the COMPOSITE SYNC signal pulses. This monitoring prevents faulty operation caused by
disturbances and missing pulses of the COMPOSITE SYNC signal input on EXTCLP and external spike noise.
When fault pulses are detected, the device internally generates a train of clamp pulses at the proper positions
(1H) by an internal 910-counter for NTSC and a 1136-counter for PAL. The device checks clamp pulses for 1H
time and generates clamp pulses at correct positions when COMPOSITE SYNC pulses are in error in time.
The internal counter continually produces a horizontal sync period (1H) that is NTSC or PAL compatible as
selected by the condition of the NT/PAL terminal.
clamp voltages and selection
Table 1 shows the clamping level during the clamp interval. Table 2 shows the selection of the internal or external
clamp pulse. With either NTSC or PAL, the internal clamp pulse is always used.
Table 1. Clamp Level (Internal Connection Level)
CHANNEL OF ADC
OUTPUT CODE
APPLICATION
ADC A • VI(A)
00010000
Y
ADC B • VI(B)
ADC C • VI(C)
10000000
(U, V)
10000000
(U, V)
Table 2. Clamp Level (Internal Connection Level)
CONDITION
CLPEN
L
H
EXTCLP
L
COMPOSITE SYNC input
FUNCTION (EACH ADC)
NT/PAL
INTERNAL CLAMP
CLAMP PULSE
Don’t Care
Inactive
External clamp pulse
Don’t Care
Inactive
No clamping
L
Active
Synchronous with NTSC
H
Active
Synchronous with PAL
The clamp circuit is shown in Figure 6. The clamp voltage is stored on capacitor C2 during the back porch of
the horizontal blanking period.
During the clamp pulse the input to channel A is clamped to:
VC(A) = (16/256) × (voltage difference from terminal RT A to RB A)
VC(B) = (128/256) × (voltage difference from terminal RT B to RB B)
VC(C) = (128/256) × (voltage difference from terminal RT C to RB C)
COMPOSITE SYNC time monitoring
When CLPEN is high, COMPOSITE SYNC generates an internal clamp pulse on the horizontal blanking interval
back porch. The TLC5733A has a timing window into which the horizontal sync tip must occur. There is a noise
time window for the falling edge and one for the rising edge (see Figure 1, Figure 2, and Table 3).
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5733A
20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER
WITH HIGH-PRECISION CLAMP
SLAS104A – JULY 1995 – REVISED NOVEMBER 1996
correct COMPOSITE SYNC timing
The Noise Gate 1 signal provides the timing window for the COMPOSITE SYNC falling edge. After an interval
A of 867 clocks for NTSC or 1075 for PAL from the last falling edge of COMPOSITE SYNC, Noise Gate 1 signal
goes high for 43 clocks for NTSC or 61 clocks for PAL (interval B). The falling edge of the input signal to the
EXTCLP terminal can occur at any time within this window to be a valid COMPOSITE SYNC falling edge.
The Noise Gate 2 signal provides the timing window for the COMPOSITE SYNC rising edge. On the falling edge
of the horizontal sync tip, the internal logic generates Noise Gate 2 as a low signal for 58 clocks (interval C) for
both NTSC and PAL and then returns to a high active state. At this time if the input to EXTCLP is still low, it is
considered a valid COMPOSITE SYNC signal.
normal clamp pulse generation
On the rising edge of COMPOSITE SYNC, the internal logic generates an internal delay (interval D) and then
generates the internal positive clamp pulse 54 clocks wide (interval F).
clamp operation with incorrect COMPOSITE SYNC timing
noise suppression
If the input to EXTCLP goes low prior to Noise Gate 1 going high (within 43 clocks for NTSC or 61 clocks for
PAL of the normal 1H timing for the falling edge of COMPOSITE SYNC) then that input is not considered a valid
COMPOSITE SYNC and is ignored.
If the input to EXTCLP is high when Noise Gate 2 goes to the high state, the input signal is considered noise
and is ignored.
Therefore, the correct signal must be high for a maximum of 43 clocks for NTSC or 61 clocks for PAL, before
the 1H timing, to be a valid sync signal. Also, the input to EXTCLP must be at least 58 clocks wide (interval C)
to be valid.
This function of monitoring the timing eliminates spurious noise spikes from falsely synchronizing the system.
timing error of COMPOSITE SYNC
The internal counter resets to zero on the first falling edge of COMPOSITE SYNC. After that time, if there is a
missing COMPOSITE SYNC signal, then the internal logic waits an interval of 76 clocks (interval E) for NTSC
or 93 for PAL from the counter zero count and then generates an internal clamp pulse 54 clocks wide
(interval F).
