PRELIMINARY DATA SHEET MOS INTEGRATED CIRCUIT µPD703100-33, 703100-40, 703101-33, 703102-33 TM V850E/MS1 32/16-BIT SINGLE-CHIP MICROCONTROLLERS The µPD703101-33 and µPD703102-33 are members of the V850 FamilyTM of 32-bit single-chip microcontrollers designed for real-time control operations. These microcontrollers provide on-chip features, including a 32-bit CPU core, ROM, RAM, interrupt controller, real-time pulse unit, serial interface, A/D converter, and DMA controller. The µPD703100-33 and µPD703100-40 are ROM-less versions of the µPD703101-33 and µPD703102-33 products. The µPD703100-A33, µPD703100-A40, µPD703101-A33, and µPD703102-A33 are also available as products having a 3.3-V power supply for external pins. Detailed function descriptions are provided in the following user’s manuals. Be sure to read them before designing. V850E/MS1 User’s Manual Hardware: U12688E V850E/MS1 User’s Manual Architecture: U12197E FEATURES • Number of instructions: 81 • Minimum instruction execution time 25 ns (@ 40-MHz operation) ····· µPD703100-40 30 ns (@ 33-MHz operation) ····· µPD703100-33, 703101-33, 703102-33 • General registers 32 bits × 32 • Instruction set optimized for control applications • Internal memory ROM : None (µPD703100-33, 703100-40), 96 Kbytes (µPD703101-33), 128 Kbytes (µPD703102-33) RAM : 4 Kbytes • Advanced on-chip interrupt controller • Real-time pulse unit suitable for control operations • Powerful serial interface (on-chip dedicated baud rate generator) • On-chip clock generator • 10-bit resolution A/D converter: 8 channels • DMA controller: 4 channels • Power saving functions APPLICATIONS • Office automation equipment: printers, facsimile machines, PPCs, etc. • Multimedia equipment: digital still cameras, video printers, etc. • Consumer equipment: single-lens reflex cameras, etc. • Industrial equipment: motor controllers, NC machine tools, etc. The information in this document is subject to change without notice. Document No. U13995EJ1V0DS00 (1st edition) Date Published April 1999 N CP(K) Printed in Japan © 1999 µPD703100-33, 703100-40, 703101-33, 703102-33 ORDERING INFORMATION Part Number Package Maximum Operating Frequency (MHz) Internal ROM (bytes) µPD703100GJ-33-8EU 144-pin plastic LQFP (fine pitch) (20 × 20 mm) 33 MHz None µPD703100GJ-40-8EU 144-pin plastic LQFP (fine pitch) (20 × 20 mm) 40 MHz None µPD703101GJ-33-xxx-8EU 144-pin plastic LQFP (fine pitch) (20 × 20 mm) 33 MHz 96 Kbytes µPD703102GJ-33-xxx-8EU 144-pin plastic LQFP (fine pitch) (20 × 20 mm) 33 MHz 128 Kbytes Remark xxx indicates ROM code suffix. PIN CONFIGURATION (Top view) 144-pin plastic LQFP (fine pitch) (20 × 20 mm) • µPD703101GJ-33-xxx-8EU • µPD703100GJ-40-8EU • µPD703102GJ-33-xxx-8EU 144 142 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 VDD D0/P40 D1/P41 D2/P42 D3/P43 D4/P44 D5/P45 D6/P46 D7/P47 VSS D8/P50 D9/P51 D10/P52 D11/P53 D12/P54 D13/P55 D14/P56 D15/P57 HVDD A0/PA0 A1/PA1 A2/PA2 A3/PA3 A4/PA4 A5/PA5 A6/PA6 A7/PA7 VSS A8/PB0 A9/PB1 A10/PB2 A11/PB3 A12/PB4 A13/PB5 A14/PB6 A15/PB7 • µPD703100GJ-33-8EU 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 NMI/P20 P21 TXD0/SO0/P22 RXD0/SI0/P23 SCK0/P24 TXD1/SO1/P25 RXD1/SI1/P26 SCK1/P27 VDD INTP133/SCK2/P37 INTP132/SI2/P36 INTP131/SO2/P35 INTP130/P34 TI13/P33 TCLR13/P32 TO131/P31 TO130/P30 INTP143/SCK3/P117 INTP142/SI3/P116 INTP141/SO3/P115 INTP140/P114 TI14/P113 TCLR14/P112 TO141/P111 TO140/P110 CVDD X2 X1 CVSS CKSEL MODE0 MODE1 MODE2 MODE3 RESET INTP153/ADTRG/P127 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 INTP103/DMARQ3/P07 INTP102/DMARQ2/P06 INTP101/DMARQ1/P05 INTP100/DMARQ0/P04 TI10/P03 TCLR10/P02 TO101/P01 TO100/P00 VSS INTP113/DMAAK3/P17 INTP112/DMAAK2/P16 INTP111/DMAAK1/P15 INTP110/DMAAK0/P14 TI11/P13 TCLR11/P12 TO111/P11 TO110/P10 INTP123/TC3/P107 INTP122/TC2/P106 INTP121/TC1/P105 INTP120/TC0/P104 TI12/P103 TCLR12/P102 TO121/P101 TO120/P100 ANI7/P77 ANI6/P76 ANI5/P75 ANI4/P74 ANI3/P73 ANI2/P72 ANI1/P71 ANI0/P70 AVDD AVSS AVREF 2 Preliminary Data Sheet U13995EJ1V0DS00 A16/P60 A17/P61 A18/P62 A19/P63 A20/P64 A21/P65 A22/P66 A23/P67 HVDD CS0/RAS0/P80 CS1/RAS1/P81 CS2/RAS2/P82 CS3/RAS3/P83 CS4/RAS4/IOWR/P84 CS5/RAS5/IORD/P85 CS6/RAS6/P86 CS7/RAS7/P87 LCAS/LWR/P90 UCAS/UWR/P91 RD/P92 WE/P93 BCYST/P94 OE/P95 HLDAK/P96 HLDRQ/P97 VSS REFRO/PX5 WAIT/PX6 CLKOUT/PX7 TO150/P120 TO151/P121 TCLR15/P122 TI15/P123 INTP150/P124 INTP151/P125 INTP152/P126 µPD703100-33, 703100-40, 703101-33, 703102-33 PIN NAMES A0 to A23 : Address Bus P50 to P57 : Port 5 ADTRG : AD Trigger Input P60 to P67 : Port 6 ANI0 to ANI7 : Analog Input P70 to P77 : Port 7 AVDD : Analog Power Supply P80 to P87 : Port 8 AVREF : Analog Reference Voltage P90 to P97 : Port 9 AVSS : Analog Ground P100 to P107 : Port 10 BCYST : Bus Cycle Start Timing P110 to P117 : Port 11 CKSEL : Clock Generator Operating Mode Select P120 to P127 : Port 12 CLKOUT : Clock Output PA0 to PA7 : Port A CS0 to CS7 : Chip Select PB0 to PB7 : Port B CVDD : Clock Generator Power Supply PX5 to PX7 : Port X CVSS : Clock Generator Ground RAS0 to RAS7 : Row Address Strobe D0 to D15 : Data Bus RD : Read DMAAK0 to DMAAK3 : DMA Acknowledge REFRQ : Refresh Request DMARQ0 to DMARQ3 : DMA Request RESET : Reset HLDAK : Hold Acknowledge RXD0, RXD1 : Receive Data HLDRQ : Hold Request SCK0 to SCK3 : Serial Clock HVDD : Power Supply for External Pins SI0 to SI3 : Serial Input INTP100 to INTP103, : Interrupt Request from Peripherals SO0 to SO3 : Serial Output INTP110 to INTP113, TC0 to TC3 : Terminal Count Signal INTP120 to INTP123, TCLR10 to TCLR15 : Timer Clear INTP130 to INTP133, TI10 to TI15 : Timer Input INTP140 to INTP143, TO100, TO101, : Timer Output INTP150 to INTP153 TO110, TO111, IORD : I/O Read Strobe TO120, TO121, IOWR : I/O Write Strobe TO130, TO131, LCAS : Lower Column Address Strobe TO140, TO141, LWR : Lower Write Strobe TO150, TO151 MODE0 to MODE3 : Mode TXD0, TXD1 : Transmit Data NMI : Non-Maskable Interrupt Request UCAS : Upper Column Address Strobe OE : Output Enable UWR : Upper Write Strobe P00 to P07 : Port 0 VDD : Power Supply for Internal Unit P10 to P17 : Port 1 VSS : Ground P20 to P27 : Port 2 WAIT : Wait P30 to P37 : Port 3 WE : Write Enable P40 to P47 : Port 4 X1, X2 : Crystal Preliminary Data Sheet U13995EJ1V0DS00 3 µPD703100-33, 703100-40, 703101-33, 703102-33 INTERNAL BLOCK DIAGRAM HLDRQ NMI INTP100 to INTP103, INTP110 to INTP113, INTP120 to INTP123, INTP130 to INTP133, INTP140 to INTP143, INTP150 to INTP153 CPU ROM BCU HLDAK INTC CS0 to CS7/RAS0 to RAS7 IOWR Instruction queue IORD Multiplier (32 × 32 → 64) Note DRAMC REFRQ BCYST PC TO100, TO101, TO110, TO111, TO120, TO121, TO130, TO131, TO140, TO141, TO150, TO151 WE RD Barrel shifter RPU RAM Page ROM controller System registers OE UWR/UCAS LWR/LCAS TCLR10 to TCLR15 4 Kbytes TI10 to TI15 WAIT ALU General registers (32 bits × 32) A0 to A23 D0 to D15 DMAC DMARQ0 to DMARQ3 DMAAK0 to DMARQ3 SIO SO0/TXD0 SI0/RXD0 SCK0 TC0 to TC3 UART0/CSI0 BRG0 SO1/TXD1 SI1/RXD1 SCK1 CKSEL Port UART1/CSI1 CLKOUT CG HVDD P00 to P07 P20 P10 to P17 P21 to P27 P30 to P37 P40 to P47 P50 to P57 P60 to P67 P70 to P77 P80 to P87 P90 to P97 P100 to P107 PA0 to PA7 P110 to P117 BRG2 SO3 SI3 SCK3 P120 to P127 CSI2 PB0 to PB7 SO2 SI2 SCK2 PX5 to PX7 BRG1 X1 X2 CVDD CVSS System controller MODE0 to MODE3 RESET CSI3 VDD ANI0 to ANI7 AVREF AVSS AVDD ADTRG VSS ADC Note µPD703100-33, 703100-40: None µPD703101-33: 96 Kbytes (mask ROM) µPD703102-33: 128 Kbytes (mask ROM) 4 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 CONTENTS 1. DIFFERENCES AMONG PRODUCTS........................................................................................... 7 2. PIN FUNCTIONS ............................................................................................................................. 8 2.1 2.2 2.3 3. Port Pins ................................................................................................................................. Non-port Pins ......................................................................................................................... Pin I/O Circuits and Recommended Connection of Unused Pins..................................... 8 11 15 FUNCTION BLOCKS ...................................................................................................................... 