VNH5019A-E Automotive fully integrated H-bridge motor driver Features Type VNH5019A-E RDS(on) Iout Vccmax 18 mΩ typ (per leg) 30 A 41 V ■ ECOPACK®: lead free and RoHS compliant ■ Automotive Grade: compliance with AEC guidelines ■ Output current: 30 A ■ 3 V CMOS compatible inputs ■ Undervoltage and overvoltage shutdown ■ High-side and low-side thermal shutdown ■ Cross-conduction protection ■ Current limitation ■ Very low standby power consumption ■ PWM operation up to 20 khz ■ Protection against: – Loss of ground and loss of VCC ■ Current sense output proportional to motor current ■ Charge pump output for reverse polarity protection ■ Output protected against short to ground and short to VCC Description The VHN5019A-E is a full bridge motor driver intended for a wide range of automotive applications. The device incorporates a dual monolithic high-side drivers and two low-side switches. The high-side driver switch is designed using STMicroelectronics’ well known and proven proprietary VIPower® M0 technology that allows to efficiently integrate on the same die a true December 2011 MultiPowerSO-30™ Power MOSFET with an intelligent signal/protection circuit. The three dice are assembled in MultiPowerSO-30 package on electrically isolated lead-frames. This package, specifically designed for the harsh automotive environment offers improved thermal performance thanks to exposed die pads. The input signals INA and INB can directly interface to the microcontroller to select the motor direction and the brake condition. The DIAGA/ENA or DIAGB/ENB, when connected to an external pull-up resistor, enable one leg of the bridge. They also provide a feedback digital diagnostic signal. The CS pin allows to monitor the motor current by delivering a current proportional to its value when CS_DIS pin is driven low or left open. The PWM, up to 20 KHz, lets us to control the speed of the motor in all possible conditions. In all cases, a low-level state on the PWM pin turns-off both the LSA and LSB switches. When PWM rises to a high-level, LSA or LSB turn-on again depending on the input pin state. Output current limitation and thermal shutdown protects the concerned high-side in short to ground condition. The short to battery condition is revealed by the overload detector or by thermal shutdown that latches off the relevant low-side. Active VCC pin voltage clamp protects the device against low energy spikes in all configurations for the motor. CP pin provides the necessary gate drive for an external n-channel PowerMOS used for reverse polarity protection. Doc ID 15701 Rev 8 1/37 www.st.com 1 Contents VNH5019A-E Contents 1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Waveforms and truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5 Reverse battery protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1 4 MultiPowerSO-30 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.1 Thermal calculation in clockwise and anti-clockwise operation in steady-state mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.2 Thermal calculation in transient mode . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2 MultiPowerSO-30 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3 MultiPowerSO-30 suggested land pattern . . . . . . . . . . . . . . . . . . . . . . . . 32 4.4 MultiPowerSO-30 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2/37 Doc ID 15701 Rev 8 VNH5019A-E List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Block descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Logic inputs (INA, INB, ENA, ENB,PWM, CS_DIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Switching (VCC = 13 V, RLOAD = 0.87 W, Tj = 25 °C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Protection and diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Current sense (8 V < VCC < 21 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Truth table in normal operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Truth table in fault conditions (detected on OUTA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical transient requirements (part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Electrical transient requirements (part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Electrical transient requirements (part 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Thermal calculation in clockwise and anti-clockwise operation in steady-state mode . . . . 