This function maintains the synchronization pattern when COMPOSITE SYNC is not present.
summary of device operation with COMPOSITE SYNC
This internal timing allows the TLC5733A to correctly position the clamp pulse when an external COMPOSITE
SYNC input:
•
•
•
•
Is delayed with respect to the horizontal sync period
Is early with respect to the horizontal sync period
Is nonexistent during the horizontal sync period
Has falling edge noise spikes within the horizontal sync period
The device operation is summarized as follows for these improper external clamp conditions:
•
•
Under all four conditions on EXTCLP, the internal clamp generation circuit generates a clamp pulse at
the proper time after the horizontal sync period as shown in Figure 1.
The TLC5733A internal clamp circuit generates an internal clamp pulse each 1H time for the entire time
interval that the COMPOSITE SYNC input is missing.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
TLC5733A
20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER
WITH HIGH-PRECISION CLAMP
SLAS104A – JULY 1995 – REVISED NOVEMBER 1996
1H
COMPOSITE
SYNC
B
A
Missing COMPOSITE SYNC,
therefore, Noise Gate is Not
Generated
Noise Gate 1
C
Noise Gate 2
F
E
F
Internal Clamp
Pulse
D
NTSC/PAL Counter Reset
NTSC/PAL Counter at
Max Count
Figure 1. COMPOSITE SYNC and Internal Clamp Timing
COMPOSITE
SYNC
B
Noise Gate 1
Noise Gate 2
Figure 2. Proper COMPOSITE SYNC Timing
Table 3. Sync and Clamp Timing for NTSC and PAL with CLK = 4 fsc
TIME
INTERVAL
NTSC
fsc = 3.58 MHz
PAL
fsc = 4.43 MHz
NO. OF
CLOCKS
TIME
(µs)
NO. OF
CLOCKS
TIME
(µs)
A
867
60.6
1075
60.7
B
43
3
61
3.5
C
58
4.05
58
3.27
D
6
0.42
6
0.34
E
76
5.3
93
5.25
F
54
3.77
84
4.74
using an external clamp pulse
When CLPEN is taken low, EXTCLP accepts an externally generated active-high clamp pulse. This pulse must
occur within the horizontal-blanking interval back porch. CLPEN low inhibits the internal counters and no internal
clamp pulse is generated.
10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5733A
20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER
WITH HIGH-PRECISION CLAMP
SLAS104A – JULY 1995 – REVISED NOVEMBER 1996
output digital code (for each channel of ADC)
Table 4. Input Signal Versus Digital Output Code
DIGITAL OUTPUT CODE
INPUT SIGNAL
VOLTAGE
STEP
Vref(RT)
255
1
1
1
1
1
1
1
1
•
•
•
•
•
•
•
•
•
•
MSB
LSB
•
•
•
•
•
•
•
•
•
•
•
128
1
0
0
0
0
0
0
0
•
127
0
1
1
1
1
1
1
1
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Vref(RB)
0
0
0
0
0
0
0
0
0
output data format
The TLC5733A can select three output data formats to various TV/VCR (video) data processing by the
combination of MODE0 and MODE1. The output is synchronous when INIT is taken high.