18 3.1 Internal Units .......................................................................................................................... 18 3.1.1 CPU ........................................................................................................................................... 18 3.1.2 Bus control unit (BCU) ............................................................................................................... 18 3.1.3 ROM .......................................................................................................................................... 18 3.1.4 RAM........................................................................................................................................... 19 3.1.5 Ports .......................................................................................................................................... 19 3.1.6 Interrupt controller (INTC).......................................................................................................... 19 3.1.7 Clock generator (CG)................................................................................................................. 19 3.1.8 Real-time pulse unit (RPU) ........................................................................................................ 19 3.1.9 Serial interface (SIO) ................................................................................................................. 19 3.1.10 A/D converter (ADC) .................................................................................................................. 19 4. CPU FUNCTIONS............................................................................................................................ 20 5. BUS CONTROL FUNCTIONS........................................................................................................ 20 6. MEMORY ACCESS CONTROL FUNCTIONS .............................................................................. 21 6.1 6.2 SRAM Connection.................................................................................................................. Page ROM Controller (ROMC) .............................................................................................. 21 22 6.2.1 Features..................................................................................................................................... 22 6.2.2 Page ROM connection............................................................................................................... 22 DRAM Controller .................................................................................................................... 24 6.3.1 Features..................................................................................................................................... 24 6.3.2 DRAM Connections ................................................................................................................... 24 7. DMA FUNCTIONS (DMA CONTROLLER) ................................................................................... 26 8. INTERRUPT/EXCEPTION PROCESSING FUNCTIONS............................................................... 28 8.1 Features .................................................................................................................................. 28 CLOCK GENERATION FUNCTIONS ............................................................................................ 33 10. TIMER/COUNTER FUNCTIONS (REAL-TIME PULSE UNIT)..................................................... 34 6.3 9. Preliminary Data Sheet U13995EJ1V0DS00 5 µPD703100-33, 703100-40, 703101-33, 703102-33 11. SERIAL INTERFACE FUNCTION .................................................................................................. 11.1 Asynchronous Serial Interfaces 0, 1 (UART0, UART1)....................................................... 11.2 Clocked Serial Interfaces 0 to 3 (CSI0 to CSI3) ................................................................... 11.3 Dedicated Baud Rate Generators 0 to 2 (BRG0 to BRG2).................................................. 37 37 38 40 12. A/D CONVERTER............................................................................................................................ 41 13. PORT FUNCTIONS ......................................................................................................................... 42 14. RESET FUNCTION .......................................................................................................................... 53 15. INSTRUCTION SET ......................................................................................................................... 54 16. ELECTRICAL SPECIFICATIONS (PRELIMINARY VALUES)...................................................... 64 17. PACKAGE DRAWING ..................................................................................................................... 120 18. RECOMMENDED SOLDERING CONDITIONS ............................................................................. 121 6 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 1. DIFFERENCES AMONG PRODUCTS µPD703100 Product Name Item –33 Internal ROM Maximum operating frequency HVDD –40 µPD703101 –A33 –A40 None 33 MHz –33 –A33 96 Kbytes (mask ROM) 40 MHz 4.5 to 5.5 V 33 MHz 40 MHz 3.0 to 3.6 V µPD703102 –33 –A33 µPD70F3102 –33 –A33 128 Kbytes (mask ROM) 128 Kbytes (flash memory) 4.5 to 5.5 V 4.5 to 5.5 V 33 MHz 4.5 to 5.5 V 3.0 to 3.6 V 3.0 to 3.6 V 3.0 to 3.6 V Operation mode Single-chip mode 0, 1 None Provided Flash memory programming mode None Provided Flash memory programming pin None Provided (VPP) Electrical specifications Power consumptions differ (refer to the data sheet of each product). Package 144LQFP Others Noise tolerance and noise radiation will differ due to the differences in circuit scale and mask layout. 144LQFP 157FBGA 144LQFP 144LQFP 157FBGA 144LQFP 144LQFP 157FBGA 144LQFP 144LQFP 157FBGA Remark 144LQFP: 144-pin plastic LQFP (fine pitch) (20 × 20 mm) 157FBGA: 157-pin plastic FBGA (14 × 14 mm) Preliminary Data Sheet U13995EJ1V0DS00 7 µPD703100-33, 703100-40, 703101-33, 703102-33 2. PIN FUNCTIONS 2.1 Port Pins (1/3) Pin Name P00 I/O I/O P01 Port 0 8-bit I/O port Input/output mode can be specified in 1-bit units Alternate Function TO100 TO101 P02 TCLR10 P03 TI10 P04 INTP100/DMARQ0 P05 INTP101/DMARQ1 P06 INTP102/DMARQ2 P07 INTP103/DMARQ3 P10 I/O P11 Port 1 8-bit I/O port Input/output mode can be specified in 1-bit units TO110 TO111 P12 TCLR11 P13 TI11 P14 INTP110/DMAAK0 P15 INTP111/DMAAK1 P16 INTP112/DMAAK2 P17 INTP113/DMAAK3 P20 I P21 I/O P22 P23 P24 Port 2 P20 is an input only port. When a valid edge is input, this pin operates as NMI input. Also, bit 0 of the P2 register indicates the NMI input status. P21 to P27 are 7-bit I/O port. Input/output mode can be specified in 1-bit units NMI – TXD0/SO0 RXD0/SO0 SCK0 P25 TXD1/SO1 P26 RXD1/SI1 P27 SCK1 P30 I/O P31 Port 3 8-bit I/O port. Input/output mode can be specified in 1-bit units TO130 TO131 P32 TCLR13 P33 TI13 P34 INTP130 P35 INTP131/SO2 P36 INTP132/SI2 P37 INTP133/SCK2 P40 to P47 8 Function I/O Port 4 8-bit I/O port Input/output mode can be specified in 1-bit units Preliminary Data Sheet U13995EJ1V0DS00 D0 to D7 µPD703100-33, 703100-40, 703101-33, 703102-33 (2/3) Pin Name I/O Function Alternate Function P50 to P57 I/O Port 5 8-bit I/O port Input/output mode can be specified in 1-bit units D8 to D15 P60 to P67 I/O Port 6 8-bit I/O port Input/output mode can be specified in 1-bit units A16 to A23 P70 to P77 I Port 7 8-bit input only port ANI0 to ANI7 Port 8 8-bit I/O port Input/output mode can be specified in 1-bit units CS0/RAS0 P80 I/O P81 CS1/RAS1 P82 CS2/RAS2 P83 CS3/RAS3 P84 CS4/RAS4/IOWR P85 CS5/RAS5/IORD P86 CS6/RAS6 P87 CS7/RAS7 P90 I/O P91 Port 9 8-bit I/O port Input/output mode can be specified in 1-bit units LCAS/LWR UCAS/UWR P92 RD P93 WE P94 BCYST P95 OE P96 HLDAK P97 HLDRQ P100 I/O P101 Port 10 8-bit I/O port Input/output mode can be specified in 1-bit units TO120 TO121 P102 TCLR12 P103 TI12 P104 INTP120/TC0 P105 INTP121/TC1 P106 INTP122/TC2 P107 INTP123/TC3 P110 P111 I/O Port 11 8-bit I/O port Input/output mode can be specified in 1-bit units TO140 TO141 P112 