HITACHI 3SK295

3SK295
Silicon N-Channel Dual Gate MOS FET
ADE-208-387
1st. Edition
Application
UHF RF amplifier
Features
• Low noise figure.
NF = 2.0 dB typ. at f = 900 MHz
• Capable of low voltage operation
Outline
MPAK-4
2
3
1
4
1. Source
2. Gate1
3. Gate2
4. Drain
3SK295
Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Ratings
Unit
Drain to source voltage
VDS
12
V
Gate 1 to source voltage
VG1S
±8
V
Gate 2 to source voltage
VG2S
±8
V
Drain current
ID
25
mA
Channel power dissipation
Pch
150
mW
Channel temperature
Tch
150
°C
Storage temperature
Tstg
–55 to +150
°C
Attention: This device is very sensitive to electro static discharge.
It is recommended to adopt appropriate cautions when handling this transistor.
2
3SK295
Electrical Characteristics (Ta = 25°C)
Item
Symbol
Min
Typ
Max
Unit
Test conditions
Drain to source breakdown
voltage
V(BR)DSX
12
—
—
V
I D = 200 µA , VG1S = –3 V,
VG2S = –3 V
Gate 1 to source breakdown
voltage
V(BR)G1SS
±8
—
—
V
I G1 = ±10 µA, VG2S = VDS = 0
Gate 2 to source breakdown
voltage
V(BR) G2SS
±8
—
—
V
I G2 = ±10 µA, VG1S = VDS = 0
Gate 1 cutoff current
I G1SS
—
—
±100
nA
VG1S = ±6 V, VG2S = VDS = 0
Gate 2 cutoff current
I G2SS
—
—
±100
nA
VG2S = ±6 V, VG1S = VDS = 0
Drain current
I DS(on)
0.5
—
10
mA
VDS = 6 V, VG1S = 0.5V,
VG2S = 3 V
Gate 1 to source cutoff voltage VG1S(off)
–0.5
—
+0.5
V
VDS = 10 V, VG2S = 3V,
I D = 100 µA
Gate 2 to source cutoff voltage VG2S(off)
0
—
+1.0
V
VDS = 10 V, VG1S = 3V,
I D = 100 µA
Forward transfer admittance
|yfs|
16
20.8
—
mS
VDS = 6 V, VG2S = 3V,
I D = 10 mA, f = 1 kHz
Input capacitance
Ciss
1.2
1.5
2.2
pF
VDS = 6 V, VG2S = 3V,
I D = 10 mA, f = 1 MHz
Output capacitance
Coss
0.6
0.9
1.2
pF
Reverse transfer capacitance
Crss
—
0.01
0.03
pF
Power gain
PG
16
19.5
—
dB
Noise figure
NF
—
2.0
3
dB
VDS = 4 V, VG2S = 3V,
I D = 10 mA, f = 900 MHz
Note: Marking is “ZQ–”
3
3SK295
200
I D (mA)
Pulse test
(mA)
VG2S = 3 V
150
1.2 V
16
ID
1.0 V
Drain current
12
100
50
0
Drain current
Typical Output Characteristics
20
Drain Current vs. Gate1 to Source Voltage
20
3.0 V
V DS = 6 V
2.0 V
Pulse test
2.5 V
16
1.5 V
12
8
1.0 V
4
0.8 V
8
0.6 V
4
0
50
100
150
200
Ambient Temperature Ta (°C)
VG1S = 0.4 V
2
4
6
8
10
Drain to source voltage VDS (V)
Drain Current vs. Gate2 to Source Voltage
20
2.0 V
V DS = 6 V
1.5 V
Drain current I D (mA)
Channel Power Dissipation
Pch (mW)
Maximum Channel Power
Dissipation Curve
Pulse test
16
1.0 V
12
8
VG1S = 0.5 V
4
VG2S = 0.5 V
0
1
2
3
4
Gate1 to source voltage VG1S (V)
4
5
0
1
2
3
4
5
Gate2 to source voltage VG2S (V)
3SK295
Power Gain vs. Drain Current
25
VDS = 6 V
f = 1 kHz
PG (dB)
30
24
V G2S = 3.0 V
18
2.5 V
Power gain
Forward transfer admittance |y fs | (mS)
Forward Transfer Admittance vs.
Gate1 to Source Voltage
2.0 V
12
1.5 V
6
0.4
0.8
15
10
VDS = 4 V
VG2S = 3 V
f = 900 MHz
5
1.0 V
0.5 V
0
20
1.2
1.6
0
1
2.0
I D (mA)
25
4
PG (dB)
VDS = 4 V
VG2S = 3 V
f = 900 MHz
3
Power gain
NF (dB)
20
10
Power Gain vs. Drain to Source Voltage
Noise Figure vs. Drain Current
5
Noise figure
5
Drain current
Gate1 to source voltage VG1S (V)
2
1
0
1
2
20
15
10
VG2S = 3 V
I D = 10 mA
f = 900 MHz
5
2
5
Drain current
10
I D (mA)
20
0
2
4
6
Drain to source voltage
8
VDS
10
(V)
5
3SK295
Noise Figure vs. Drain to Source Voltage
Noise figure
NF (dB)
5
4
3
2
VG2S = 3 V
I D = 10 mA
f = 900 MHz
1
0
2
4
6
Drain to source voltage
6
8
VDS
10
(V)
3SK295
S11 Parameter vs. Frequency
.8
1
S21 Parameter vs. Frequency
Scale: 0.5 / div.