Table 5. Output Data Format Selection
CONDITION
OUTPUT DATA
MODE0
OUTPUT DATA
FORMAT
RATIO OF Y:U:V
L
L
Format 1
4:1:1
L
H
Format 2
4:4:4
H
L
Format 3
4:2:2
H
H
Not used
N/A
MODE1
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
TLC5733A
20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER
WITH HIGH-PRECISION CLAMP
SLAS104A – JULY 1995 – REVISED NOVEMBER 1996
output data format (continued)
tw(H)
tw(L)
CLK
0
1
2
3
4
n+3
n+4
5
6
7
8
9
10
11
12
tsu1
INIT
OE A
OE B
OE C
Analog
Input VI(ANLG)
n
n+5
n+2
n+1
n+6
n+7
6 fCLK
tpd
Output Data A
INVALID
A0
A1
A2
A3
A4
A5
A6
A7
B06
B05
C06
C05
B04
B03
C04
C03
B02
B01
C02
C01
B48
B47
C48
C47
B46
B45
C46
C45
B44
B43
C44
C43
B42
B41
C42
C41
tpd
Output Data B
BD8 – BD5
INVALID
B08
B07
C08
C07
BD4 – BD1:
Hi-Z
tpd
Output Data C
CD8
CD7
CD6 – CD1: Hi-Z
= Input signal sampling point
Figure 3. Format 1, 4:1:1
12
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5733A
20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER
WITH HIGH-PRECISION CLAMP
SLAS104A – JULY 1995 – REVISED NOVEMBER 1996
output data format (continued)
Table 6. Format 1
OUTPUT DATA
CHANNEL OF
ADC
BIT
CLK (see Note 1)
6
7
8
9
10
11
12
13
A
AD8
AD7
AD6
AD5
AD4
AD3
AD2
AD1
A08
A07
A06
A05
A04
A03
A02
A01
A18
A17
A16
A15
A14
A13
A12
A11
A28
A27
A26
A25
A24
A23
A22
A21
A38
A37
A36
A35
A34
A33
A32
A31
A48
A47
A46
A45
A44
A43
A42
A41
A58
A57
A56
A55
A54
A53
A52
A51
A68
A67
A66
A65
A64
A63
A62
A61
A78
A77
A76
A75
A74
A73
A72
A71
B
BD8
BD7
BD6
BD5
BD4
BD3
BD2
BD1
B08
B07
C08
C07
Hi-Z
Hi-Z
Hi-Z
Hi-Z
B06
B05
C06
C05
Hi-Z
Hi-Z
Hi-Z
Hi-Z
B04
B03
C04
C03
Hi-Z
Hi-Z
Hi-Z
Hi-Z
B02
B01
C02
C01
Hi-Z
Hi-Z
Hi-Z
Hi-Z
B48
B47
C48
C47
Hi-Z
Hi-Z
Hi-Z
Hi-Z
B46
B45
C46
C45
Hi-Z
Hi-Z
Hi-Z
Hi-Z
B44
B43
C44
C43
Hi-Z
Hi-Z
Hi-Z
Hi-Z
B42
B41
C42
C41
Hi-Z
Hi-Z
Hi-Z
Hi-Z
C
CD8
CD7
CD6
CD5
CD4
CD3
CD2
CD1
H
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
H
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
H
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
H
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
NOTES: 1. The value of the first sampling clock at A/D conversion is CLK 0.
2. A06 is an example of an entry in the table where A is the ADC channel, 0 is the sampling order, and
6 is the bit number.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
TLC5733A
20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER
WITH HIGH-PRECISION CLAMP
SLAS104A – JULY 1995 – REVISED NOVEMBER 1996
output data format (continued)
tw(H)
tw(L)
CLK
0
1
2
3
4
n+3
n+4
5
6
7
8
9
10
11
12
tsu1
INIT
OE A
OE B
OE C
Analog
Input VI(ANLG)
n
n+5
n+2
n+1
n+6
n+7
6 fCLK
tpd
Output Data A
AD8 – AD1
A0
INVALID
A1
A2
A3
A4
A5
A6
A7
B1
B2
B3
B4
B5
B6
B7
C1
C2
C3
C4
C5
C6
C7
tpd
Output Data B
BD8 – BD1
B0
INVALID
tpd
Output Data C
CD8 – CD1
C0
INVALID
= Input signal sampling point
Figure 4. Format 2, 4:4:4
14
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5733A
20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER
WITH HIGH-PRECISION CLAMP
SLAS104A – JULY 1995 – REVISED NOVEMBER 1996
output data format (continued)
Table 7. Format 2
OUTPUT DATA
CHANNEL OF
ADC
BIT
CLK (see Note 1)
6
7
8
9
10
11
12
13
A
AD8
AD7
AD6
AD5
AD4
AD3
AD2
AD1
A08
A07
A06
A05
A04
A03
A02
A01
A18
A17
A16
A15
A14
A13
A12
A11
A28
A27
A26
A25
A24
A23
A22
A21
A38
A37
A36
A35
A34
A33
A32
A31
A48
A47
A46
A45
A44
A43
A42
A41
A58
A57
A56
A55
A54
A53
A52
A51
A68
A67
A66
A65
A64
A63
A62
A61
A78
A77
A76
A75
A74
A73
A72
A71
B
BD8
BD7
BD6
BD5
BD4
BD3
BD2
BD1
B08
B07
B06
B05
B04
B03
B02
B01
B18
B17
B16
B15
B14
B13
B12
B11
B28
B27
B26
B25
B24
B23
B22
B21
B38
B37
B36
B35
B34
B33
B32
B31
B48
B47
B46
B45
B44
B43
B42
B41
B58
B57
B56
B55
B54
B53
B52
B51
B68
B67
B66
B65
B64
B63
B62
B61
B78
B77
B76
B75
B74
B73
B72
B71
C
CD8
CD7
CD6
CD5
CD4
CD3
CD2
CD1
C08
C07
C06
C05
C04
C03
C02
C01
C18
C17
C16
C15
C14
C13
C12
C11
C28
C27
C26
C25
C24
C23
C22
C21
C38
C37
C36
C35
C34
C33
C32
C31
C48
C47
C46
C45
C44
C43
C42
C41
C58
C57
C56
C55
C54
C53
C52
C51
C68
C67
C66
C65
C64
C63
C62
C61
C78
C77
C76
C75
C74
C73
C72
C71
NOTES: 1. The value of the first sampling clock at A/D conversion is CLK 0.
