VNH5180A-E Automotive fully integrated H-bridge motor driver Features Type RDS(on) Iout VCCmax VNH5180A-E 180 mΩ max (per leg) 8A 41 V PowerSSO-36 TP ■ Output current: 8 A ■ 3 V CMOS compatible inputs ■ Undervoltage shutdown ■ Overvoltage clamp ■ Thermal shutdown ■ Cross-conduction protection ■ Current and power limitation ■ Very low standby power consumption ■ PWM operation up to 20 KHz ■ Protection against loss of ground and loss of VCC ■ Current sense output proportional to motor current ■ Output protected against short to ground and short to VCC ■ Package: ECOPACK® Description The VNH5180A-E is a full bridge motor driver intended for a wide range of automotive applications. The device incorporates a dual monolithic high-side driver and two low-side switches. Both switches are designed using STMicroelectronics’ well known and proven Table 1. proprietary VIPower® M0 technology that allows to efficiently integrate on the same die a true Power MOSFET with an intelligent signal/protection circuitry. The three dies are assembled in PowerSSO-36 TP package on electrically isolated leadframes. This package, specifically designed for the harsh automotive environment offers improved thermal performance thanks to exposed die pads. Moreover, its fully symmetrical mechanical design allows superior manufacturability at board level. The input signals INA and INB can directly interface to the microcontroller to select the motor direction and the brake condition. The DIAGA/ENA or DIAGB/ENB, when connected to an external pull-up resistor, enables one leg of the bridge. Each DIAGA/ENA provides a feedback digital diagnostic signal as well. The normal operating condition is explained in the truth table. The CS pin allows to monitor the motor current by delivering a current proportional to its value when CS_DIS pin is driven low or left open. When CS_DIS is driven high, CS pin is in high impedance condition. The PWM, up to 20 KHz, allows to control the speed of the motor in all possible conditions. In all cases, a low level state on the PWM pin turns off both the LSA and LSB switches. Device summary Order codes Package PowerSSO-36 TP December 2011 Tube Tape and reel VNH5180A-E VNH5180ATR-E Doc ID 17074 Rev 5 1/31 www.st.com 1 Contents VNH5180A-E Contents 1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1 4 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1 5 6 2/31 Reverse battery protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 PowerSSO-36 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1.1 Thermal calculation in clockwise and anti-clockwise operation in steady-state mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.2 Thermal calculation in transient mode . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.2 PowerSSO-36 TP package information . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3 PowerSSO-36 TP packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Doc ID 17074 Rev 5 VNH5180A-E List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Block description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin functions description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Logic inputs (INA, INB, ENA, ENB, PWM, CS_DIS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Switching (VCC = 13 V, RLOAD = 5 W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Protections and diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Current sense (9 V < VCC < 18 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Truth table in normal operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Truth table in fault conditions (detected on OUTA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Electrical transient requirements (part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical transient requirements (part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical transient requirements (part 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Thermal calculation in clockwise and anti-clockwise operation in steady-state mode . . . . 