TCLR14 P113 TI14 P114 INTP140 P115 INTP141/SO3 P116 INTP142/SI3 P117 INTP143/SCK3 Preliminary Data Sheet U13995EJ1V0DS00 9 µPD703100-33, 703100-40, 703101-33, 703102-33 (3/3) Pin Name P120 I/O I/O P121 Function Port 12 8-bit I/O port Input/output mode can be specified in 1-bit units Alternate Function TO150 TO151 P122 TCLR15 P123 TI15 P124 INTP150 P125 INTP151 P126 INTP152 P127 INTP153/ADTRG PA0 I/O PA1 Port A 8-bit I/O port Input/output mode can be specified in 1-bit units A0 A1 PA2 A2 PA3 A3 PA4 A4 PA5 A5 PA6 A6 PA7 A7 PB0 I/O PB1 Port B 8-bit I/O port Input/output mode can be specified in 1-bit units A8 A9 PB2 A10 PB3 A11 PB4 A12 PB5 A13 PB6 A14 PB7 A15 PX5 PX6 I/O Port X 3-bit I/O port Input/output mode can be specified in 1-bit units PX7 10 REFRQ WAIT CLKOUT Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 2.2 Non-port Pins (1/4) Pin Name TO100 I/O O Function Pulse signal output for timers 10 to 15 Alternate Function P00 TO101 P01 TO110 P10 TO111 P11 TO120 P100 TO121 P101 TO130 P30 TO131 P31 TO140 P110 TO141 P111 TO150 P120 TO151 P121 TCLR10 I External clear signal input for timers 10 to 15 P02 TCLR11 P12 TCLR12 P102 TCLR13 P32 TCLR14 P112 TCLR15 P122 TI10 I External count clock input for timers 10 to 15 P03 TI11 P13 TI12 P103 TI13 P33 TI14 P113 TI15 P123 INTP100 I INTP101 External maskable interrupt request input, shared as external capture trigger input for timer 10 P04/DMARQ0 P05/DMARQ1 INTP102 P06/DMARQ2 INTP103 P07/DMARQ3 INTP110 I INTP111 External maskable interrupt request input, shared as external capture trigger input for timer 11 P14/DMAAK0 P15/DMAAK1 INTP112 P16/DMAAK2 INTP113 P17/DMAAK3 INTP120 INTP121 I External maskable interrupt request input, shared as external capture trigger input for timer 12 P104/TC0 P105/TC1 INTP122 P106/TC2 INTP123 P107/TC3 Preliminary Data Sheet U13995EJ1V0DS00 11 µPD703100-33, 703100-40, 703101-33, 703102-33 (2/4) Pin Name INTP130 I/O I INTP131 Function External maskable interrupt request input, shared as external capture trigger input for timer 13 Alternate Function P34 P35/SO2 INTP132 P36/SI2 INTP133 P37/SCK2 INTP140 I INTP141 External maskable interrupt request input, shared as external capture trigger input for timer 14 P114 P115/SO3 INTP142 P116/SI3 INTP143 P117/SCK3 INTP150 I INTP151 External maskable interrupt request input, shared as external capture trigger input for timer 15 P124 P125 INTP152 P126 INTP153 P127/ADTRG SO0 O Serial transmit data output (3-wire) for CSI0 to CSI3 P22/TXD0 SO1 P25/TXD1 SO2 P35/INTP131 SO3 P115/INTP141 SI0 I Serial receive data input (3-wire) for CSI0 to CSI3 P23/RXD0 SI1 P26/RXD1 SI2 P36/INTP132 SI3 P116/INTP142 SCK0 I/O Serial clock I/O (3-wire) for CSI0 to CSI3 P24 SCK1 P27 SCK2 P37/INTP133 SCK3 P117/INTP143 TXD0 O Serial transmit data output for UART0 and UART1 TXD1 RXD0 P25/SO1 I Serial receive data input for UART0 and UART1 RXD1 D0 to D7 P23/SI0 P26/SI1 I/O 16-bit data bus for external memory D8 to D15 A0 to A7 P22/SO0 P40 to P47 P50 to P57 O 24-bit address bus for external memory PA0 to PA7 A8 to A15 PB0 to PB7 A16 to A23 P60 to P67 LWR O Lower byte write-enable signal output for external data bus P90/LCAS UWR O Higher byte write-enable signal output for external data bus P91/UCAS RD O Read strobe signal output for external data bus P92 WE O Write enable signal output for DRAM P93 OE O Output enable signal output for DRAM P95 12 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 (3/4) Pin Name I/O Function Alternate Function LCAS O Column address strobe signal output for DRAM’s lower data P90/LWR UCAS O Column address strobe signal output for DRAM’s higher data P91/UWR RAS0 to RAS3 O Low address strobe signal output for DRAM P80/CS0 to P83/CS3 RAS4 P84/CS4/IOWR RAS5 P85/CS5/IORD RAS6 P86/CS6 RAS7 P87/CS7 BCYST O Strobe signal output indicating start of bus cycle P94 CS0 to CS3 O Chip select signal output P80/RAS0 to P83/RAS3 CS4 P84/RAS4/IOWR CS5 P85/RAS5/IORD CS6 P86/RAS6 CS7 P87/RAS7 WAIT I Control signal input for inserting waits in bus cycle PX6 REFRQ O Refresh request signal output for DRAM PX5 IOWR O DMA write strobe signal output P84/RAS4/CS4 IORD O DMA read strobe signal output P85/RAS5/CS5 DMARQ0 to DMARQ3 I DMA request signal input P04/INTP100 to P07/INTP103 DMAAK0 to DMAAK3 O DMA acknowledge signal output P14/INTP110 to P17/INTP113 TC0 to TC3 O DMA end (terminal count) signal output P104/INTP120 to P107/INTP123 HLDAK O Bus hold acknowledge output P96 HLDRQ I Bus hold request input P97 ANI0 to ANI7 I Analog input to A/D converter P70 to P77 NMI I Non-maskable interrupt request input P20 CLKOUT O System clock output PX7 CKSEL I Input for specifying clock generator’s operation mode – MODE0 to MODE3 I Specify operation modes – RESET I System reset input – X1 I – X2 – Oscillator connection for system clock. Input is via X1 when using an external clock. ADTRG I A/D converter external trigger input AVREF I Reference voltage input for A/D converter – AVDD – Positive power supply for A/D converter – AVSS – Ground potential for A/D converter – Preliminary Data Sheet U13995EJ1V0DS00 – P127/INTP153 13 µPD703100-33, 703100-40, 703101-33, 703102-33 (4/4) Pin Name I/O Function Alternate Function CVDD – Positive power supply for dedicated clock generator – CVSS – Ground potential for dedicated clock generator – VDD – Positive power supply (power supply for internal units) – HVDD – Positive power supply (power supply for external pins) – VSS – Ground potential – 14 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 2.3 Pin I/O Circuits and Recommended Connection of Unused Pins Table 2-1 shows the I/O circuit type of each pin and recommended connection of unused pins. Figure 2-1 shows the various circuit types using partially abridged diagrams. When connecting to VDD or VSS via a resistor, a resistance value in the range of 1 to 10 kΩ is recommended. Table 2-1. I/O Circuit Type of Each Pin and Recommended Connection of Unused Pins (1/2) Pin I/O Circuit Type P00/TO100, P01/TO101 5 P02/TCLR10, P03/TI10 5-K Recommended Connection of Unused Pins Input : Independently connect to HVDD or VSS via a resistor Output: Leave open P04/INTP100/DMARQ0 to P07/INTP103/DMARQ3 P10/TO110, P11/TO111 5 P12/TCLR11, P13/TI11 5-K P14/INTP110/DMAAK0 to P17/INTP113/DMAAK3 P20/NMI 2 Connect directly to VSS P21 5 Input : Independently connect to HVDD or VSS via a resistor Output: Leave open P22/TXD0/SO0 P23/RXD0/SI0 5-K P24/SCK0 P25/TXD1/SO1 5 P26/RXD1/SI1 5-K P27/SCK1 P30/TO130, P31/TO131 P32/TCLR13,P33/TI13 5 5-K P34/INTP130 P35/INTP131/SO2 P36/INTP132/SI2 P37/INTP133/SCK2 P40/D0 to P47/D7 5 P50/D8 to P57/D15 P60/A16 to P67/A23 P70/ANI0 to P77/ANI7 9 Connect directly to VSS P80/CS0/RAS0 to P83/CS3/RAS3 5 Input : Independently connect to HVDD or VSS via a resistor Output: Leave open P84/CS4/RAS4/IOWR, P85/CS5/RAS5/IORD P86/CS6/RAS6, P87/CS7/RAS7 P90/LCAS/LWR P91/UCAS/UWR Preliminary Data Sheet U13995EJ1V0DS00 15 µPD703100-33, 703100-40, 703101-33, 703102-33 Table 2-1. I/O Circuit Type of Each Pin and Recommended Connection of Unused Pins (2/2) Pin P92/RD I/O Circuit Type 5 P93/WE Recommended Connection of Unused Pins Input : Independently connect to HVDD or VSS via a resistor Output: Leave open P94/BCYST P95/OE P96/HLDAK P97/HLDRQ P100/TO120, P101/TO121 P102/TCLR12, P103/TI12 5-K P104/INTP120/TC0 to P107/INTP123/TC3 P110/TO140, P111/TOI41 5 P112/TCLR14, P113/TI14 5-K P114/INTP140 P115/INTP141/SO3 P116/INTP142/SI3 P117/INTP143/SCK3 P120/TO150, P121/TO151 5 P122/TCLR15, P123/TI15 5-K P124/INTP150 to P126/INTP152 P127/INTP153/ADTRG PA0/A0-PA7/A7 5 PB0/A8-PB7/A15 PX5/REFRQ PX6/WAIT PX7/CLKOUT CKSEL 1 RESET 2 Connect directly to HVDD – MODE0 to MODE2 MODE3 Connect to VSS via a resistor (RVPP) AVREF, AVSS – Connect directly to VSS AVDD – Connect directly to HVDD 16 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 Figure 2-1. Pin I/O Circuits Type 5-K Type 1 VDD VDD data P-ch IN/OUT P-ch IN output disable N-ch N-ch input enable Type 9 Type 2 P-ch IN IN + – N-ch Comparator VREF (threshold voltage) input enable Schmitt trigger input with hysteresis characteristics Type 5 VDD data P-ch IN/OUT output disable N-ch input enable Caution Replace VDD by HVDD when referencing the circuit diagrams shown above. Preliminary Data Sheet U13995EJ1V0DS00 17 µPD703100-33, 703100-40, 703101-33, 703102-33 3. FUNCTION BLOCKS 3.1 Internal Units 3.1.1 CPU The CPU uses five-stage pipeline control to enable single-clock execution of address calculations, arithmetic logic operations, data transfers, and almost all other instruction processing. Other dedicated on-chip hardware, such as the multiplier (16 bits × 16 bits → 32 bits, or 32 bits × 32 bits → 64 bits) and the barrel shifter (32 bits) help accelerate processing of complex instructions. 