2. A06 is an example of an entry in the table where A is the ADC channel, 0 is the sampling order, and
6 is the bit number.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
TLC5733A
20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER
WITH HIGH-PRECISION CLAMP
SLAS104A – JULY 1995 – REVISED NOVEMBER 1996
output data format (continued)
tw(H)
tw(L)
CLK
0
1
2
3
4
n+3
n+4
5
6
7
8
9
10
11
12
tsu1
INIT
OE A
OE B
OE C
Analog
Input VI(ANLG)
n
n+5
n+2
n+1
n+6
n+7
6 fCLK
tpd
Output Data A
AD8 – AD1
A0
INVALID
A1
A2
A3
A4
A5
A6
C0
B2
C2
B4
C4
B6
tpd
Output Data B
BD8 – BD1
INVALID
B0
tpd
Output Data C
CD8
CD7
CD6 – CD1: Hi-Z
= Input signal sampling point
Figure 5. Format 3, 4:2:2
16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5733A
20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER
WITH HIGH-PRECISION CLAMP
SLAS104A – JULY 1995 – REVISED NOVEMBER 1996
output data format (continued)
Table 8. Format 3
OUTPUT DATA
CHANNEL OF
ADC
BIT
CLK (see Note 1)
6
7
8
9
10
11
12
13
A
AD8
AD7
AD6
AD5
AD4
AD3
AD2
AD1
A08
A07
A06
A05
A04
A03
A02
A01
A18
A17
A16
A15
A14
A13
A12
A11
A28
A27
A26
A25
A24
A23
A22
A21
A38
A37
A36
A35
A34
A33
A32
A31
A48
A47
A46
A45
A44
A43
A42
A41
A58
A57
A56
A55
A54
A53
A52
A51
A68
A67
A66
A65
A64
A63
A62
A61
A78
A77
A76
A75
A74
A73
A72
A71
B
BD8
BD7
BD6
BD5
BD4
BD3
BD2
BD1
B08
B07
B06
B05
B04
B03
B02
B01
C08
C07
C06
C05
C04
C03
C02
C01
B28
B27
B26
B25
B24
B23
B22
B21
C28
C27
C26
C25
C24
C23
C22
C21
B48
B47
B46
B45
B44
B43
B42
B41
C48
C47
C46
C45
C44
C43
C42
C41
B68
B67
B66
B65
B64
B63
B62
B61
C68
C67
C66
C65
C64
C63
C62
C61
C
CD8
CD7
CD6
CD5
CD4
CD3
CD2
CD1
H
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
H
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
H
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
H
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
H
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
H
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
H
L
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
L
H
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
NOTES: 1. The value of the first sampling clock at A/D conversion is CLK 0.