23 Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 PowerSSO-36 TP mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Doc ID 17074 Rev 5 3/31 List of figures VNH5180A-E List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. 4/31 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Definition of the delay times measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Definition of the low-side switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Definition of the high-side switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Definition of dynamic cross conduction current during a PWM operation. . . . . . . . . . . . . . 14 Definition of delay response time of sense current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Waveforms in full-bridge operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Waveforms in full-bridge operation (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Typical application circuit for DC to 20 kHz PWM operation short circuit protection . . . . . 19 Behavior in fault condition (how a fault can be cleared) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Half-bridge configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Multi-motors configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 PowerSSO-36™ PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Chipset configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Auto and mutual Rthj-amb vs PCB copper area in open box free air condition . . . . . . . . . 23 Detailed chipset configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 PowerSSO-36 HSD thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . 25 PowerSSO-36 LSD thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . 25 Thermal fitting model of an H-bridge in PowerSSO-36. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 PowerSSO-36 TP package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 PowerSSO-36 TP tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 PowerSSO-36 TP tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Doc ID 17074 Rev 5 VNH5180A-E 1 Block diagram and pin description Block diagram and pin description Figure 1. Block diagram 6## 3)'.!, #,!-0 &!5,4 $%4%#4)/. 0/7%2 ,)-)4!4)/. ,3!?/6%24%-0%2!452% (3!?/6%24%-0%2!452% ,3"?/6%24%-0%2!452% 56 (3"?/6%24%-0%2!452% #,!-0?(3! #,!-0?(3" ,/')# $2)6%2 (3! (3! $2)6%2 (3" #522%.4 ,)-)4!4)/.?! 3/52#%?(3! #522%.4 ,)-)4!4)/.?" + 3/52#%?(3" + #,!-0?,3! $2!).?,3! #,!-0?,3" $2)6%2 ,3! ,3! (3" $2)6%2 ,3" /6%2,/!$ $%4%#4/2?! '.$! $2!).?,3" ,3" /6%2,/!$ $%4%#4/2?" $)!'!%.! ).! #3 #3?$)3 07- )." $)!'"%." '.$" ("1($'5 Table 2. Block description Name Description Logic control Allows the turn-on and the turn-off of the high-side and the low-side switches according to the truth table. Undervoltage Shuts down the device for battery voltage lower than 5V. High-side and low-side clamp voltage Protect the high-side and the low-side switches from the high voltage on the battery line. High-side and low-side driver Drive the gate of the concerned switch to allow a proper RDS(on) for the leg of the bridge. Current limitation Limits the motor current in case of short circuit. In case of short-circuit with the increase of the junction High-side and low-side overtemperature temperature, it shuts down the concerned driver to prevent protection degradation and to protect the die. Low-side overload detector Detects when low side current exceeds shutdown current and latches off the concerned Low side. Fault detection Signalizes the abnormal behaviour of the switch (output shorted to ground or output shorted to battery) by pulling down the concerned ENx/DIAGx pin. Power limitation Limits the power dissipation of the high-side