3.1.2 Bus control unit (BCU) The BCU starts a required external bus cycle based on the physical address obtained by the CPU. When an instruction is fetched from external memory area and the CPU does not send a bus cycle start request, the BCU generates a prefetch address and prefetches the instruction code. The prefetched instruction code is stored in an internal instruction queue of the CPU. The BCU contains DRAM controller (DRAMC), page ROM controller, and DMA controller (DMAC). (a) DRAM controller (DRAMC) The DRAM controller generates the RAS, UCAS, and LCAS signals (2CAS control) and controls access to the DRAM. It supports high-speed page DRAM and EDO DRAM, and has two types of cycles for accessing DRAM. These types of cycles are referred to as normal access (off-page) and page access (on-page). The DRAM controller also has a refresh function that is associated with the CBR refresh cycle. (b) Page ROM controller The page ROM controller supports access to ROM that has the page access function. It compares the address with that of the preceding bus cycle and controls the waits for normal access (offpage) and page access (on-page). The page ROM controller can support page sizes of 8 to 64 bytes. (c) DMA controller (DMAC) The DMA controller transfers data between memory and an I/O device in place of the CPU. The two address modes are flyby (one-cycle) transfer and two-cycle transfer. The three bus modes are single transfer, single-step transfer, and block transfer. 3.1.3 ROM The µPD703101-33 contains 96-Kbytes mask ROM, and the µPD703102-33 contains 128-Kbytes mask ROM. The CPU can access ROM in one clock cycle when an instruction is fetched. When single-chip mode 0 is set, ROM is mapped to the address space starting at 00000000H. When single-chip mode 1 is set, ROM is mapped to the address space starting at 00100000H. When ROM-less mode 0 or 1 is set, ROM cannot be accessed. The µPD703100-33 and µPD703100-40 have no internal ROM. 18 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 3.1.4 RAM RAM is mapped to the 4-Kbyte address space starting at FFFFE000H. The CPU can access RAM in one clock cycle when an instruction is fetched or data is accessed. 3.1.5 Ports In addition to the 123 pins (ports 0 to 12, A, B, and X) comprising I/O ports (of which nine pins comprise an inputonly port), various port pin and control pin functions can be selected for these pins. 3.1.6 Interrupt controller (INTC) This controller handles hardware interrupt requests (NMI, INTP100 to INTP103, INTP110 to INTP113, INTP120 to INTP123, INTP130 to INTP133, INTP140 to INTP143, and INTP150 to INTP153) from on-chip peripheral I/O and external hardware. Eight interrupt priority levels can be specified for these interrupt requests, and multiplexed servicing control can be performed for interrupt sources. 3.1.7 Clock generator (CG) A frequency of five times (using an on-chip PLL) or one-half times (not using an on-chip PLL) that of the input clock (fXX) is supplied as the internal system clock (φ). Either an external oscillator is connected to pins X1 and X2 (only when the on-chip PLL synthesizer is used) or an external clock is input from the X1 pin as the input clock. 3.1.8 Real-time pulse unit (RPU) The RPU includes a six-channel 16-bit timer/event counter and a two-channel 16-bit interval timer, which enables measurement of pulse intervals and frequency as well as programmable pulse output. 3.1.9 Serial interface (SIO) Four channels are comprised of two kinds of serial interfaces: an asynchronous serial interface (UART) and a clocked serial interface (CSI). Two of these four channels are switchable between the UART and CSI and the other two channels are fixed as CSI. For UART, data is transferred via the TXD and RXD pins. For CSI, data is transferred via the SO, SI, and SCK pins. The serial clock source can be selected from dedicated baud rate generator output or the internal system clock. 3.1.10 A/D converter (ADC) This is a high-speed, high-resolution 10-bit A/D converter that includes eight analog input pins. It converts using the successive approximation method. Preliminary Data Sheet U13995EJ1V0DS00 19 µPD703100-33, 703100-40, 703101-33, 703102-33 4. CPU FUNCTIONS { RISC-based architecture { Uses five-stage pipeline control to enable single-clock execution of almost all instructions 25 ns (@ 40-MHz operation) ... µPD703100-40 { Minimum instruction execution time 30 ns (@ 33-MHz operation) ... µPD703100-33, 703101-33, 703102-33 { Memory space Program space : 64-Mbyte linear Data space : 4-Gbyte linear { General registers 32 bits × 32 { Internal 32-bit architecture { 5-stage pipeline control { Multiply/divide instructions { Saturated operation instructions { 32-bit shift instruction: 1 clock { Long/short format { Four types of bit manipulation instructions • Set • Clear • Not • Test 5. BUS CONTROL FUNCTIONS { 16-bit/8-bit data bus sizing function { 8-space chip select output function { Wait functions • Programmable wait function for up to seven states for each memory block • External wait function using WAIT pin { Idle state insertion function { Bus mastering arbitration function { Bus hold function { Alternate function for port pins are connectable to external bus 20 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 6. MEMORY ACCESS CONTROL FUNCTIONS 6.1 SRAM Connection The following figure shows an SRAM connection example. Figure 6-1. SRAM Connection Example A1 to A17 A0 to A16 D0 to D7 I/O1 to I/O8 D8 to D15 CS CSn UWR WE LWR OE RD HVDD 5V 5V VCC 1-Mbit (128 K × 8) SRAM V850E/MS1 A0 to A16 I/O1 to I/O8 CS WE OE 5V VCC 1-Mbit (128 K × 8) SRAM Remark n = 0 to 7 Preliminary Data Sheet U13995EJ1V0DS00 21 µPD703100-33, 703100-40, 703101-33, 703102-33 6.2 Page ROM Controller (ROMC) The page ROM controller (ROMC) supports access to ROM (page ROM) that has the page access function. It compares the address with that of the preceding bus cycle and performs wait control for normal access (offpage) and page access (on-page). The page ROM controller can support page widths of 8 to 64 bytes. 6.2.1 Features { Can be connected directly to 8-bit or 16-bit page ROM { For 16-bit bus width, it supports 4-, 8-, 16-, or 32-word page access For 8-bit bus width, it supports 8-, 16-, 32-, or 64-word page access { Enables waits to be set (0 to 7 waits) independently for off-page and on-page access 6.2.2 Page ROM connection The following figure shows page ROM connection examples. Figure 6-2. Page ROM Connection Examples (1/2) (a) 16-Mbit (1 M × 16) page ROM A1 to A20 A0 to A19 D0 to D15 O1 to O16 RD OE CSn CE VDD WORD/BYTE 16-Mbit (1 M × 16) page ROM V850E/MS1 Remark n = 0 to 7 22 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 Figure 6-2. Page ROM Connection Examples (2/2) (b) 16-Mbit (2 M × 8) page ROM A1 to A20 A0 to A19 D0 to D7 O0 to O7 RD OE CSn CE WORD/BYTE D8 to D15 16-Mbit (2 M × 8) page ROM V850E/MS1 A0 to A19 O0 to O7 OE CE WORD/BYTE 16-Mbit (2 M × 8) page ROM Remark n = 0 to 7 Preliminary Data Sheet U13995EJ1V0DS00 23 µPD703100-33, 703100-40, 703101-33, 703102-33 6.3 DRAM Controller 6.3.1 Features { Generates the RAS, UCAS, and LCAS signals { Can be connected directly to high-speed page DRAM and EDO DRAM { Supports RAS hold mode { Can assign 4 types of DRAM to 8 memory block spaces { Supports 2CAS type DRAM { Can be switched between row and column address multiplex widths { Can insert waits (0 to 3 waits) at each of the following timings • Row address pre-charge wait • Row address hold wait • Data access wait • Column address pre-charge wait { Supports CBR refresh and CBR self refresh 6.3.2 DRAM Connections The following figure shows DRAM connection examples. Figure 6-3. DRAM Connection Examples (1/2) (a) 16-Mbit (1 M × 16) DRAM A1 to A10 A0 to A9 D0 to D15 I/O1 to I/O16 RASn RASn LCAS LCAS UCAS UCAS V850E/MS1 WE WE OE OE 16-Mbit (1 M × 16) DRAM Remark n = 0 to 7 24 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 Figure 6-3. DRAM Connection Examples (2/2) (b) 4-Mbit (1 M × 4) DRAM A0 to A9 A0 to A9 I/O1 to I/O4 I/O1 to I/O4 RASn RAS RAS LCAS CAS CAS WE WE WE OE OE OE A1 to A10 D0 to D7 D8 to D15 UCAS V850E/MS1 4-Mbit (1 M × 4) DRAM 4-Mbit (1 M × 4) DRAM A0 to A9 A0 to A9 I/O1 to I/O4 I/O1 to I/O4 RAS RAS CAS CAS WE WE OE OE 4-Mbit (1 M × 4) DRAM 4-Mbit (1 M × 4) DRAM Remark n = 0 to 7 Preliminary Data Sheet U13995EJ1V0DS00 25 µPD703100-33, 703100-40, 703101-33, 703102-33 7. DMA FUNCTIONS (DMA CONTROLLER) { 4 independent DMA channels { Transfer units: 8 or 16 bits 16 { Maximum transfer count: 65536 (2 ) { Two types of transfer • Flyby (one-cycle) transfer • Two-cycle transfer { Three transfer modes • Single transfer mode • Single-step transfer mode • Block transfer mode { Transfer requests • DMARQ0 to DMARQ3 pin (× 4) • Requests from on-chip peripheral I/O (serial interface and real-time pulse unit) • Requests by software { Transfer objects • Memory to I/O and vice versa • Memory to memory and vice versa { DMA transfer end output signal (TC0 to TC3) 26 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 Figure 7-1. DMA Function Block Diagram Internal RAM Internal peripheral I/O Internal bus Internal peripheral I/O bus CPU Data control Address control DMA source address register (DSAnH/DSAnL) DMA destination address register (DDAnH/DDAnL) TCn Count control DMA byte count register (DBCn) DMA addressing control register (DADCn) DMA channel control register (DCHCn) NMI INTPmn Request from on-chip peripheral I/O Channel control DMA disable status register (DDISn) DMA restart register (DRSTn) DMARQn DMAAKn DMA trigger source register (DTFRn) DMAC Bus interface V850E/MS1 External bus External I/O External RAM External ROM Remark m = 10 to 15, n=0 to 3 Preliminary Data Sheet U13995EJ1V0DS00 27 µPD703100-33, 703100-40, 703101-33, 703102-33 8. INTERRUPT/EXCEPTION PROCESSING FUNCTIONS 8.1 Features { Interrupts • Non-maskable interrupt: 1 source • Maskable interrupt • 8-level programmable priority control • Multiple interrupt control based on priority levels • Mask specification for each maskable interrupt request • Noise elimination, edge detection, and valid edge specification for external interrupt requests : 47 sources { Exceptions 28 • Software exceptions: 32 sources • Exception trap : 1 source (invalid instruction code exception) Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 Figure 8-1. Interrupt Control Function Block Diagram Internal bus ISPR register xxICn register Note INTP110 INTP111 INTP112 INTP113 Note INTM2 (edge detection) INTP120 INTP121 INTP122 INTP123 Note INTM3 (edge detection) INTP130 INTP131 INTP132 INTP133 Note INTM4 (edge detection) INTP140 INTP141 INTP142 INTP143 Note INTM5 (edge detection) INTP150 INTP151 INTP152 INTP153 Note INTM6 (edge detection) INTM1 (edge detection) DMAC CSI0 UART0 SIO CSI1 UART1 CSI2 CSI3 INTOV10 INTOV11 INTOV12 INTOV13 INTOV14 INTOV15 INTP100/INTCC100 INTP101/INTCC101 INTP102/INTCC102 INTP103/INTCC103 INTP110/INTCC110 INTP111/INTCC111 INTP112/INTCC112 INTP113/INTCC113 INTP120/INTCC120 INTP121/INTCC121 INTP122/INTCC122 INTP123/INTCC123 INTP130/INTCC130 INTP131/INTCC131 INTP132/INTCC132 INTP133/INTCC133 INTP140/INTCC140 INTP141/INTCC141 INTP142/INTCC142 INTP143/INTCC143 INTP150/INTCC150 INTP151/INTCC151 INTP152/INTCC152 INTP153/INTCC153 INTCM40 INTCM41 INTDMA0 INTDMA1 INTDMA2 INTDMA3 INTCSI0 INTSER0 INTSR0 INTST0 INTCSI1 INTSER1 INTSR1 INTST1 INTCSI2 INTCSI3 INTAD A/D converter OVIF10 OVIF11 OVIF12 OVIF13 OVIF14 OVIF15 P10IF0 P10IF1 P10IF2 P10IF3 P11IF0 P11IF1 P11IF2 P11IF3 P12IF0 P12IF1 P12IF2 P12IF3 P13IF0 P13IF1 P13IF2 P13IF3 P14IF0 P14IF1 P14IF2 P14IF3 P15IF0 P15IF1 P15IF2 P15IF3 CMIF40 CMIF41 DMAIF0 DMAIF1 DMAIF2 DMAIF3 CSIF0 SEIF0 SRIF0 STIF0 CSIF1 SEIF1 SRIF1 STIF1 CSIF2 CSIF3 ADIF Handler address generator CPU PSW xxPRn0 to xxPRn3 (interrupt priority order specification bit) RPU INTP100 INTP101 INTP102 INTP103 3210 3210 3210 3210 3210 3210 3210 3210 3210 3210 3210 3210 Selector Selector Selector Selector Selector Selector 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 xxMKn (interrupt mask flag) ID Interrupt request Interrupt request acknowledge HALT mode release signal NMI Note Noise elimination Remark xx: OV, CM, P10 to P15, DMA, CS, SE, SR, ST, AD n: None, or 10 to 15, 40, 41, 0 to 3 Preliminary Data Sheet U13995EJ1V0DS00 29 µPD703100-33, 703100-40, 703101-33, 703102-33 Table 8-1. List of Interrupts (1/3) Interrupt/Exception Source Type Default Category Name Reset Interrupt RESSET Control Register – Generation Source RESET input Generat- Priority ing Unit Pin – Exception Code 0000H Handler Restore Address PC 00000000H Undefined Non- Interrupt NMI – NMI input – TRAP instruction Pin – – – 0010H 00000010H nextPC Note 00000040H nextPC Note 00000050H nextPC maskable Software exception Exception Exception Note TRAP0n Note TRAP1n – TRAP instruction – – Exception ILGOP – Illegal instruction – – 0060H 00000060H nextPC 005n H code Interrupt INTOV10 OVIC10 Timer 10 overflow RPU 0 0080H 00000080H nextPC Interrupt INTOV11 OVIC11 Timer 11 overflow RPU 1 0090H 00000090H nextPC Interrupt INTOV12 OVIC12 Timer 12 overflow RPU 2 00A0H 000000A0H nextPC Interrupt INTOV13 OVIC13 Timer 13 overflow RPU 3 00B0H 000000B0H nextPC Interrupt INTOV14 OVIC14 Timer 14 overflow RPU 4 00C0H 000000C0H nextPC Interrupt INTOV15 OVIC15 Timer 15 overflow RPU 5 00D0H 000000D0H nextPC INTP100/ P10IC0 Pin/RPU 6 0100H 00000100H nextPC Pin/RPU 7 0110H 00000110H nextPC Pin/RPU 8 0120H 00000120H nextPC Pin/RPU 9 0130H 00000130H nextPC Pin/RPU 10 0140H 00000140H nextPC Pin/RPU 11 0150H 00000150H nextPC Pin/RPU 12 0160H 00000160H nextPC Pin/RPU 13 0170H 00000170H nextPC Pin/RPU 14 0180H 00000180H nextPC Pin/RPU 15 0190H 00000190H nextPC Pin/RPU 16 01A0H 000001A0H nextPC Interrupt INTCC100 Interrupt INTP101/ Interrupt INTP102/ P10IC1 INTP103/ P10IC2 INTP110/ P10IC3 INTP111/ P11IC0 INTP112/ P11IC1 INTP113/ P11IC2 INTP120/ P11IC3 INTP121/ P12IC0 INTP122/ INTCC122 Match between INTP120 and CC120 P12IC1 INTCC121 Interrupt Match between INTP113 and CC113 INTCC120 Interrupt Match between INTP112 and CC112 INTCC113 Interrupt Match between INTP111 and CC111 INTCC112 Interrupt Match between INTP110 and CC110 INTCC111 Interrupt Match between INTP103 and CC103 INTCC110 Interrupt Match between INTP102 and CC102 INTCC103 Interrupt Match between INTP101 and CC101 INTCC102 Interrupt Match between INTP100 and CC100 INTCC101 Match between INTP121 and CC121 P12IC2 Match between INTP122 and CC122 Note n = 0 to FH 30 H Exception trap Maskable 004n Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 Table 8-1. List of Interrupts (2/3) Interrupt/Exception Source Type Default Category Name Maskable Interrupt INTP123/ Control Register P12IC3 INTCC123 Interrupt INTP130/ INTP131/ P13IC0 INTP132/ P13IC1 INTP133/ P13IC2 INTP140/ P13IC3 INTP141/ P14IC0 INTP142/ P14IC1 INTP143/ P14IC2 INTP150/ P14IC3 INTP151/ P15IC0 INTP152/ P15IC1 INTP153/ Match between Pin/RPU 18 01C0H 000001C0H nextPC Match between Pin/RPU 19 01D0H 000001D0H nextPC Match between Pin/RPU 20 01E0H 000001E0H nextPC Match between Pin/RPU 21 01F0H 000001F0H nextPC Match between Pin/RPU 22 0200H 00000200H nextPC Match between Pin/RPU 23 0210H 00000210H nextPC Match between Pin/RPU 24 0220H 00000220H nextPC Match between Pin/RPU 25 0230H 00000230H nextPC Match between Pin/RPU 26 0240H 00000240H nextPC Match between Pin/RPU 27 0250H 00000250H nextPC Pin/RPU 28 0260H 00000260H nextPC Pin/RPU 29 0270H 00000270H nextPC INTP151 and CC151 P15IC2 INTCC152 Interrupt nextPC INTP150 and CC150 INTCC151 Interrupt 000001B0H INTP143 and CC143 INTCC150 Interrupt 01B0H INTP142 and CC142 INTCC143 Interrupt 17 INTP141 and CC141 INTCC142 Interrupt Pin/RPU INTP140 and CC140 INTCC141 Interrupt PC INTP133 and CC133 INTCC140 Interrupt Restore Address INTP132 and CC132 INTCC133 Interrupt Code Handler INTP131 and CC131 INTCC132 Interrupt ing Unit tion INTP130 and CC130 INTCC131 Interrupt Match between Priority Excep- INTP123 and CC123 INTCC130 Interrupt Generation Source Generat- Match between INTP152 and CC152 P15IC3 INTC153 Match between INTP153 and CC153 Interrupt INTCM40 CMIC40 CM40 match signal RPU 30 0280H 00000280H nextPC Interrupt