27 Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 MultiPowerSO-30 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Doc ID 15701 Rev 8 3/37 List of figures VNH5019A-E List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. 4/37 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Typical application circuit for DC to 20 kHz PWM operation with reverse battery protection (option A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Typical application circuit for DC to 20 kHz PWM operation with reverse battery protection (option B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Behavior in fault condition (how a fault can be cleared) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Definition of the delay times measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Definition of the low-side switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Definition of the high-side switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Definition of dynamic cross conduction current during a PWM operation. . . . . . . . . . . . . . 21 Waveforms in full bridge operation (part 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Waveforms in full bridge operation (part 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Definition of delay response time of sense current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Half-bridge configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Multi-motors configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 MultiPowerSO-30™ PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Chipset configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Auto and mutual Rthj-amb vs PCB copper area in open box free air condition . . . . . . . . . 26 Chipset configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 MultiPowerSO-30 HSD thermal impedance junction ambient single pulse . . . . . . . . . . . . 28 MultiPowerSO-30 LSD thermal impedance junction ambient single pulse . . . . . . . . . . . . . 28 Thermal fitting model of an H-bridge in MultiPowerSO-30 . . . . . . . . . . . . . . . . . . . . . . . . . 29 MultiPowerSO-30 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 MultiPowerSO-30 suggested pad layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 MultiPowerSO-30 tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 MultiPowerSO-30 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Doc ID 15701 Rev 8 VNH5019A-E Block diagram and pin description 1 Block diagram and pin description Figure 1. Block diagram 6## #(!2'% 05-0 &!5,4 $%4%#4)/. 0/7%2 ,)-)4! 4)/. ,3!?/6%24%-0%2!452% (3!?/6%24%-0%2!45 2% ,3"?/6%24%-0%2!4 52% /656 (3"?/6%24%-0%2!452% #,!-0?(3! #,!-0?(3" ,/')# $2)6%2 (3! (3! $2)6%2 (3" #522%.4 ,)-)4!4 )/.?! /54! #522%.4 ,)-)4!4 )/.?" + /54" + #,!-0?,3! #,!-0?,3" $2)6%2 ,3! ,3! $2)6%2 ,3" /6%2,/!$ $%4%#4/2?! '.$! (3" ,3" /6%2,/!$ $%4%#4/2?" $)!'!%.! ).! #3 #3?$)3 07- )." $)!'"%." '.$" ("1($'5 Doc ID 15701 Rev 8 5/37 Block diagram and pin description Figure 2. VNH5019A-E Configuration diagram (top view) 1 OUTA N.C. VCC INA ENA/DIAGA CS_DIS PWM 30 OUTA Heat Slug2 GNDA OUTA N.C. VCC VCC CS ENB/DIAGB INB Heat Slug1 N.C. OUTB CP VBAT OUTB Heat Slug3 VCC N.C. OUTB Table 1. 15 16 GNDB GNDB GNDB N.C. OUTB Suggested connections for unused and not connected pins Connection / pin Current sense N.C. OUTx INPUTx, PWM DIAGx/ENx CS_DIS Floating Not allowed X X X To ground Through 1 kΩ resistor X Not allowed Through 10 kΩ resistor Table 2. Pin definitions and functions Pin Symbol Function 1, 25, 30 OUTA, Heat Slug2 Source of high-side switch A / drain of low-side switch A, power connection to the motor 2,14,17, 22, 24,29 N.C. 3, 13, 23 VCC, Heat Slug1 12 VBAT Battery connection and connection to the source of the external PowerMOS used for the reverse battery protection ENA/DIAGA Status of high-side and low-side switches A; open drain output. This pin must be connected to an external pull-up resistor. When externally pulled low, it disables half-bridge A. In case of fault detection (thermal shutdown of a high-side FET or excessive ON-state voltage drop across a low-side FET), this pin is pulled low by the device (see Table 13: Truth table in fault conditions (detected on OUTA)) 5 6/37 OUTA N.C. GNDA GNDA Not connected Drain of high-side switches and connection to the drain of the external PowerMOS used for the reverse battery protection Doc ID 15701 Rev 8 VNH5019A-E Block diagram and pin description Table 2. Pin definitions and functions (continued) Pin Symbol 6 CS_DIS 4 INA 7 PWM Function Active high CMOS compatible pin to disable the current sense pin Clockwise input. CMOS compatible PWM input. CMOS compatible. CS Output of current sense. This output delivers a current proportional to the motor current, if CS_DIS is low or left open. The information can be read back as an analog voltage across an external resistor. 