2. A06 is an example of an entry in the table where A is the ADC channel, 0 is the sampling order, and
6 is the bit number.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
TLC5733A
20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER
WITH HIGH-PRECISION CLAMP
SLAS104A – JULY 1995 – REVISED NOVEMBER 1996
APPLICATION INFORMATION
Feed Back Clamp Block of HSYNC
CLK
Vref (Top)
C2
0.22 µF
Video Signal Input
(Composite or Component)
A/D
AIN
Vref (Bottom)
Digital
Feedback
_
+
Clamp Gate
R1
16 kΩ
P
Output
Q
C1
2200 pF
Magnitude
Comparator
FEEDBACK CLAMP AND CHARGE PUMP ACTIVITY
INPUT DATA
CONDITIONS
P<Q
OUTPUT
CHARGE PUMP
CONDITIONS
Active
H
Charge
P=Q
Hold
Z
Hold
P>Q
Active
L
Discharge
Figure 6. Feedback Clamp Circuit
18
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
Preset Data
TLC5733A
20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER
WITH HIGH-PRECISION CLAMP
SLAS104A – JULY 1995 – REVISED NOVEMBER 1996
APPLICATION INFORMATION
Channel–A
TLC5733A
16 kΩ
PNP: 2SA733
NPN: 2SC1815
2.2 kΩ
110 Ω
4.3 kΩ
1.8 kΩ
C2
10 µF
10 µF
Analog
Signal Input
63
2VI(PP)
1 kΩ
1VI(PP)
VIN(A)
CW
75 Ω
470 Ω
5.6 kΩ
Gain Adjust
5.6 kΩ
5.6 kΩ
1.8 kΩ
Buffer Amplifier
60
C2
0.22 µF
TLC5733A
R1
15 kΩ
ADC
Channel–A
to
Channel–C
Buffer Amp
R1 59
CLPV(A)
CLP OUT(A)
C1
2
OE(A)
C1
2200 pF
Channel–B
Channel–C
55
56
CLK IN
57
58
3
4
EXTCLP
CLK
CLPEN
INIT
NT/PAL
TEST
Figure 7. Interface Without Clamping
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
TLC5733A
20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER
WITH HIGH-PRECISION CLAMP
SLAS104A – JULY 1995 – REVISED NOVEMBER 1996
APPLICATION INFORMATION
Channel–A
TLC5733A
16 kΩ
PNP: 2SA733
NPN: 2SC1815
2.2 kΩ
110 Ω
4.3 kΩ
1.8 kΩ
C2
10 µF
10 µF
Analog
Signal Input
63
2VI(PP)
1 kΩ
1VI(PP)
VIN(A)
CW
75 Ω
470 Ω
5.6 kΩ
Gain Adjust
5.6 kΩ
1.8 kΩ
Buffer Amplifier
60
C2
0.22 µF
TLC5733A
R1
15 kΩ
ADC
Channel–A
to
Channel–C
Buffer Amp
R1 59
CLPV(A)
CLP OUT A
C1
2
OE(A)
C1
2200 pF
Channel–B
Channel–C
10 µF
Composite SYNC
0V
55
+
–5 V
0V
56
CLK IN
57
58
3
4
Figure 8. Interface Connection Using Composite Sync Signal
20
EXTCLP
1 kΩ
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
CLK
CLPEN
INIT
NT/PAL
TEST
TLC5733A
20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER
WITH HIGH-PRECISION CLAMP
SLAS104A – JULY 1995 – REVISED NOVEMBER 1996
APPLICATION INFORMATION
Channel–A
TLC5733A
16 kΩ
PNP: 2SA733
NPN: 2SC1815
2.2 kΩ
110 Ω
4.3 kΩ
1.8 kΩ
C2
10 µF
10 µF
Analog
Signal Input
63
2VI(PP)
1 kΩ
1VI(PP)
VIN(A)
CW
75 Ω
5.6 kΩ
470 Ω
Gain Adjust
5.6 kΩ
1.8 kΩ
Buffer Amplifier
60
C2
0.22 µF
TLC5733A
R1
15 kΩ
ADC
Channel–A
to
Channel–C
Buffer Amp
R1 59
CLPV(A)
CLP OUT A
C1
2
OE(A)
C1
2200 pF
Channel–B
Channel–C
D
Clamp Pulse IN
Q
55
56
CLK IN
57
58
3
4
EXTCLP
CLK
CLPEN
INIT
NT/PAL
TEST
Figure 9. Interface Using External Clamp Pulse With Synchronization
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
TLC5733A
20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER
WITH HIGH-PRECISION CLAMP
SLAS104A – JULY 1995 – REVISED NOVEMBER 1996
APPLICATION INFORMATION
AVDD
ADC
Block
VRT(A)
61
ADC
Block
VRT(B)
52
ADC
Block
VRT(C)
29
+
_
RREF
VRB(A)
1
VRB(B)
48
VRB(C)
33
+
_
Figure 10. Adjustment Circuit For Top and Bottom Reference Voltages
22
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5733A
20 MSPS 3-CHANNEL ANALOG-TO-DIGITAL CONVERTER
WITH HIGH-PRECISION CLAMP
SLAS104A – JULY 1995 – REVISED NOVEMBER 1996
MECHANICAL DATA
PM (S-PQFP-G64)
PLASTIC QUAD FLATPACK
0,27
0,17
0,50
0,08 M
33
48
49
32
64
17
0,13 NOM
1
16
7,50 TYP
Gage Plane
10,20
SQ
9,80
12,20
SQ
11,80
0,25
0,05 MIN
0°– 7°
0,75
0,45
1,45
1,35
Seating Plane
0,08
1,60 MAX
4040152 / B 03/95
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MO-136
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1998, Texas Instruments Incorporated