INTCM41 CMIC41 CM41 match signal RPU 31 0290H 00000290H nextPC Interrupt INTDMA0 DMAIC0 DMAC 32 02A0H 000002A0H nextPC DMAC 33 02B0H 000002B0H nextPC DMAC 34 02C0H 000002C0H nextPC DMAC 35 02D0H 000002D0H nextPC SIO 36 0300H 000000300H nextPC SIO 37 0310H 000000310H nextPC DMA channel 0 transfer completion Interrupt INTDMA1 DMAIC1 DMA channel 1 transfer completion Interrupt INTDMA2 DMAIC2 DMA channel 2 transfer completion Interrupt INTDMA3 DMAIC3 DMA channel 3 transfer completion Interrupt INTCSI0 CSIC0 CSI0 send/receive completion Interrupt INTSER0 SEIC0 UART0 receive error Note n = 0 to FH Preliminary Data Sheet U13995EJ1V0DS00 31 µPD703100-33, 703100-40, 703101-33, 703102-33 Table 8-1. List of Interrupts (3/3) Interrupt/Exception Source Type Default Category Name Maskable Interrupt INTSR0 Control Register SRIC0 Generation Source UART0 receive Generat- Priority ing Unit Exception Code Handler Restore Address PC SIO 38 0320H 00000320H nextPC SIO 39 0330H 00000330H nextPC SIO 40 0340H 00000340H nextPC UART1 receive error SIO 41 0350H 00000350H nextPC UART1 receive SIO 42 0360H 00000360H nextPC SIO 43 0370H 00000370H nextPC SIO 44 0380H 00000380H nextPC SIO 45 03C0H 000003C0H nextPC ADC 46 0400H 00000400H nextPC completion Interrupt INTST0 STIC0 UART0 send completion Interrupt INTCSI1 CSIC1 CSI1 send/receive completion Interrupt INTSER1 SEIC1 Interrupt INTSR1 SRIC1 completion Interrupt INTST1 STIC1 UART1 send completion Interrupt INTCSI2 CSIC2 CSI2 send/receive completion Interrupt INTCSI3 CSIC3 CSI3 send/receive completion Interrupt INTAD ADIC A/D conversion completion Remarks 1. Default priority: Priority that takes precedence when two or more maskable interrupt requests having the same priority level are generated at the same time. The highest priority is 0. Restore PC: The PC value that is saved in EIPC or FEPC when the interrupt or exception processing is started. However, the restore PC value that is saved when an interrupt is acknowledged during the execution of a division instruction (DIV, DIVH, DIVU, or DIVHU), is the PC value of the current instruction (DIV, DIVH, DIVU, or DIVHU). 2. The execution address of the illegal instruction when an illegal opcode exception occurs is obtained according to the calculation “restore PC - 4.” 32 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 9. CLOCK GENERATION FUNCTIONS { Multiplier function using a PLL (Phase locked loop) synthesizer { Clock sources • Oscillation by connecting an oscillator: fXX = φ/5 • External clock: fXX = 2 × φ or φ/5 { Power saving modes • HALT mode • IDLE mode • Software STOP mode • Clock output inhibit mode { Internal system clock output function Figure 9-1. Block Diagram of Clock Generation Function X1 (fXX) X2 φ Clock generator (CG) CKSEL CPU, on-chip peripheral I/O CLKOUT Time base counter (TBC) Remark φ : internal system clock frequency FXX: external oscillator or external clock frequency Preliminary Data Sheet U13995EJ1V0DS00 33 µPD703100-33, 703100-40, 703101-33, 703102-33 10. TIMER/COUNTER FUNCTIONS (REAL-TIME PULSE UNIT) { Measures the pulse interval and frequency, and outputs a programmable pulse • 16-bit measurements are possible • Can generate a variety of pulse patterns (interval pulse, one-shot pulse) { Timer 1 • 16-bit timer/event counter • Count clock sources: 2 types (division of internal system clock, and external pulse input) • Capture/compare common registers: 24 • Count clear pins: TCLR10 to TCLR15 • Interrupt sources: 30 types • External pulse outputs: 12 { Timer 4 34 • 16-bit interval timer • Count clock can select division for internal system clock • Compare registers: 2 • Interrupt sources: 2 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 Figure 10-1. Block Diagram of Timer 1 (16-bit Timer/Event Counter) Internal system clock ( φ ) TM10 TCLR10 Edge detection PRS100, ETI10 PRS101 1/8 1/16 INTP100 INTP101 INTP102 Noise elimination Edge detection (INTM1) INTP103 Note 1 OVF10 INTOV10 TM10 (16 bits) ALV101 ALV100 CC100 CC101 S Q RNote 3 Q CC102 S Q RNote 3 Q CC103 Selector 1/4 Note 2 Clear and count control Clear and start Selector 1/4 Edge detection φm Selector 1/2 Selector TI10 Selector PRM 101 TO100 TO101 IMS100 IMS101 IMS102 IMS103 Selector Selector Selector Selector TM11 INTOV11 TO110 TO111 INTP110/INTCC110 INTP111/INTCC111 INTP112/INTCC112 INTP113/INTCC113 ··· TCLR11 TI11 INTP110 INTP111 INTP112 INTP113 INTP100/INTCC100 INTP101/INTCC101 INTP102/INTCC102 INTP103/INTCC103 TCLR15 TI15 INTP150 INTP151 INTP152 INTP153 TM15 INTOV15 TO150 TO151 INTP150/INTCC150 INTP151/INTCC151 INTP152/INTCC152 INTP153/INTCC153 Notes 1. Internal count clock 2. External count clock 3. Reset priority Preliminary Data Sheet U13995EJ1V0DS00 35 µPD703100-33, 703100-40, 703101-33, 703102-33 Figure 10-2. Block Diagram of Timer 4 (16-bit Interval Timer) Internal system clock (φ ) TM40 1/4 1/8 PRS400 1/16 φm 1/32 Selector 1/2 Selector PRM400, PRM401 Internal count clock TM40 (16 bits) Clear and start CM40 INTCM40 TM41 INTCM41 36 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 11. SERIAL INTERFACE FUNCTION The serial interface function provides two 6-channel serial interfaces. Up to four channels can be used at the same time. (1) Asynchronous serial interface (UART0 and UART1): 2 channels (2) Clocked serial interface (CSI0 to CSI3): 4 channels Caution UART0 and CSI0 share a pin, as do UART1 and CSI1. One or the other of each pair can be selected via a register (ASIM00, ASIM10). 11.1 Asynchronous Serial Interfaces 0, 1 (UART0, UART1) { Transfer rate 150 bps to 76800 bps (using the dedicated baud rate generator when the internal system clock is 33 MHz) Maximum 4.125 Mbps (using the φ/2 clock when the internal system clock is 33 MHz) { Full duplex communications On-chip receive buffer (RXBn) { 2-pin configuration TXDn : Transmit data output pin RXDn: Receive data input pin { Receive error detection functions • Parity error • Framing error • Overrun error { Interrupt sources: 3 types • Receive error interrupt (INTSERn) • Receive completion interrupt (INTSRn) • Transmission completion interrupt (INTSTn) { The character length of transmission/reception data is specified by the ASIMn0 and ASIMn1 registers. { Character length 7, 8 bits 9 bits (when adding an expansion bit) { Parity function: odd, even, 0, none { Transmission stop bit: 1, 2 bits { On-chip dedicated baud rate generator { Serial clock (SCKn) output function Remark n = 0, 1 Preliminary Data Sheet U13995EJ1V0DS00 37 µPD703100-33, 703100-40, 703101-33, 703102-33 Figure 11-1. Block Diagram of Asynchronous Serial Interfaces 0, 1 (UART0, UART1) UART0 RXE0 RXB0/RXB0L Receive shift register RXD0 Receive buffer TXS0/TXS0L Transmit shift register TXD0 Transmit control parity addition INTST0 Receive control parity check INTSER0 SCLS01, SCLS00 1/16 1/16 1/2 Selector SCK0 INTSR0 Internal system clock (φ ) BRG0 INTST1 RXD1 INTSER1 TXD1 UART1 SCK1 INTSR1 BRG1 11.2 Clocked Serial Interfaces 0 to 3 (CSI0 to CSI3) { High-speed transfer Maximum 10 Mbps (when the internal system clock is operating at 40 MHz) ... µPD703100-40 Maximum 8.25 Mbps (when the internal system clock is operating at 33 MHz) ... µPD703100-33, µPD703101-33, µPD703102-33 { Half-duplex communications { Character length: 8 bits { Can switch between MSB first or LSB first for data { Either external serial clock input or internal serial clock output can be selected { 3-wire type SOn: Serial data output SIn: Serial data input SCKn: Serial clock input/output { Interrupt source: 1 type • Transmission/reception completion interrupt (INTCSIn) Remark n = 0 to 3 38 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 Figure 11-2. Block Diagram of Clocked Serial Interfaces 0 to 3 (CSI0 to CSI3) CSI0 CTXE0 Internal system clock (φ ) SO0 CRXE0 SI0 SO latch Serial I/O shift register (SIO0) D CLS00, CLS01 Q SCK0 Selector 1/2 Serial clock control circuit Serial clock counter Interrupt control circuit 1/4 BRG0 INTCSI0 1/2 SO1 1/4 SI1 CSI1 SCK1 BRG1 INTCSI1 1/2 SO2 1/4 SI2 CSI2 SCK2 BRG2 INTCSI2 1/2 SO3 1/4 SI3 CSI3 SCK3 INTCSI3 Preliminary Data Sheet U13995EJ1V0DS00 39 µPD703100-33, 703100-40, 703101-33, 703102-33 11.3 Dedicated Baud Rate Generators 0 to 2 (BRG0 to BRG2) { Serial clock can be selected via either dedicated baud rate generator output or internal system clock (φ) { Identical baud rates during transmission and reception Figure 11-3. Block Diagram of Dedicated Baud Rate Generators 0 to 2 (BRG0 to BRG2) BRG0 BRGC0 CSI0 BRCE0 Match UART0 BPR00 to BPR02 Internal system clock (φ ) Clear TMBRG0 Prescaler CSI1 BRG1 UART1 CSI2 BRG2 CSI3 40 Preliminary Data Sheet U13995EJ1V0DS00 1/2 µPD703100-33, 703100-40, 703101-33, 703102-33 12. A/D CONVERTER { Analog input: 8 channels { On-chip 10-bit A/D converter { On-chip A/D conversion result registers (ADCR0 to ADCR7) 10 bits × 8 { A/D conversion trigger modes A/D trigger mode Timer trigger mode External trigger mode { Successive approximation method Figure 12-1. A/D Converter Block Diagram Series resistor string ANI0 Sample & hold circuit Input circuit Tap selector ANI1 ANI2 ANI3 ANI4 ANI5 ANI6 Voltage comparator ANI7 9 R/2 AVREF R R/2 AVSS AVDD 0 SAR (10) 10 10 INTAD 9 0 ADCR0 INTCC110 INTCC111 INTCC112 INTCC113 ADCR1 Controller ADCR2 ADCR3 ADTRG Noise Edge elimination detection ADCR4 ADCR5 7 0 7 0 ADM0 (8) ADM1 (8) 8 8 ADCR6 ADCR7 10 Internal bus Preliminary Data Sheet U13995EJ1V0DS00 41 µPD703100-33, 703100-40, 703101-33, 703102-33 13. PORT FUNCTIONS { Number of ports Dedicated input ports: 9 Input/output ports : 114 { Shares pins with other peripheral function I/O { Input and output can be specified in 1-bit units The block diagrams of the various ports are divided into 16 block types identified by A to P as shown in Table 131. Figures 13-1 to 13-16 show the block diagrams of each type. Table 13-1. List of Port Block Types Port Name Pin Name Port Function Port 0 P00 to P07 8-bit input/output Input/output of real-time pulse unit (RPU), external interrupt input, DMA controller (DMAC) input A, B, M Port 1 P10 to P17 8-bit input/output Input/output of real-time pulse unit (RPU), external interrupt input, DMA controller (DMAC) output A, B, K Port 2 P20 to P27 1-bit input, 7-bit input/output NMI input, serial interface (UART0/CSI0, UART1/CSI1) input/output A, C, D, I, J Port 3 P30 to P37 8-bit input/output Input/output of real-time pulse unit (RPU), external interrupt input, serial interface (CSI2) input/output A, B, K, M, N Port 4 P40 to P47 8-bit input/output External data bus (D0 to D7) E Port 5 P50 to P57 8-bit input/output External data bus (D8 to D15) E Port 6 P60 to P67 8-bit input/output External address bus (A16 to A23) F Port 7 P70 to P77 8-bit input/output A/D converter (ADC) analog input G Port 8 P80 to P87 8-bit input/output External bus interface control signal output O, P Port 9 P90 to P97 8-bit input/output External bus interface control signal input/output H, O Port 10 P100 to P107 8-bit input/output Input/output of real-time pulse unit (RPU), external interrupt input, DMA controller (DMAC) output A, B, K Port 11 P110 to P117 8-bit input/output Input/output of real-time pulse unit (RPU), external interrupt input, serial interface (CSI3) input/output A, B, K, M, N Port 12 P120 to P127 8-bit input/output Input/output of real-time pulse unit (RPU), external interrupt input, A/D converter (ADC) external trigger input A, B Port A PA0 to PA7 8-bit input/output External address bus (A0 to A7) F Port B PB0 to PB7 8-bit input/output External address bus (A8 to A15) F Port X PX5 to PX7 3-bit input/output Refresh request signal output, wait insertion signal input, internal system clock output A, L 42 Function in Control Mode Preliminary Data Sheet U13995EJ1V0DS00 Block Type µPD703100-33, 703100-40, 703101-33, 703102-33 Figure 13-1. Block Diagram of Type A WRPMC PMCmn WRPM WRPORT Output signal in control mode Selector Internal bus PMmn Pmn RDIN Selector Selector Pmn Address Remark m: port number n : bit number Figure 13-2. Block Diagram of Type B WRPMC PMCmn WRPM WRPORT Pmn Selector Pmn Selector Internal bus PMmn Address RDIN Input signal in control mode Noise elimination Edge detection Remark m: port number n : bit number Preliminary Data Sheet U13995EJ1V0DS00 43 µPD703100-33, 703100-40, 703101-33, 703102-33 Figure 13-3. Block Diagram of Type C WRPMC SCKx output enable signal PMCmn WRPM Output signal in control mode Selector Pmn Pmn Selector WRPORT Selector Internal bus PMmn Address RDIN Input signal in control mode Remark mn: 24, 27 x : 0 (when mn = 24), 1 (when mn = 27) Figure 13-4. Block Diagram of Type D WRPMC PMCmn WRPM WRPORT Pmn Selector Pmn Selector Internal bus PMmn Address RDIN Input signal in control mode Remark m: port number n : bit number 44 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 Figure 13-5. Block Diagram of Type E MODE0 to MODE3 MM0 to MM3 I/O control circuit WRPM Output signal in control mode Selector Pmn Pmn Selector WRPORT Selector Internal bus PMmn Address RDIN Input signal in control mode Remark m: port number n : bit number Figure 13-6. Block Diagram of Type F MODE0 to MODE3 MM0 to MM3 I/O control circuit WRPM Output signal in control mode Selector Pmn Pmn Selector WRPORT Selector Internal bus PMmn Address RDIN Remark m: port number n : bit number Preliminary Data Sheet U13995EJ1V0DS00 45 µPD703100-33, 703100-40, 703101-33, 703102-33 Internal bus Figure 13-7. Block Diagram of Type G P7n RDIN Input signal in control mode ANIn Sample & hold circuit Remark n = 0 to 7 Figure 13-8. Block Diagram of Type H MODE0 to MODE3 MM0 to MM3 I/O control circuit WRPM WRPORT Pmn Selector P97 Selector Internal bus PMmn Address RDIN 46 Input signal in control mode Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 1 Selector Internal bus Figure 13-9. Block Diagram of Type I Noise elimination P20 Address RDIN NMI Edge detection Figure 13-10. Block Diagram of Type J WRPM WRPORT Pmn RDIN Selector Pmn Selector Internal bus PMmn Address Remark m: port number n : bit number Preliminary Data Sheet U13995EJ1V0DS00 47 µPD703100-33, 703100-40, 703101-33, 703102-33 Figure 13-11. Block Diagram of Type K WRPCS PCSmn WRPMC PMCmn Internal bus WRPM PMmn Output signal in control mode Selector Selector Pmn Pmn Selector WRPORT Address RDIN Input signal in control mode Noise elimination Edge detection Remark m: port number n : bit number 48 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 Figure 13-12. Block Diagram of Type L WRPMC PMCmn WRPM WRPORT Pmn Selector Pmn Selector Internal bus PMmn Address RDIN Input signal in control mode Remark m: port number n : bit number Preliminary Data Sheet U13995EJ1V0DS00 49 µPD703100-33, 703100-40, 703101-33, 703102-33 Figure 13-13. Block Diagram of Type M WRPCS PCSmnNote WRPMC PMCmn Internal bus WRPM PMmn WRPORT Pmn Selector Selector Pmn Address RDIN INTP100 to INTP103, INTP132, INTP142 Noise elimination Edge detection DMARQ0 to DMARQ3, SI2, SI3 Note When mn = 36: PCS35 When mn = 116: PCS115 Remark mn: 04 to 07, 36, 116 50 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 Figure 13-14. Block Diagram of Type N WRPCS PCSm5 SCKx output enable signal WRPMC PMCmn Internal bus WRPM Output signal in control mode Selector Pmn Pmn Selector WRPORT Selector PMmn Address RDIN INTP133, INTP143 Noise elimination Edge detection SCK2, SCK3 Remark mn: 37, 117 x: 2 (when mn = 37), 3 (when mn = 117) Preliminary Data Sheet U13995EJ1V0DS00 51 µPD703100-33, 703100-40, 703101-33, 703102-33 Figure 13-15. Block Diagram of Type O MODE0 to MODE3 WRPMC MM0 to MM3 PMCmn I/O control circuit WRPM Output signal in control mode Selector Pmn Pmn Selector WRPORT Selector Internal bus PMmn Address RDIN Remark m: port number n : bit number Figure 13-16. Block Diagram of Type P WRPCS PCSmn MODE0 to MODE3 MM0 to MM3 WRPMC PMCmn I/O control circuit Internal bus WRPM Selector Pmn Pmn Selector Output signal in control mode Selector WRPORT Selector PMmn Address RDIN Remark m: port number n : bit number 52 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 14. RESET FUNCTION When low-level signal is input to the RESET pin, a system reset is performed and the various on-chip hardware devices are initialized. When the RESET input changes from low to high, the reset state is canceled and the CPU begins program execution. (the contents of the various registers should be initialized within the program as necessary.) An on-chip noise elimination circuit, which uses analog delay ( = 60 ns) to eliminate noise, is provided for the RESET pin. Preliminary Data Sheet U13995EJ1V0DS00 53 µPD703100-33, 703100-40, 703101-33, 703102-33 15. INSTRUCTION SET Table 15-1. Symbols