9 ENB/DIAGB Status of high-side and low-side switches B; Open drain output. This pin must be connected to an external pull up resistor. When externally pulled low, it disables half-bridge B. In case of fault detection (thermal shutdown of a high-side FET or excessive ON-state voltage drop across a low-side FET), this pin is pulled low by the device (see Table 13: Truth table in fault conditions (detected on OUTA). 10 INB Counter clockwise input. CMOS compatible 11 CP Connection to the gate of the external MOS used for the reverse battery protection 15, 16, 21 OUTB, Heat Slug3 Source of high-side switch B / drain of low-side switch B, power connection to the motor 26, 27, 28 GNDA Source of low-side switch A and power ground(1) 18, 19, 20 GNDB Source of low-side switch B and power ground(1) 8 1. GNDA and GNDB must be externally connected together ) Table 3. Block descriptions(1) Name Description Logic control Allows the turn-on and the turn-off of the high-side and the low-side switches according to the Table 12. Overvoltage + undervoltage Shut down the device outside the range [4.5 V to 24 V] for the battery voltage. High-side, low-side and clamp voltage Protect the high-side and the low-side switches from the high-voltage on the battery line in all configuration for the motor. High-side and low-side driver Drive the gate of the concerned switch to allow a proper RDS(on) for the leg of the bridge. Linear current limiter Limits the motor current, by reducing the high-side switch gate-source voltage when short-circuit to ground occurs. High-side and low-side overtemperature protection In case of short-circuit with the increase of the junction’s temperature, it shuts down the concerned driver to prevent its degradation and to protect the die. Low-side overload detector Detects when low-side current exceeds shutdown current and latches off the concerned low-side. Doc ID 15701 Rev 8 7/37 Block diagram and pin description Table 3. VNH5019A-E Block descriptions(1) (continued) Name Description Charge pump Provides the voltage necessary to drive the gate of the external PowerMOS used for the reverse polarity protection Fault detection Signalizes an abnormal condition of the switch (output shorted to ground or output shorted to battery) by pulling down the concerned ENx/DIAGx pin. Power limitation Limits the power dissipation of the high-side driver inside safe range in case of short to ground condition. 1. See Figure 1 8/37 Doc ID 15701 Rev 8 VNH5019A-E 2 Electrical specifications Electrical specifications Figure 3. Current and voltage conventions ICP IBAT IS VCP IINA IINB VINA IENA VINB IENB CP INA VBAT VCC IOUTA OUTA INB OUTB CS DIAGA/ENA CS_DIS DIAGB/ENB VENA VBAT VCC VENB PWM IOUTB VOUTA ISENSE VOUTB ICSD GNDA GNDB VCSD VSENSE Ipw GND Vpw 2.1 IGND Absolute maximum ratings Stressing the device above the rating listed in the “absolute maximum ratings” table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE program and other relevant quality document. Table 4. Absolute maximum rating Symbol Parameter Value Unit VBAT Maximum battery voltage(1) -16 +41 V V VCC Maximum bridge supply voltage + 41 V Imax Maximum output current (continuous) 30 A IR Reverse output current (continuous) -30 A IIN Input current (INA and INB pins) +/- 10 mA IEN Enable input current (DIAGA/ENA and DIAGB/ENB pins) +/- 10 mA Ipw PWM input current +/- 10 mA ICP CP output current +/- 10 mA CS_DIS input current +/- 10 mA ICS_DIS Doc ID 15701 Rev 8 9/37 Electrical specifications Table 4. VNH5019A-E Absolute maximum rating (continued) Symbol Parameter Value Unit VCC - 41 +VCC V V 2 kV Case operating temperature -40 to 150 °C Storage temperature -55 to 150 °C VCS Current sense maximum voltage VESD Electrostatic discharge (human body model: R = 1.5 kΩ, C = 100 pF) Tc TSTG 1. This applies with the n-channel MOSFET