90°
1.5
.6
60°
120°
2
.4
3
4
5
.2
30°
150°
10
.2
0
.4
.6 .8 1.0 1.5 2
3 45
10
180°
0°
–10
–5
–4
–.2
–.4
–30°
–150°
–3
–2
–.6
–.8
–1
–90°
Condition: V DS = 4 V , V G2S = 3 V
I D = 10 mA , Zo = 50 Ω
100 to 1000 MHz (50 MHz step)
Condition: V DS = 4 V , V G2S = 3 V
I D = 10 mA , Zo = 50 Ω
100 to 1000 MHz (50 MHz step)
S12 Parameter vs. Frequency
90°
S22 Parameter vs. Frequency
Scale: 0.002/ div.
.8
60°
120°
–60°
–120°
–1.5
1
.6
1.5
2
.4
3
30°
150°
4
5
.2
10
180°
0°
.2
0
.4
.6 .8 1.0 1.5 2
3 45
10
–10
–5
–4
–.2
–30°
–150°
–3
–.4
–60°
–120°
–90°
Condition: V DS = 4 V , V G2S = 3 V
I D = 10 mA , Zo = 50 Ω
100 to 1000 MHz (50 MHz step)
–2
–.6
–.8
–1
–1.5
Condition: V DS = 4 V , V G2S = 3 V
I D = 10 mA , Zo = 50 Ω
100 to 1000 MHz (50 MHz step)
7
3SK295
S Parameter (VDS = 4 V, VG2S = 3 V, ID = 10 mA, ZO = 50 )
Freq.
S11
(MHz)
MAG.
ANG.
MAG.
ANG.
MAG.
ANG.
MAG.
ANG.
100
0.999
–6.1
1.98
172.2
0.00094
79.2
0.989
–4.2
150
0.998
–9.1
1.97
168.4
0.00189
80.4
0.987
–6.1
200
0.992
–11.9
1.96
165.0
0.00230
79.5
0.986
–7.9
250
0.988
–14.8
1.96
161.0
0.00286
79.9
0.984
–9.8
300
0.985
–17.9
1.94
157.1
0.00364
75.2
0.981
–11.5
350
0.976
–20.6
1.92
153.7
0.00353
71.8
0.978
–13.4
400
0.971
–23.2
1.91
149.9
0.00419
70.7
0.975
–15.2
450
0.964
–26.3
1.88
146.8
0.00495
65.5
0.972
–17.2
500
0.961
–29.1
1.87
142.8
0.00509
62.7
0.968
–19.1
550
0.951
–32.2
1.86
139.4
0.00530
66.6
0.963
–20.8
600
0.949
–35.0
1.86
136.1
0.00550
63.8
0.960
–22.8
650
0.935
–37.6
1.81
132.9
0.00601
58.2
0.956
–24.5
700
0.933
–40.5
1.78
129.4
0.00582
60.6
0.950
–26.3
750
0.923
–42.9
1.77
125.7
0.00572
58.5
0.945
–28.0
800
0.916
–45.8
1.75
122.6
0.00553
56.3
0.941
–29.9
850
0.908
–49.0
1.72
119.1
0.00514
56.3
0.936
–31.7
900
0.900
–51.2
1.70
115.8
0.00543
52.9
0.930
–33.4
950
0.890
–54.0
1.67
112.6
0.00506
52.4
0.924
–35.2
1000
0.876
–56.4
1.65
109.3
0.00469
51.9
0.919
–37.0
8
S21
S12
S22
Unit: mm
0.95
0 – 0.1
0.65
0.1
0.6 +– 0.05
0.16 – 0.06
2.8
1.5 ± 0.15
+ 0.1
0.4 – 0.05
+ 0.1
0.65
+ 0.1
0.4 – 0.05
0.4 – 0.05
+ 0.2
– 0.6
+ 0.1
2.95 ± 0.2
1.9 ± 0.2
0.95 0.95
0.85
1.1 – 0.1
+ 0.2
0.3
1.8 ± 0.2
Hitachi Code
JEDEC
EIAJ
Weight (reference value)
MPAK-4
—
Conforms
0.013 g
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
: http:semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia (Singapore)
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm
Asia (Taiwan)
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic components Group
Dornacher Stra§e 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 778322
Hitachi Asia Pte. Ltd.
16 Collyer Quay #20-00
Hitachi Tower
Singapore 049318
Tel: 535-2100
Fax: 535-1533
Hitachi Asia Ltd.
Taipei Branch Office
3F, Hung Kuo Building. No.167,
Tun-Hwa North Road, Taipei (105)
Tel: <886> (2) 2718-3666
Fax: <886> (2) 2718-8180
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower, World Finance Centre,
Harbour City, Canton Road, Tsim Sha Tsui,
Kowloon, Hong Kong
Tel: <852> (2) 735 9218
Fax: <852> (2) 730 0281
Telex: 40815 HITEC HX
Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.