driver inside safe range in case of short to ground condition. Doc ID 17074 Rev 5 5/31 Block diagram and pin description Figure 2. VNH5180A-E Configuration diagram (top view) 1 NC DRAIN LSA GND_A GND_A NC GND_A GND_A DRAIN LSA NC SOURCE HSA SOURCE HSA SOURCE HSA VCC Slug2 NC IN_A EN/DIAG_A IN_PWM NC Table 3. Slug3 Slug1 19 18 NC DRAIN LSB GND_B GND_B NC GND_B GND_B DRAIN LSB NC SOURCE HSB SOURCE HSB SOURCE HSB VCC NC IN_B EN/DIAG_B CS_DIS CS Suggested connections for unused and not connected pins Connection / pin Current sense N.C. SOURCE_HSx DRAIN_LSx INPUTx, PWM DIAGx/ENx CS_DIS Floating Not allowed X X X X To ground Through 1 kΩ resistor X Not allowed X Through 10 kΩ resistor Table 4. 6/31 36 Pin definitions and functions Pin N° Symbol Function 13, 24 VCC, Heat Slug1 1, 5, 9, 14, 18, 23, 28, 32, 36 NC Not connected. 15 INA Clockwise input 16 ENA/DIAGA 17 IN_PWM 19 CS Drain of high-side switches and power supply voltage. Status of high-side and low-side switches A; open drain output. PWM input. Output of current sense. Doc ID 17074 Rev 5 VNH5180A-E Block diagram and pin description Table 4. Pin definitions and functions (continued) Pin N° Symbol Function 20 CS_DIS Active high CMOS compatible pin to disable current sense pin. 21 ENB/DIAGB 22 INB 25, 26, 27, 29, 35 OUTB, Heat Slug3 30, 31, 33, 34 GNDB 2, 8, 10, 11, 12 OUTA, Heat Slug2 3, 4, 6, 7 GNDA Table 5. Status of high-side and low-side switches b; open drain output. Counter clockwise input. Source of high-side switch B / drain of low-side switch B. Source of low-side switch B. Source of high-side switch A / drain of low-side switch A. Source of low-side switch A. Pin functions description Name Description VCC Battery connection. GND Power ground. OUTA OUTB Power connections to the motor. INA INB Voltage controlled input pins with hysteresis, CMOS compatible. These two pins control the state of the bridge in normal operation according to the truth table (brake to VCC, Brake to GND, clockwise and counterclockwise). PWM Voltage controlled input pin with hysteresis, CMOS compatible. Gates of low-side FETS get modulated by the PWM signal during their ON phase allowing speed control of the motor. ENA/DIAGA ENB/DIAGB Open drain bidirectional logic pins.These pins must be connected to an external pull up resistor. When externally pulled low, they disable half-bridge A or B. In case of fault detection (thermal shutdown of a high-side FET or excessive ON-state voltage drop across a low-side FET), these pins are pulled low by the device (see Table 14: Truth table in fault conditions (detected on OUTA)). CS Analog current sense output. This output delivers a current proportional to the motor current if CS_DIS is low or left open. The information can be read back as an analog voltage across an external resistor. CS_DIS Active high CMOS compatible pin to disable the current sense pin. Doc ID 17074 Rev 5 7/31 Electrical specifications 2 VNH5180A-E Electrical specifications Figure 3. Current and voltage conventions IS VCC IINA IINB IENA IENB VCC INA INB CS CS_DIS DIAGB/ENB PWM VOUTA ISENSE ICSD VOUTB VSENSE GND Ipw IGND 2.1 IOUTB OUTB DIAGA/ENA VINA VINB VENA VENB IOUTA OUTA VCSD Vpw Absolute maximum ratings Stressing the device above the rating listed in the Table 6: Absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality document. Table 6. Absolute maximum ratings Symbol Parameter VCC Supply voltage Imax Maximum output current (continuous) Unit + 41 V Internally limited A -15 A IR Reverse output current (continuous) IIN Input current (INA and INB pins) +/- 10 mA IEN Enable input current (DIAGA/ENA and DIAGB/ENB pins) +/- 10 mA Ipw PWM Input current +/- 10 mA CS_DIS input current +/- 10 mA VCC-41/+VCC V 2 kV Junction operating temperature -40 to 150 °C TSTG Storage temperature -55 to 150 °C IGND DC reverse ground pin current 200 mA ICS_DIS VCS Current sense