used for the reverse battery protection. Otherwise VBAT has to be shorted to VCC. 2.2 Thermal data Table 5. Symbol Rthj-case Rthj-amb 10/37 Thermal data Parameter Max. value Unit Thermal resistance junction-case HSD 1.7 °C/W Thermal resistance junction-case LSD 3.2 °C/W See Figure 18 °C/W Thermal resistance junction-ambient Doc ID 15701 Rev 8 VNH5019A-E 2.3 Electrical specifications Electrical characteristics Values specified in this section are for 8 V < VCC < 21 V, -40 °C < Tj < 150 °C, unless otherwise specified. Table 6. Power section Symbol Parameter VCC Operating bridge supply voltage IS Test conditions Min. 5.5 OFF-state with all fault cleared and ENx = 0 V (standby): INA = INB = PWM = 0; Tj = 25 °C; VCC = 13 V INA = INB = PWM = 0 OFF-state (no standby): INA = INB = PWM = 0; ENx = 5 V Supply current 10 ON-state: INA or INB = 5 V, no PWM INA or INB = 5 V, PWM = 20 kHz RONHS Static high-side resistance RONLS Static low-side resistance 4 IOUT = 15 A; Tj = 25 °C High-side OFF-state output current (per channel) 24 V 15 60 µA µA 6 mA 8 8 mA mA mΩ 6.0 mΩ IOUT = 15 A; Tj = - 40 °C to 150 °C IL(off) Unit 26.5 IOUT = 15 A; Tj = 25 °C High-side free-wheeling diode forward voltage Max. 12.0 IOUT = 15 A; Tj = - 40 °C to 150 °C Vf Table 7. Typ. 11.5 If = 15 A, Tj = 150 °C 0.6 0.8 Tj = 25 °C; VOUTX = ENX = 0 V; VCC = 13 V 3 Tj = 125 °C; VOUTX = ENX = 0 V; VCC = 13 V 5 V µA Logic inputs (INA, INB, ENA, ENB,PWM, CS_DIS) Symbol Parameter Test conditions VIL Low-level input voltage Normal operation (DIAGX/ENX pin acts as an input pin) VIH High-level input voltage Normal operation (DIAGX/ENX pin acts as an input pin) IINL Low-level input current VIN = 0.9 V IINH High-level input current VIN = 2.1 V VIHYST Input hysteresis voltage Normal operation (DIAGX/ENX pin acts as an input pin) Doc ID 15701 Rev 8 Min. Typ. Max. Unit 0.9 V 2.1 V 1 µA 10 0.15 µA V 11/37 Electrical specifications Table 7. Logic inputs (INA, INB, ENA, ENB,PWM, CS_DIS) (continued) Symbol VICL VDIAG Parameter Test conditions Input clamp voltage Enable low-level output voltage Table 8. Symbol f Min. Typ. Max. IIN = 1 mA 5.5 6.3 7.5 IIN = -1 mA -1.0 -0.7 -0.3 Unit V Fault operation (DIAGX/ENX pin acts as an output pin); IEN = 1 mA 0.4 V Max Unit 20 kHz Switching (VCC = 13 V, RLOAD = 0.87 Ω, Tj = 25 °C) Parameter Test conditions PWM frequency Min Typ 0 td(on) HSD rise time Input rise time < 1µs (see Figure 9) 250 µs td(off) HSD fall time Input rise time < 1µs (see Figure 9) 250 µs tr LSD rise time (see Figure 8) 1 2 µs tf LSD fall time (see Figure 8) 1 2 µs tDEL Delay time during change of operating mode (see Figure 7) 400 1600 µs trr High-side free wheeling diode reverse recovery time (see Figure 10) 110 ns IRM Dynamic cross-conduction current IOUT = 15 A (see Figure 10) 2 A Table 9. Symbol VUSD VUSDhyst 200 Protection and diagnostic Parameter Test conditions Min Typ Max Unit VCC undervoltage shutdown 4.5 5.5 V VCC undervoltage shutdown hysteresis 0.5 V VOV VCC overvoltage shutdown 24 27 30 V ILIM_H High-side current limitation 30 50 70 A ISD_LS Low-side shutdown current 70 115 160 A VCLPHS(1) High-side clamp voltage (VCC to OUTA = 0 or OUTB = 0) IOUT = 15 A 43 48 54 V VCLPLS(1) Low-side clamp voltage (OUTA = VCC or OUTB = VCC to GND) IOUT = 15 A 27 30 33 V Thermal shutdown temperature VIN = 2.1 V 150 175 200 °C TTSD(2) 12/37 VNH5019A-E Doc ID 15701 Rev 8 VNH5019A-E Electrical specifications Table 9. Protection and diagnostic (continued) Symbol TTSD_LS TTR(3) THYST(3) Parameter Test conditions Low-side thermal shutdown temperature VIN = 0 V Thermal reset temperature Min Typ Max Unit 150 175 200 °C 135 Thermal hysteresis 7 °C 15 °C 1. The device is able to pass the ESD and ISO pulse requirements as specified in the Table 15. 2. TTSD is the minimum threshold temperature between HS and LS 3. Valid for both HSD and LSD Table 10. Symbol Current sense (8 V < VCC < 21 V) Test conditions Min Typ Max IOUT/ISENSE IOUT = 3 A, VSENSE = 0.5 V, Tj = - 40 °C to 150°C 4670 7110 10110 Analog current sense ratio drift IOUT = 3 A; VSENSE = 0.5 V, Tj = -40 °C to 150 °C -19 IOUT/ISENSE IOUT = 8 A, VSENSE = 1.3V, Tj = - 40 °C to 150°C 6060 Analog current sense ratio drift IOUT = 8 A; VSENSE = 1.3V, Tj = -40 °C to 150 °C -14 IOUT/ISENSE IOUT = 15 A, VSENSE = 2.4 V, Tj = - 40 °C to 150°C 6070 Analog current sense ratio drift IOUT = 15 A; VSENSE = 2.4 V, Tj = -40 °C to 150 °C -12 IOUT/ISENSE IOUT = 25 A, VSENSE = 4 V, Tj = - 40 °C to 150°C 6000 dK3/K3 Analog current sense ratio drift IOUT =25 A; VSENSE = 4 V, Tj = -40 °C to 150 °C -12 VSENSE Max analog sense output voltage IOUT = 15 A, RSENSE = 1.1 kΩ 5 IOUT = 0 A, VSENSE = 0 V, VCSD = 5 V, VIN = 0 V, Tj = - 40 to 150°C 0 IOUT = 0 A, VSENSE = 0 V, VCSD = 0 V, VIN = 5 V, Tj = - 40 to 150°C 0 K0 dK0/K0 K1 dK1/K1 K2 dK2/K2 K3 ISENSEO Parameter Analog sense leakage current Unit 19 7030 % 8330 14 6990 % 7810 12 6940 % 7650 12 % V 5 µA 100 tDSENSEH Delay response time from falling edge of CS_DIS pin VIN = 5 V, VSENSE < 4 V, IOUT = 8 A, ISENSE = 90% of ISENSEmax (see fig Figure 13) 50 µs tDSENSEL Delay response time from rising edge of CS_DIS pin VIN = 5 V, VSENSE < 4 V, IOUT = 8 A, ISENSE = 10% of ISENSEmax (see fig Figure 13) 20 µs Doc ID 15701 Rev 8 13/37 Electrical specifications 2.4 VNH5019A-E Table 11. Charge pump Symbol Parameter Test conditions Min ENX = 5 V Typ VCC + 5 VCP Charge pump output voltage IBAT Charge pump standby ENA = ENB = 0 V current ENX = 5 V, VCC = 4.5 V Max Unit VCC + 10 V 10.5 200 nA Waveforms and truth table In normal operating conditions the DIAGX/ENX pin is considered as an input pin by the device. This pin must be externally pulled-high PWM pin usage: in all cases, a “0” on the PWM pin turns-off both LSA and LSB switches. When PWM rises back to “1”, LSA or LSB turn-on again depending on the input pin state. Table 12. 14/37 Truth table in normal operating conditions INA INB DIAGA/ENA DIAGB/ENB OUTA OUTB CS (VCSD = 0 V) 1 1 1 1 0 0 0 1 H H High imp. 1 1 H L ISENSE = IOUT/K Clockwise (CW) 1 1 1 L H ISENSE = IOUT/K Counterclockwise (CCW) 0 1 1 L L High imp. Doc ID 15701 Rev 8 Operating mode Brake to VCC Brake to GND VNH5019A-E Figure 4. Electrical specifications Typical application circuit for DC to 20 kHz PWM operation with reverse battery protection (option A) VBAT Reg 5V +5V G D S + 5V 3.3K VBAT 1K CP 3.3K VCC DIAGB/ENB 1K DIAG A/ENA 1K HSA HSB PWM μC OUT A 1K OUT B LSA 10K 33nF INB INA 1K LSB CS C M 1.5K GNDB GNDA Note: The external N-channel Power MOSFET used for the reverse battery protection should have the following characteristics: - BVdss > 20 V (for a reverse battery of -16 V); - RDS(on) < 1/3 of H-bridge total RDS(on) - Standard Logic Gate Driving Doc ID 15701 Rev 8 15/37 Electrical specifications Figure 5. VNH5019A-E Typical application circuit for DC to 20 kHz PWM operation with reverse battery protection (option B) VCC Reg 5V +5V + 5V VCC 3.3K VBAT CP 3.3K DIAGB/ENB 1K 1K DIAGA/ENA 1K HSA HSB PWM μC OUTA 1K OUTB INA INB LSA 10K 33nF 1K LSB CS C M 1.5K GNDB GNDA S 100K G D Note: The value of the blocking capacitor (C) depends on the application conditions and defines voltage and current ripple onto supply line at PWM operation. Stored energy of the motor inductance may flyback into the blocking capacitor, if the bridge driver goes into 3-state. This causes a hazardous overvoltage if the capacitor is not big enough. As basic orientation, 500 µF per 10 A load current is recommended. Table 13. INA Truth table in fault conditions (detected on OUTA) INB DIAGA/ENA DIAGB/ENB OUTA OUTB CS (VCSD=0V) H L High impedance H IOUTB/K L High impedance 1 1 0 1 1 0 OPEN 0 0 X X 0 Fault Information Note: OPEN Protection Action In normal operating conditions the DIAGX/ENX pin is considered as an input pin by the device. This pin must be externally pulled high. In case of a fault condition the DIAGX/ENX pin is considered as an output pin by the device. 16/37 Doc ID 15701 Rev 8 VNH5019A-E Electrical specifications The fault conditions are: ● overtemperature on one or both high-sides (for example, if a short to ground occurs as it could be the case described in line 1 and 2 in the Table 14); ● Short to battery condition on the output (saturation detection on the low-side Power MOSFET). Possible origins of fault conditions may be: ● OUTA is shorted to ground. It follows that, high-side A is in overtemperature state. ● OUTA is shorted to VCC. It follow that, low-side Power MOSFET is in saturation state. When a fault condition is detected, the user can know which power element is in fault by monitoring the INA, INB, DIAGA/ENA and DIAGB/ENB pins. In any case, when a fault is detected, the faulty leg of the bridge is latched off. To turn-on the respective output (OUTX) again, the input signal must rise from