maximum voltage VESD Electrostatic discharge (Human body model: R=1.5 kΩ, C=100 pF) Tc 8/31 Value Doc ID 17074 Rev 5 VNH5180A-E 2.2 Electrical specifications Thermal data Table 7. Thermal data Symbol 2.3 Parameter Rthj-case Thermal resistance junction-case (per leg) Rthj-amb Thermal resistance junction-ambient Max. value Unit HSD 4.8 °C/W LSD 4.6 See Figure 17 °C/W Electrical characteristics Values specified in this section are for VCC = 9 V up to 18 V; -40 °C < TJ < 150 °C, unless otherwise specified. Table 8. Power section Symbol Parameter Test conditions VCC Operating supply voltage Supply current Typ. 5.5 V 6 µA Off-state with all fault cleared and ENx = 0 (standby) INA = INB = PWM = 0; VCC = 13 V; Tj = - 40 to 150 °C 10 µA Off-state (no standby) INA = INB = PWM = 0; ENx = 5 V; Tj = - 40 to 150 °C 5 mA 6 mA 6 mA On-state: INA or INB = 5 V; no PWM 3 3 On-state: INA or INB = 5 V; PWM = 20 kHz RONHS Static high-side resistance IOUT = 2.5 A; Tj = -40 °C 75 mΩ IOUT = 2.5 A; Tj = 25 °C 115 mΩ IOUT = 2.5 A; Tj = 150 °C 230 mΩ IOUT = 2.5 A; Tj = - 40 to 150 °C RONLS Vf Static low-side resistance IOUT = 2.5 A; Tj = 25 °C 250 53.5 IOUT = 2.5 A; Tj = - 40 to 150 °C High-side free-wheeling diode forward voltage Max. Unit 18 Off-state with all fault cleared and ENx = 0 (standby) INA = INB = PWM = 0; Tj = 25 °C; VCC = 13 V IS Min. IOUT = -2.5 A; Tj = 150 °C Doc ID 17074 Rev 5 0.7 mΩ mΩ 110 mΩ 0.9 V 9/31 Electrical specifications Table 8. Symbol IL(off) IRM Table 9. Symbol Power section (continued) Parameter Test conditions High-side off-state output current (per channel) Dynamic crossconduction current Min. Typ. Max. Unit Tj = 25 °C; VOUTX = ENX = 0 V; VCC = 13 V 0 3 µA Tj = 125 °C; VOUTX = ENX = 0 V; VCC = 13 V 0 5 µA IOUT= 2.5A (see Figure 6) 0.6 A Logic inputs (INA, INB, ENA, ENB, PWM, CS_DIS) Parameter Test conditions Min. Typ. Max. Unit 0.9 V VIL Input low level voltage Normal operation (DIAGX/ENX pin acts as an input pin) VIH Input high level voltage Normal operation (DIAGX/ENX pin acts as an input pin) 2.1 V VIHYST Input hysteresis voltage Normal operation (DIAGX/ENX pin acts as an input pin) 0.15 V IIN = 1 mA 5.5 6.3 7.5 V IIN = -1 mA -1.0 -0.7 -0.3 V 1 VICL Input clamp voltage IINL Input current VIN = 0.9 V IINH Input current VIN = 2.1 V 10 µA Enable output low level voltage Fault operation (DIAGX/ENX pin acts as an output pin); IEN = 1 mA 0.4 V Max. Unit 20 kHz VDIAG Table 10. Symbol f µA Switching (VCC = 13 V, RLOAD = 5 Ω) Parameter Test conditions PWM frequency Min. Typ. 0 td(on) Turn-on delay time Input rise time < 1µs (see Figure 6) 250 µs td(off) Turn-off delay time Input rise time < 1µs (see Figure 6) 250 µs tr Rise time See Figure 5 1 2 µs tf Fall time See Figure 5 1 2 µs Delay time during change of operating mode See Figure 4 400 1600 µs High-side free wheeling diode reverse recovery time See Figure 7 tDEL trr 10/31 VNH5180A-E Doc ID 17074 Rev 5 200 400 ns VNH5180A-E Electrical specifications Table 11. Protections and diagnostics Symbol Parameter Test conditions Min. Typ. Max. Unit 5 V VUSD Undervoltage shutdown 3 VUSDhyst Undervoltage shutdown hysteresis 0.5 V ILIM_H High-side current limitation 8 12 16 A ISD_LS Shutdown LS current 16 30 52 A VCLPH High-side clamp voltage (VCC to OUTA = 0 or OUTB = 0) IOUT = 2.5 A 41 46 52 V VCLPLS Low-side clamp voltage (OUTA = VCC or OUTB = VCC to GND) IOUT = 2.5 A 41 46 52 V TTSD(1) Thermal shutdown temperature VIN = 2.1 V 150 175 200 °C TTR(2) Thermal reset temperature THYST (2) TTSD_LS 135 °C Thermal hysteresis (TSD - TR) 7 Low-side thermal shutdown temperature VIN = 2.1 V VCLP Total clamp voltage (VCC to GND) IOUT = 2.5 A tSD_LS Time to shutdown for the low-side °C 150 175 200 °C 41 46 52 V 10 µs 1. TTSD is the minimum threshold temperature between HS and LS 2. Valid for both HSD and LSD. Table 12. Symbol Current sense (9 V < VCC < 18 V) Parameter Test conditions Min. Typ. Max. Unit K0 IOUT/ISENSE IOUT = 0.35 A; VSENSE = 0.32 V; VCSD = 0 V; Tj = - 40 to 150 °C 645 840 1140 K1 IOUT/ISENSE IOUT = 1 A; VSENSE = 0.98 V; VCSD = 0 V; Tj = - 40 to 150 °C 700 820 955 K2 IOUT/ISENSE IOUT = 2.5 A; VSENSE = 2.4 V; VCSD = 0 V; Tj = - 40 to 150 °C 710 810 900 K3 IOUT/ISENSE IOUT = 4 A; VSENSE = 4 V; VCSD = 0 V; Tj = - 40 to 150 °C 690 790 900 dK0/K0(1) Analog sense current drift IOUT = 0.35A; VSENSE = 0.32V; VCSD = 0 V; Tj = - 40 to 150 °C -18 18 % dK1/K1(1) Analog sense current drift IOUT = 1 A; VSENSE = 0.98 V; VCSD = 0 V; Tj = - 40 to 150 °C -13 13 % dK2/K2(1) Analog sense current drift IOUT = 2.5A; VSENSE = 2.4V; VCSD = 0 V; Tj = - 40 to 150 °C -13 13 % dK3/K3(1) Analog sense current drift IOUT = 4A; VSENSE = 4V; VCSD = 0 V; Tj = - 40 to 150 °C -13 13 % Max analog sense output voltage IOUT = 2.5A; VCSD = 0 V; RSENSE = 2 KΩ VSENSE Doc ID 17074 Rev 5 5 V 11/31 Electrical specifications Table 12. Symbol VNH5180A-E Current sense (9 V < VCC < 18 V) (continued) Test conditions Min. Typ. Max. Unit IOUT = 0 A; VSENSE = 0 V; VCSD = 5 V; VIN = 0 V; Tj = - 40 to 150 °C 0 5 µA VCSD = 0 V; VIN = 5 V; Tj = - 40 to.150 °C 0 180 µA VCSD = 5 V; VIN = 5 V; IOUT = 2.5 A; Tj = - 40 to.150 °C 0 5 µA Delay response time VIN = 5 V; VSENSE < 4 V, IOUT = 2.5 A, tDSENSEH from falling edge of ISENSE = 90 % of ISENSEmax (see Figure 8) CS_DIS pin 50 µs Delay response time VIN = 5 V; VSENSE < 4 V; IOUT = 2.5 A; tDSENSEL from rising edge of ISENSE = 10 % of ISENSEmax CS_DIS pin (see Figure 8) 20 µs ISENSE0 Parameter Analog sense leakage current 1. Analog sense current drift is deviation of factor K for a given device over (-40 °C to 150 °C and 9 V < VCC < 18 V) with respect to its value measured at TJ = 25 °C, VCC = 13 V. Figure 4. Definition of the delay times measurement VINA t VINB t PWM t ILOAD tDEL tDEL t 12/31 Doc ID 17074 Rev 5 VNH5180A-E Figure 5. Electrical specifications Definition of the low-side switching times PWM t VOUTA, B 90% tf Figure 6. 80% 20% 10% tr t Definition of the high-side switching times VINA tD(off) tD(on) t VOUTA 90% 10% t Doc ID 17074 Rev 5 13/31 Electrical specifications Figure 7. VNH5180A-E Definition of dynamic cross conduction current during a PWM operation INA = 1, INB = 0 PWM t IMOTOR t VOUTB t ICC IRM t trr Figure 8. Definition of delay response time of sense current INPUT CS_DIS LOAD CURRENT SENSE CURRENT tDSENSEH 14/31 Doc ID 17074 Rev 5 tDSENSEL VNH5180A-E Electrical specifications Table 13. Truth table in normal operating conditions INA INB DIAGA/ENA DIAGB/ENB OUTA OUTB 1 H 1 CS High Imp. H 0 1 1 H 0 Brake to VCC Clockwise (CW) L 1 Operating mode ISENSE = IOUT/K Counterclockwise (CCW) L 0 Table 14. INA L High Imp. Brake to GND Truth table in fault conditions (detected on OUTA) INB DIAGA/ENA DIAGB/ENB OUTA OUTB 1 H 0 L 1 CS (VCSD=0V) High Imp. 1 1 0 OPEN H 0 0 IOUTB/K L High Imp. X X 0 Fault Information Note: OPEN Protection Action In normal operating conditions the DIAGX/ENX pin is considered as an input pin by the device. This pin must be externally pulled high. Doc ID 17074 Rev 5 15/31 Electrical specifications Table 15. ISO 7637-2: 2004(E) Test pulse VNH5180A-E Electrical transient requirements (part 1) Test levels(1) III IV 1 -75V -100V 2a +37V 3a Number of pulses or test times Burst cycle/pulse repetition time Delays and Impedance Min. Max. 5000 pulses 0.5s 5s 2 ms, 10Ω +50V 5000 pulses 0.2s 5s 50µs, 2Ω -100V -150V 1h 90ms 100ms 0.1µs, 50Ω 3b +75V +100V 1h 90ms 100ms 0.1µs, 50Ω 4 -6V -7V 1 pulse 100ms, 0.01Ω 5b(2) +65V +87V 1 pulse 400ms, 2Ω 1. The above test levels must be considered referred to VCC = 13.5 V except for pulse 5b. 2. Valid in case of external load dump clamp: 40V maximum referred to ground. Table 16. Electrical transient requirements (part 2) Test level results(1) ISO 7637-2: 2004(E) Test pulse III IV 1 C C 2a C C 3a C C 3b C C 4 C C 5b(2) C C 1. The above test levels must be considered referred to VCC = 13.5 V except for pulse 5b. 2. Valid in case of external load dump clamp: 40V maximum referred to ground. Table 17. 