low-level to high-level. Figure 6. Behavior in fault condition (how a fault can be cleared) Note: In case of the fault condition is not removed, the procedure for unlatching and sending the device in Stby mode is: - Clear the fault in the device (toggle: INA if ENA=0 or INB if ENB=0) - Pull low all inputs, PWM and Diag/EN pins within tDEL. If the Diag/En pins are already low, PWM=0, the fault can be cleared simply toggling the input. The device enters in stby mode as soon as the fault is cleared. Doc ID 15701 Rev 8 17/37 Electrical specifications Table 14. VNH5019A-E Electrical transient requirements (part 1) ISO T/R Test level 7637/1 Test Pulse I II III IV Delay and impedance 1 -25 V -50 V -75 V -100 V 2 ms, 10 Ω 2 +25 V +50 V +75 V +100 V 0.2 ms, 10 Ω 3a -25 V -50 V -100 V -150 V 0.1 μs, 50 Ω 3b +25 V +50 V +75 V +100 V 0.1 μs, 50 Ω 4 -4 V -5 V -6 V -7 V 100 ms, 0.01 Ω 5 +26.5 V +46.5 V +66.5 V +86.5 V 400 ms, 2 Ω Table 15. Electrical transient requirements (part 2) ISO T/R Test levels 7637/1 Test Pulse I II III IV 1 C C C C 2 C C C C 3a C C C C 3b C C C C 4 C C C C 5 C E E E Table 16. Electrical transient requirements (part 3) Class 18/37 Contents C All functions of the device are performed as designed after exposure to disturbance. E One or more functions of the device are not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. Doc ID 15701 Rev 8 VNH5019A-E 2.5 Electrical specifications Reverse battery protection Against reverse battery condition the charge pump feature allows to use an external N-channel MOSFET connected as shown in the typical application circuit (see Figure 4). As alternative option, a N-channel MOSFET connected to GND pin can be used (see typical application circuit in figure Figure 5). With this configuration we recommend to short VBAT pin to VCC. The device sustains no more than -30 A in reverse battery conditions because of the two body diodes of the Power MOSFETs. Additionally, in reverse battery condition the I/Os of VNH5019A-E is pulled-down to the VCC line (approximately -1.5 V). Series resistor must be inserted to limit the current sunk from the microcontroller I/Os. If IRmax is the maximum target reverse current through microcontroller I/Os, series resistor is: V IOs – V CC R = ------------------------------I Rmax Figure 7. Definition of the delay times measurement VINA, t VINB t PWM t ILOAD tDEL tDEL t Doc ID 15701 Rev 8 19/37 Electrical specifications Figure 8. VNH5019A-E Definition of the low-side switching times PWM t VOUTA, B 90% tf Figure 9. 80% 20% 10% tr t Definition of the high-side switching times VINA, td(off) td(on) t VOUTA 90% 10% t 20/37 Doc ID 15701 Rev 8 VNH5019A-E Electrical specifications Figure 10. Definition of dynamic cross conduction current during a PWM operation INA=1, INB=0 PWM t IMOTOR t VOUTB t ICC IRM t trr Doc ID 15701 Rev 8 21/37 Electrical specifications VNH5019A-E Figure 11. Waveforms in full bridge operation (part 1) NORMAL OPERATION (DIAGA/ENA=1, DIAGB/ENB=1) LOAD CONNECTED BETWEEN OUTA, OUTB DIAGA/ENA DIAGB/ENB INA INB PWM OUTA OUTB IOUTA->OUTB CS (*) tDEL CS_DIS tDEL (*) CS BEHAVIOUR DURING PWM MODE DEPENDS ON PWM FREQUENCY AND DUTY CYCLE NORMAL OPERATION (DIAGA/ENA=1, DIAGB/ENB=0 and DIAGA/ENA=0, DIAGB/ENB=1) LOAD CONNECTED BETWEEN OUTA, OUTB DIAGA/ENA DIAG B/ENB INA INB PWM OUTA OUTB IOUTA->OUTB CS CS_DIS CURRENT LIMITATION/THERMAL SHUTDOWN or OUTA SHORTED TO GROUND INA INB ILIM IOUTA->OUTB Tj =TTSD TTSD_HSA TTR_HSA Tj < TTSD TjHSA Tj > TTR DIAGA/ENA DIAGB/ENB CS CS_DIS current limitation normal operation 22/37 power limitation OUTA shorted to ground Doc ID 15701 Rev 8 normal operation VNH5019A-E Electrical specifications Figure 12. Waveforms in full bridge operation (part 2) OUTA shorted to VCC (resistive short) and undervoltage shutdown CS_DIS INA INB OUTA OUTB IOUTA->OUTB ISD_LS ILSA TTSD_LS Tj_LSA DIAGB/ENB DIAGA/ENA CS V<nominal normal operation OUTA softly shorted to VCC normal operation undervoltage shutdown OUTA shorted to VCC (pure short) and undervoltage shutdown CS_DIS INA INB OUTA OUTB IOUTA->OUTB ISD_LS ILSA TTSD_LS Tj_LSA DIAGB/ENB DIAGA/ENA CS V<nominal normal operation OUTA hardly shorted to VCC Doc ID 15701 Rev 8 normal operation undervoltage shutdown 23/37 Electrical specifications VNH5019A-E Figure 13. Definition of delay response time of sense current INPUT CS_DIS LOAD CURRENT CURRENT SENSE tDSENSEH