16/31 Electrical transient requirements (part 3) Class Contents C All functions of the device are performed as designed after exposure to disturbance. E One or more functions of the device are not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. Doc ID 17074 Rev 5 VNH5180A-E 2.4 Electrical specifications Waveforms Figure 9. Waveforms in full-bridge operation NORMAL OPERATION (DIAGA/ENA=1, DIAGB/ENB=1) LOAD CONNECTED BETWEEN OUTA, OUTB DIAGA/ENA DIAGB/ENB INA INB PWM OUTA OUTB IOUTA->OUTB CS (*) tDEL CS_DIS tDEL (*) CS BEHAVIOUR DURING PWM MODE DEPENDS ON PWM FREQUENCY AND DUTY CYCLE NORMAL OPERATION (DIAGA/ENA=1, DIAGB/ENB=0 and DIAGA/ENA=0, DIAGB/ENB=1) LOAD CONNECTED BETWEEN OUTA, OUTB DIAGA/ENA DIAGB/ENB INA INB PWM OUTA OUTB IOUTA->OUTB CS CS_DIS CURRENT LIMITATION/THERMAL SHUTDOWN or OUTA SHORTED TO GROUND INA INB ILIM IOUTA->OUTB Tj =TTSD TTSD_HSA TTR_HSA Tj < TTSD TjHSA Tj > TTR DIAGA/ENA DIAGB/ENB CS CS_DIS current limitation normal operation power limitation OUTA shorted to ground Doc ID 17074 Rev 5 normal operation 17/31 Electrical specifications VNH5180A-E Figure 10. Waveforms in full-bridge operation (continued) OUTA shorted to VCC (resistive short) and undervoltage shutdown CS_DIS INA INB OUTA OUTB IOUTA->OUTB ISD_LS ILSA TTSD_LS Tj_LSA DIAGB/ENB DIAGA/ENA CS V<nominal normal operation OUTA softly shorted to VCC normal operation undervoltage shutdown OUTA shorted to VCC (pure short) and undervoltage shutdown CS_DIS INA INB OUTA OUTB IOUTA->OUTB ISD_LS ILSA TTSD_LS Tj_LSA DIAGB/ENB DIAGA/ENA CS V<nominal normal operation OUTA hardly shorted to VCC 18/31 Doc ID 17074 Rev 5 normal operation undervoltage shutdown VNH5180A-E 3 Application information Application information In normal operating conditions the DIAGX/ENX pin is considered as an input pin by the device. This pin must be externally pulled high. PWM pin usage: In all cases, a “0” on the PWM pin turns off both LSA and LSB switches. When PWM rises back to “1”, LSA or LSB turn on again depending on the input pin state. Figure 11. Typical application circuit for DC to 20 kHz PWM operation short circuit protection VCC Reg 5V + 5V +5V VCC 3.3K 3.3K 1K DIAGA/ENA 1K DIAGA/ENA 1K 1k μC HSA HSB PWM OUTA CS_DIS 1K INA 10K CS OUTB LSA 33nF DIAGB/ENB 1K LSB INB M Vcc 1.5K GND GND 100K S G b) N MOSFET D Note: The value of the blocking capacitor (C) depends on the application conditions and defines voltage and current ripple on supply line at PWM operation. Stored energy of the motor inductance may fly back into the blocking capacitor, if the bridge driver goes into 3-state. This causes a hazardous overvoltage if the capacitor is not big enough. As basic orientation, 500 µF per 10 A load current is recommended. In case of a fault condition the DIAGX/ENX pin is considered as an output pin by the device. The fault conditions are: – Overtemperature on one or both high-sides – Short to battery condition on the output (overcurrent detection on the low-side Power MOSFET) Possible origins of fault conditions may be: OUTA is shorted to ground → overtemperature detection on high-side A OUTA is shorted to VCC → low-side Power MOSFET overcurrent detection When a fault condition is detected, the user can identify which power element is in fault by monitoring the INA, INB, DIAGA/ENA and DIAGB/ENB pins. Doc ID 17074 Rev 5 19/31 Application information VNH5180A-E In any case, when a fault is detected, the faulty leg of the bridge is latched off. To turn on the respective output (OUTX) again, the input signal must rise from low to high level. Figure 12. Behavior in fault condition (how a fault can be cleared) Note: In case of the fault condition is not removed, the procedure for unlatching and sending the device in Stby mode is: - Clear the fault in the device (toggle: INA if ENA = 0 or INB if ENB = 0) - Pull low all inputs, PWM and Diag/EN pins within tDEL. If the Diag/En pins are already low, PWM = 0, the fault can be cleared simply toggling the input. The device enters in stby mode as soon as the fault is cleared. 