tDSENSEL The VNH5019A-E can be used as a high power half-bridge driver achieving an on- resistance per leg of 9.5 mΩ. The figure below shows the suggested configuration: Figure 14. Half-bridge configuration INA INB DIAGA/ENA DIAGB/ENB PWM VCC CP CP VCC VBAT VBAT INA INB DIAGA/ENA DIAGB/ENB PWM CS_DIS CS_DIS OUTA OUTB GNDA M GNDA GNDB OUTB OUTA GNDB The VNH5019A-E can easily be designed in multi-motors driving applications such as seat positioning systems where only one motor must be driven at a time. DIAGX/ENX pins allow to put unused half-bridges in high-impedance. The figure below shows the suggested configuration: 24/37 Doc ID 15701 Rev 8 VNH5019A-E Electrical specifications Figure 15. Multi-motors configuration INA INB DIAGA/ENA DIAGB/ENB PWM CS_DIS VCC CP OUTA OUTB GNDA CP VCC VBAT VBAT M2 M1 OUTB OUTA GNDA GNDB INA INB DIAGA/ENA DIAGB/ENB PWM CS_DIS GNDB M3 Doc ID 15701 Rev 8 25/37 Package and PCB thermal data VNH5019A-E 3 Package and PCB thermal data 3.1 MultiPowerSO-30 thermal data Figure 16. MultiPowerSO-30™ PC board Note: Layout condition of Rth and Zth measurements (PCB FR4 area= 58 mm x 58 mm, PCB thickness=2 mm, Cu thickness=35 mm, Copper areas: from minimum pad lay-out to 16 cm2). Figure 17. Chipset configuration CHIP 1 RthA RthAB RthAC CHIP 2 RthBC CHIP 3 RthC RthB Figure 18. Auto and mutual Rthj-amb vs PCB copper area in open box free air condition 50 RthA RthB = RthC RthAB = RthAC RthBC 45 40 35 30 25 °C/W 20 15 10 5 0 0 26/37 2 4 6 8 10 12 cm 2 of Cu Area (refer to PCB layout) Doc ID 15701 Rev 8 14 16 18 VNH5019A-E Package and PCB thermal data 3.1.1 Thermal calculation in clockwise and anti-clockwise operation in steady-state mode Table 17. Thermal calculation in clockwise and anti-clockwise operation in steady-state mode Chip 1 Chip 2 Chip 3 Tjchip1 Tjchip2 Tjchip3 Pdchip1 • RthAB + Pdchip3 • RthBC + Tamb Pdchip1 • RthAC + Pdchip3 • RthC + Tamb ON OFF ON Pdchip1 • RthA + Pdchip3 • RthAC + Tamb ON ON OFF Pdchip1 • RthA + Pdchip2 • Pdchip1 • RthAB + Pdchip2 • RthB RthAB + Tamb + Tamb ON OFF OFF ON ON ON 3.1.2 Pdchip1 • RthA+ Tamb Pdchip1 • RthAB + Tamb Pdchip1 • RthAC + Pdchip2 • RthBC + Tamb Pdchip1 • RthAC + Tamb Pdchip1 • RthA + (Pdchip2 + Pdchip2 • RthB + Pdchip1 • Pdchip1 • RthAB + Pdchip2 • Pdchip3) • RthAB + Tamb RthAB + Pdchip3 • RthBC + Tamb RthBC + Pdchip3 • RthC + Tamb Thermal calculation in transient mode Ths= Pdhs • Zhs + Zhsls • (PdlsA + PdlsB) + Tamb TlsA= PdlsA • Zls + Pdhs • Zhsls + PdlsB • Zhsls + Tamb TlsB= PdlsB • Zls + Pdhs • Zhsls + PdlsA • Zhsls + Tamb Figure 19. Chipset configuration CHIP 1 Zls Zhsls Zhsls CHIP 2 Zlsls Zls CHIP 3 Zls Equation 1: pulse calculation formula Z THδ = R TH ⋅ δ + ZTHtp ( 1 – δ ) where δ = t p ⁄ T Doc ID 15701 Rev 8 27/37 Package and PCB thermal data Figure 20. VNH5019A-E MultiPowerSO-30 HSD thermal impedance junction ambient single pulse ZTH -HSD @ cu area 100 °C/W 10 HSD-16 cm^2 Cu HSD-8 cm^2 Cu HSD-4 cm^2 Cu HSD-footprint HsLsD-16 cm^2 Cu HsLsD-8 cm^2 Cu HsLsD-4 cm^2 Cu HsLsD-footprint 1 0.1 0.001 0.01 0.1 time (sec) 1 10 100 1000 Figure 21. MultiPowerSO-30 LSD thermal impedance junction ambient single pulse ZTH -LSD @ cu area 100 10 LSD-16 cm^2 Cu LSD-8 cm^2 Cu LSD-4 cm^2 Cu LSD-footprint LsLsD-16 cm^2 Cu LsLsD-8 cm^2 Cu LsLsD-4 cm^2 Cu LsLsD-footprint °C/W Z ls Z lsls 1 0.1 0.001 28/37 0.01 0.1 time (sec) 1 Doc ID 15701 Rev 8 10 100 1000 VNH5019A-E Package and PCB thermal data Figure 22. Thermal fitting model of an H-bridge in MultiPowerSO-30 Table 18. Thermal parameters(1) Area/island (cm2) Footprint R1 = R7 (°C/W) 0.1 R2 = R8 (°C/W) 0.3 R3 = R10 = R16 (°C/W) 0.5 4 8 16 R4 (°C/W) 6 R5 (°C/W) 30 24 24 24 R6 (°C/W) 56 52 42 32 R9 = R15 (°C/W) 0.05 R11 = R17 (°C/W) 0.7 R12 = R18 (°C/W) 10 R13 = R19 (°C/W) 36 26 26 26 R14 = R20 (°C/W) 56 42 36 28 R21 = R22 (°C/W) 35 25 25 25 160 150 150 150 R23 (°C/W) C1 = C7 = C9 = C15 (W.s/°C) 0.005 C2 = C8 (W.s/°C) 0.01 C3 (W.s/°C) 0.03 C4 (W.s/°C) 0.4 C5 (W.s/°C) 1.5 2 2 2 3 4 5 6 C6 (W.s/°C) C10 = C16 (W.s/°C) 0.015 C11 = C17 (W.s/°C) 0.05 C12 = C18 (W.s/°C) 0.3 C13 = C19 (W.s/°C) 1.2 2 2 2 C14 = C20 (W.s/°C) 2.5 3 4 5 C21 = C22 = C23 (W.s/°C) 0.01 0.008 0.008 0.008 1. The blank space means that the value is the same as the previous one. Doc ID 15701 Rev 8 29/37 Package and packing information VNH5019A-E 4 Package and packing information 4.1 ECOPACK® In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 4.2 MultiPowerSO-30 mechanical data Figure 23. MultiPowerSO-30 package dimensions S A3 A2 0.35 N L BOTTOM VIEW F1 h x 45° B F1 e A F2 E E1 F2 30 1 C D 30/37 Doc ID 15701 Rev 8 F3 VNH5019A-E Package and packing information Table 19. MultiPowerSO-30 mechanical data Data book mm Symbol Min. Typ. A Max. 2.35 A2 1.85 2.25 A3 0 0.1 B 0.42 0.58 C 0.23 0.32 D 17.1 E 18.85 E1 15.9 e 17.2 17.3 19.15 16 16.1 1 F1 5.55 6.05 F2 4.6 5.1 F3 9.6 10.1 L 0.8 1.15 N S 10° 0° Doc ID 15701 Rev 8 7° 31/37 Package and packing information 4.3 VNH5019A-E MultiPowerSO-30 suggested land pattern Figure 24. MultiPowerSO-30 suggested pad layout 32/37 Doc ID 15701 Rev 8 VNH5019A-E 4.4 Package and packing information MultiPowerSO-30 packing information The devices can be packed in tube or tape and reel shipments (see Table 20: Device summary for packaging quantities). Figure 25. MultiPowerSO-30 tube shipment (no suffix) Dimension A C B mm Base q.ty Bulk q.ty Tube length (± 0.5) A B C (± 0.13) 29 435 532 3.82 23.6 0.8 Figure 26. MultiPowerSO-30 tape and reel shipment (suffix “TR”) Reel dimensions SO-28 tube shipment (no suffix) Dimension mm Base q.ty Bulk q.ty A (max) B (min) C (± 0.2) D (min) G (+ 2 / -0) N (min) T (max) 1000 1000 330 1.5 13 20.2 32 100 38.4 Tape dimensions According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Description Dimension mm Tape width Tape hole spacing Component spacing Hole diameter Hole diameter Hole position Compartment Depth Hole Spacing W P0 (± 0.1) P D (± 0.1/-0) D1 (min) F (± 0.1) K (max) P1 (± 0.1) 32 4 24 1.5 2 14.2 2.2 2 End Start Top cover tape No components Components No components 500 mm min 500 mm min Empty components pockets User direction of feed Doc ID 15701 Rev 8 33/37 Order codes 5 VNH5019A-E Order codes Table 20. Device summary Order codes Package MultiPowerSO-30 34/37 Tube Tape and reel VNH5019A-E VNH5019TR-E Doc ID 15701 Rev 8 VNH5019A-E 6 Revision history Revision history Table 21. Document revision history Date Revision 22-Jan-2008 1 Initial release. 2 Uploaded corporate template by using V3 version Added Table 5: Thermal data Section 2.1: Absolute maximum ratings – Added text Table 6: Power section – IS: added max value for INA = INB = PWM = 0; Tj = 25 °C; VCC=13V in Test conditions, deleted INA = INB = PWM = 0 – Vf: changed Test conditions, changed typ/max value – IRM: deleted and copied in Table 8: Switching (VCC = 13 V, RLOAD = 0.87 W, Tj = 25 °C) whole row Table 8: Switching (VCC = 13 V, RLOAD = 0.87 W, Tj = 25 °C) – tDEL: changed min/typ/max value – Copied IRM row by Table 6: Power section Updated Table 10: Current sense (8 V < VCC < 21 V) Table 11: Charge pump – VCP: changed min/max value for ENX = 5 V, changed typ value for ENX = 5 V, VCC = 4.5 V Updated Figure 11: Waveforms in full bridge operation (part 1) Updated Figure 12: Waveforms in full bridge operation (part 2) Added Chapter 4 3 Updated following tables: – Table 6: Power section – Table 9: Protection and diagnostic – Table 10: Current sense (8 V < VCC < 21 V) Added Figure 6: Behavior in fault condition (how a fault can be cleared) Added Chapter 3: Package and PCB thermal data 06-Apr-2010 4 Updated Table 5: Thermal data. Table 6: Power section: – IS: updated test condition and max value Updated table notes on Table 9: Protection and diagnostic. Table 10: Current sense (8 V < VCC < 21 V): – dK0/k0, dK1/k1, dK3/k3: updated minimum end maximum values. 19-Apr-2010 5 Updated Table 10: Current sense (8 V < VCC < 21 V). 25-May-2010 6 Updated Features list. Updated Table 6: Power section. 04-Nov-2009 16-Dec-2009 Changes Doc ID 15701 Rev 8 35/37 Revision history VNH5019A-E Table 21. Document revision history (continued) Date Revision 02-Sep-2010 7 Updated Table 5: Thermal data. 8 Updated Figure 1: Block diagram Added Table 1: Suggested connections for unused and not connected pins Updated Table 3: Block descriptions Table 8: Switching (VCC = 13 V, RLOAD = 0.87 W, Tj = 25 °C): – TTSD, TTR, THYST: added note – TTSD_LS: added row Updated Table 13: Truth table in fault conditions (detected on OUTA) Updated Figure 11: Waveforms in full bridge operation (part 1) and Figure 12: Waveforms in full bridge operation (part 2) 22-Dec-2011 36/37 Changes Doc ID 15701 Rev 8 VNH5019A-E Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2011 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com Doc ID 15701 Rev 8 37/37