3.1 Reverse battery protection Three possible solutions can be considered: – A Schottky diode D connected to VCC pin – An N-channel MOSFET connected to the GND pin (see Figure 11: Typical application circuit for DC to 20 kHz PWM operation short circuit protection) – A P-channel MOSFET connected to the VCC pin The device sustains no more than -15 A in reverse battery conditions because of the two Body diodes of the Power MOSFETs. Additionally, in reverse battery condition the I/Os of VNH5180A-E is pulled down to the VCC line (approximately -1.5 V). 20/31 Doc ID 17074 Rev 5 VNH5180A-E Application information Series resistor must be inserted to limit the current sunk from the microcontroller I/Os. If IRmax is the maximum target reverse current through microcontroller I/Os, series resistor is: V –V IOs CC R = --------------------------------I Rmax Figure 13. Half-bridge configuration VCC INA INB DIAGA/ENA DIAGB/ENB PWM INA INB DIAGA/ENA DIAGB/ENB PWM OUTA M OUTB GND GND Note: OUTB OUTA The VNH5180A-E can be used as a high power half-bridge driver achieving an On resistance per leg of 90 mΩ. Figure 14. Multi-motors configuration VCC INA INB DIAGA/ENA DIAGB/ENB PWM INA INB DIAGA/EN A DIAGB/EN B PWM OUTA OUTB M2 GND GND M1 Note: OUTB OUTA M3 The VNH5180A-E can easily be designed in multi-motors driving applications such as seat positioning systems where only one motor must be driven at a time. DIAGX/ENX pins allow to put unused half-bridges in high impedance. Doc ID 17074 Rev 5 21/31 Package and PCB thermal data VNH5180A-E 4 Package and PCB thermal data 4.1 PowerSSO-36 thermal data Figure 15. PowerSSO-36™ PC board Double layers: footprint Double layers: 2cm2 of Cu Double layers: 8cm2 of Cu Note: Board finish thickness 1.6 mm +/- 10 %, Board double layers, Board dimension 129 mm x 60 mm, Board Material FR4, Cu thickness 0.070 mm (front and back side), Thermal vias spaced on a 1.2 mm x 1.2 mm grid, Vias pad clearance thickness 0.2 mm, Thermal via diameter 0.3 mm +/- 0.08 mm, Cu thickness on vias 0.025 mm. 22/31 Doc ID 17074 Rev 5 VNH5180A-E Package and PCB thermal data Figure 16. Chipset configuration CHIP 1 RthA RthAB RthAC CHIP 3 CHIP 2 RthB RthBC RthC Figure 17. Auto and mutual Rthj-amb vs PCB copper area in open box free air condition 80 RthA RthB = RthC RthAB = RthAC RthBC 70 60 °C/W 50 40 30 20 10 0 0 4.1.1 1 2 3 4 5 6 cm 2 of Cu Area (refer to PCB layout) 7 8 9 Thermal calculation in clockwise and anti-clockwise operation in steady-state mode Table 18. Thermal calculation in clockwise and anti-clockwise operation in steadystate mode HSA HSB LSA LSB TjHSAB TjLSA TjLSB ON OFF OFF ON PdHSA x RthHS + PdLSB PdHSA x RthHSLS + x RthHSLS + Tamb PdLSB x RthLSLS + Tamb PdHSA x RthHSLS + PdLSB x RthLS + Tamb OFF ON PdHSB x RthHS + PdLSA PdHSB x RthHSLS + x RthHSLS + Tamb PdLSA x RthLS + Tamb PdHSB x RthHSLS + PdLSA x RthLSLS + Tamb ON OFF Doc ID 17074 Rev 5 23/31 Package and PCB thermal data 4.1.2 VNH5180A-E Thermal calculation in transient mode Ths = Pdhs • Zhs + Zhsls • (PdlsA + PdlsB) + Tamb TlsA = PdlsA • Zls + Pdhs • Zhsls + PdlsB • Zhsls + Tamb TlsB = PdlsB • Zls + Pdhs • Zhsls + PdlsA • Zhsls + Tamb Figure 18. Detailed chipset configuration CHIP 1 Zts Zhsls Zhsls CHIP 3 CHIP 2 Zls Zlsls Equation 1: pulse calculation formula Z THδ = R TH ⋅δ+Z THtp (1 – δ) where δ = tp ⁄ T 24/31 Doc ID 17074 Rev 5 Zls VNH5180A-E Package and PCB thermal data Figure 19. PowerSSO-36 HSD thermal impedance junction ambient single pulse ZTH -HSD @ cu area 100 HSD-8 cm^2 Cu HSD-2 cm^2 Cu HSD-footprint HsLsD-8 cm^2 Cu HsLsD-2 cm^2 Cu HsLsD-footprint °C/W 10 1 0.1 0.001 0.01 0.1 tim e (sec) 1 10 100 1000 Figure 20. PowerSSO-36 LSD thermal impedance junction ambient single pulse ZTH -LSD @ cu area 100 LSD-8 cm^2 Cu LSD-2 cm^2 Cu LSD-footprint LsLsD-8 cm^2 Cu LsLsD-2 cm^2 Cu LsLsD-footprint 10 °C/W Z ls Z lsls 1 0.1 0.001 0.01 0.1 tim e (sec) 1 Doc ID 17074 Rev 5 10 100 1000 25/31 Package and PCB thermal data VNH5180A-E Figure 21. Thermal fitting model of an H-bridge in PowerSSO-36 Thermal parameters(1) Table 19. Area/island (cm2) Footprint R1 = R7 (°C/W) 0.4 R2 = R8 (°C/W) 3.5 8 R3 (°C/W) 8 R4 (°C/W) 30 16 11 R5 (°C/W) 40 30 14 R6 (°C/W) 36 34 21 R9 = R15 (°C/W) 0.1 R10 = R16 (°C/W) 5.2 R11 = R17 (°C/W) 32 14 14 R12 = R18 (°C/W) 49 21 21 R13 = R19 (°C/W) 52 36 24 R14 = R20 (°C/W) 50 40 33 80 77 75 R21 = R22 = R23 (°C/W) C1 = C7 = C9 = C15 (W.s/°C) 0.0005 C2 = C8 (W.s/°C) 0.008 C3 (W.s/°C) 0.09 C4 (W.s/°C) 0.5 0.8 0.8 C5 (W.s/°C) 0.8 1.4 2 7 8 10 C6 (W.s/°C) C10 = C16 (W.s/°C) 0.009 C11 = C17 (W.s/°C) 0.09 0.07 0.07 C12 = C18 (W.s/°C) 0.45 0.45 0.45 C13 = C19 (W.s/°C) 0.8 1.2 1.4 C14 = C20 (W.s/°C) 4 5 8 0.005 0.003 0.003 C21 = C22 = C23 (W.s/°C) 1. The blank space means that the value is the same as the previous one. 26/31 2 Doc ID 17074 Rev 5 VNH5180A-E Package and packing information 5 Package and packing information 5.1 ECOPACK® In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 5.2 PowerSSO-36 TP package information Figure 22. PowerSSO-36 TP package dimensions Doc ID 17074 Rev 5 27/31 Package and packing information Table 20. VNH5180A-E PowerSSO-36 TP mechanical data Millimeters Symbol Min. Typ. Max. A 2.15 - 2.47 A2 2.15 - 2.40 a1 0 - 0.1 b 0.18 - 0.36 c 0.23 - 0.32 D 10.10 - 10.50 E 7.4 - 7.6 e - 0.5 - e3 - 8.5 - F 2.3 G - - 0.1 H 10.1 - 10.5 h - - 0.4 k 0 deg L 0.6 M N 28/31 8 deg - 1 4.3 - - O 1.2 Q 0.8 S 2.9 T 3.65 U 1.0 10 deg X1 1.85 2.35 Y1 3 3.5 X2 1.85 2.35 Y2 3 3.5 X3 4.7 - 5.2 Y3 3 - 3.5 Z1 0.4 Z2 0.4 Doc ID 17074 Rev 5 VNH5180A-E 5.3 Package and packing information PowerSSO-36 TP packing information Figure 23. PowerSSO-36 TP tube shipment (no suffix) Base Qty Bulk Qty Tube length (±0.5) A B C (±0.1) C B 49 1225 532 3.5 13.8 0.6 All dimensions are in mm. A Figure 24. PowerSSO-36 TP tape and reel shipment (suffix “TR”) Reel dimensions Base Qty Bulk Qty A (max) B (min) C (±0.2) F G (+2 / -0) N (min) T (max) 1000 1000 330 1.5 13 20.2 24.4 100 30.4 Tape dimensions According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb. 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 (±0.1) P D (±0.05) D1 (min) F (±0.1) K (max) P1 (±0.1) 24 4 12 1.55 1.5 11.5 2.85 2 End All dimensions are in mm. Start Top cover tape No components Components 500mm min No components 500mm min Empty components pockets sealed with cover tape. User direction of feed Doc ID 17074 Rev 5 29/31 Revision history 6 VNH5180A-E Revision history Table 21. Document revision history Date Revision 11-Feb-2010 1 Initial release. 2 Updated following tables: – Table 7: Thermal data – Table 8: Power section – Table 12: Current sense (9 V < VCC < 18 V) 13-Oct-2010 3 Updated Chapter 3: Application information Updated following tables: – Table 18: Thermal calculation in clockwise and anti-clockwise operation in steady-state mode – Table 19: Thermal parameters 20-Oct-2010 4 Changed document status from target specification to definitive datasheet 5 Updated Figure 1: Block diagram Added Table 3: Suggested connections for unused and not connected pins Table 11: Protections and diagnostics: – TTSD, TTR, THYST: added note Updated Figure 9: Waveforms in full-bridge operation and Figure 10: Waveforms in full-bridge operation (continued) 28-Sep-2010 22-Dec-2011 30/31 Changes Doc ID 17074 Rev 5 VNH5180A-E Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2011 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com Doc ID 17074 Rev 5 31/31