Used to Describe Operands Symbol Description reg1 General registers (r0 to r31): used as source registers reg2 General registers (r0 to r31): used mainly as destination registers reg3 General registers (r0 to r31): used mainly to store the remainders of division results and the higher 3 bits of multiplication results imm× ×-bit immediate disp× ×-bit displacement regID System register number bit#3 3-bit data for specifying the bit number ep Element pointer (r30) cccc 4-bit data indicating the condition code vector 5-bit data used for specifying the trap vector (00H to 1FH) list× List of × registers Table 15-2. Symbols Used to Describe Opcodes Symbol Description R 1-bit data of code specifying reg1 or regID r 1-bit data of code specifying reg2 w 1-bit data of code specifying reg3 d 1-bit displacement data i 1-bit immediate data cccc 4-bit data indicating condition code bbb 3-bit data for specifying bit number L 1-bit data specifying register list 54 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 Table 15-3. Symbols Used in Operation Symbol Description ← Input for GR [ ] General register SR [ ] System register zero-extend (n) Extend n with zeros until word length sign-extend (n) Extend n with signs until word length load-memory (a, b) Read data of size b from address a store-memory (a, b, c) Write data b of address a by size c load-memory-bit (a, b) Read bit b of address a store-memory-bit (a, b, c) Write c to bit b of address a saturated (n) Execute saturation processing of n (n is a two’s complement) If, as a result of the calculation, n ≥ 7FFFFFFFH, let it be 7FFFFFFFH. n ≤ 80000000H, let it be 80000000H result Reflect the result in a flag Byte Byte (8 bits) Half-word Half word (16 bits) Word Word (32 bits) + Add − Subtract || Bit concatenation × Multiply ÷ Divide % Remainder of division result AND Logical AND OR Logical OR XOR Exclusive OR NOT Logical NOT logically shift left by Logical shift left logically shift right by Logical shift right arithmetically shift right by Arithmetic shift right Table 15-4. Symbols Used for Execution Clock Symbol Description i : issue When executing another instruction immediately after executing an instruction r : repeat When repeating the same instruction immediately after executing the instruction l : latency When referring to instruction execution results in the next instruction Preliminary Data Sheet U13995EJ1V0DS00 55 µPD703100-33, 703100-40, 703101-33, 703102-33 Table 15-5. Symbols Used in Flag Operations Identifier Description (Blank) No change 0 Clear to 0 × Set or cleared according to the results R Previously saved values are restored Table 15-6. Condition Codes Condition Name (cond) Condition Code (cccc) Condition Formula Description V 0000 OV = 1 Overflow NV 1000 OV = 0 No overflow C/L 0001 CY = 1 Carry Lower (Less than) NC/NL 1001 CY = 0 No carry Not lower (Greater than or equal) Z/E 0010 Z=1 Zero Equal NZ/NE 1010 Z=0 Not zero Not equal NH 0011 (CY or Z) = 1 Not higher (Less than or equal) H 1011 (CY or Z) = 0 Higher (Greater than) N 0100 S=1 Negative P 1100 S=0 Positive T 0101 SA 1101 SAT = 1 Saturated LT 0110 (S xor OV) = 1 Less than signed GE 1110 (S xor OV) = 0 Greater than or equal signed LE 0111 ((S xor OV) or Z) = 1 Less than or equal signed GT 1111 ((S xor OV) or Z) = 0 Greater than signed 56 – Preliminary Data Sheet U13995EJ1V0DS00 Always (unconditional) µPD703100-33, 703100-40, 703101-33, 703102-33 Instruction Set (1/7) Execution Mnemonic ADD ADDI Operand Opcode Flags Clock Operation i r l CY OV S Z reg1,reg2 rr r r r 0 0 1 1 1 0 R R R R R GR[reg2]←GR[reg2]+GR[reg1] 1 1 1 × × × × imm5,reg2 rr r r r 0 1 0 0 1 0 i i i i i GR[reg2]←GR[reg2]+sign-extend(imm5) 1 1 1 × × × × imm16,reg1,reg2 r r r r r 1 1 0 0 0 0 r r r r r GR[reg2]←GR[reg1]+sign-extend(imm16) 1 1 1 × × × × SAT i i ii i i i i i i i i i i i i AND reg1,reg2 rr r r r 0 0 1 0 1 0 R R R R R GR[reg2]←GR[reg2]AND GR[reg1] 1 1 1 0 × × ANDI imm16,reg1,reg2 rr r r r 1 1 0 1 1 0 R R R R R GR[reg2]←GR[reg1]AND zero- 1 1 1 0 0 × 2 2 2 i i i i i i i i i i i i i i i i extend(imm16) Bcond disp9 dd d d d 1 0 1 1 d d d c c c c if conditions are satisfied Note 1 then PC ← PC+signextend(disp9) When conditions are Note 2 Note 2 Note 2 satisfied When 1 1 1 1 1 1 × 0 × × 1 1 1 × 0 × × 4 4 4 3 3 3 conditions are not satisfied BSH reg2,reg3 rr r r r 1 1 1 1 1 1 0 0 0 0 0 GR[reg3]←GR[reg2] (23 : 16) II GR[reg2] ww w w w 0 1 1 0 1 0 0 0 0 1 0 (31 : 24) II GR[reg2] (7 : 0) II GR[reg2] (15 : 8) BSW reg2,reg3 rr r r r 1 1 1 1 1 1 0 0 0 0 0 GR[reg3]←GR[reg2] (7 : 0) II GR[reg2] (15 : 8) II ww w w w 0 1 1 0 1 0 0 0 0 0 0 GR[reg2] (23 : 16) II GR[reg2] (31 : 24) CALLT imm6 0 0 0 0 0 0 1 0 0 0 i i i i i i CTPC←PC+2(return PC) CTPSW←PSW adr←CTBP+zero-extend(imm6 logically shift left by 1) PC←CTBP+zero-extend(Loadmemory(adr, Half-word)) CLR1 bit#3, 1 0 b b b 1 1 1 1 1 0 R R R R R adr←GR[reg1]+sign-extend(disp16) disp 16[reg1] dd d d d d d d d d d d d d d d Z flags←Not(Load-memory-bit(adr,bit#3)) × Note 3 Note 3 Note 3 Store-memory-bit (adr,bit#3,0) reg2,[reg1] rr r r r 1 1 1 1 1 1 R R R R R adr←GR[reg1] 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 Z flags←Not(Load-memory-bit(adr,reg2)) 3 3 × 3 Note 3 Note 3 Note 3 Store-memory-bit (adr,reg2,0) CMOV cccc,imm5,reg2, rr r r r 1 1 1 1 1 1 i i i i i if condition are satisfied then reg3 ww w w w 0 1 1 0 0 0 c c c c 0 GR[reg3]←sign-extended(imm5) 1 1 1 1 1 1 else GR[reg3]←GR[reg2] cccc,reg1,reg2, rr r r r 1 1 1 1 1 1 R R R R R if conditions are satisfied reg3 ww w w w 0 1 1 0 0 1 c c c c 0 then GR[reg3]←GR[reg1] else GR[reg3]←GR[reg2] CMP CTRET reg1,reg2 rr r r r 0 0 1 1 1 1 R R R R R result←GR[reg2]−GR[reg1] 1 1 1 × × × × imm5,reg2 rr r r r 0 1 0 0 1 1 i i i i i result←GR[reg2]−sign-extend(imm5) 1 1 1 × × × × 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 PC←CTPC 3 3 3 R R R R 1 1 1 R 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 PSW←CTPSW DI 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 PSW.ID←1 00 0 0 0 0 0 1 0 1 1 0 0 0 0 0 Preliminary Data Sheet U13995EJ1V0DS00 57 µPD703100-33, 703100-40, 703101-33, 703102-33 (2/7) Execution Mnemonic Operand Opcode i DISPOSE imm5,list12 Flags Clock Operation r l CY OV S Z 0 0 0 0 0 1 1 0 0 1 i i i i i L sp←sp+zero-extend(imm5 logically shift left N+1 N+1 N+1 Note 4 Note 4 Note 4 LL L L L L L L L L L 0 0 0 0 0 by 2) GR[reg in list12]←Load-memory(sp,Word) sp←sp+4 repeat 2 steps above untill all regs in list12 is loaded imm5,list12,[reg1] 0 0 0 0 0 1 1 0 0 1 i i i i i L sp←sp+zero-extend(imm5 logically shif left N+3 N+3 N+3 Note 4 Note 4 Note 4 LL L L L L L L L L L R R R R R by 2) Note 5 GR[reg in list12]←Load-memory(sp,Word) sp←sp+4 repeat 2 steps above until all regs in list 12 is loaded PC←GR[reg1] DIV reg1,reg2,reg3 rr r r r 1 1 1 1 1 1 R R R R R GR[reg2]←GR[reg2]÷GR[reg1] 35 35 35 r r r r r 0 0 0 0 1 0 R R R R R GR[reg2]←GR[reg2]÷GR[reg1] Note 6 35 35 35 × × × Note 6 35 35 35 × × × 34 34 34 × × × 34 34 34 × × × 1 1 1 1 1 1 1 1 1 × 0 × 2 2 2 w w w w w 0 1 0 1 1 0 0 0 0 0 0 GR[reg3]←GR[reg2]%GR[reg1] DIVH reg1,reg2 reg1,reg2,reg3 r r r r r 1 1 1 1 1 1 R R R R R GR[reg2]←GR[reg2]÷GR[reg1] w w w w w 0 1 0 1 0 0 0 0 0 0 0 GR[reg3]←GR[reg2]%GR[reg1] DIVHU reg1,reg2,reg3 r r r r r 1 1 1 1 1 1 R R R R R GR[reg2]←GR[reg2]÷GR[reg1] Note 6 w w w w w 0 1 0 1 0 0 0 0 0 1 0 GR[reg3]←GR[reg2]%GR[reg1] DIVU reg1,reg2,reg3 r r r r r 1 1 1 1 1 1 R R R R R GR[reg2]←GR[reg2]÷GR[reg1] w w w w w 0 1 0 1 1 0 0 0 0 1 0 GR[reg3]←GR[reg2]%GR[reg1] EI 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 PSW.ID←0 00 0 0 0 0 0 1 0 1 1 0 0 0 0 0 HALT 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 Stop 00 0 0 0 0 0 1 0 0 1 0 0 0 0 0 HSW reg2,reg3 rr r r r 1 1 1 1 1 1 0 0 0 0 0 GR[reg3]←GR[reg2] (15 : 0) II GR[reg2] w w w w w 0 1 1 0 1 0 0 0 1 00 JARL disp22,reg2 (31: 6) rr r r r 1 1 1 1 0 d d d d d d GR[reg2]←PC+4 dd d d d d d d d d d d d d d 0 PC←PC+sign–extend(disp22) Note 7 JMP [reg1] 0 0 0 0 0 0 0 0 0 1 1 R R R R R PC←GR[reg1] 3 3 3 JR disp22 0 0 0 0 0 1 1 1 1 0 d d d d d d PC←PC+sign-extend(disp22) 2 2 2 1 1 dd d d d d d d d d d d d d d 0 Note 7 LD.B disp16[reg1],reg2 rr r r r 1 1 1 0 0 0 R R R R R adr←GR[reg1]+signe-extend(disp16) dd d d d d d d d d d d d d d d GR[reg2]←sign-extend(Load-memory (adr,Byte)) 58 Preliminary Data Sheet U13995EJ1V0DS00 n Note 9 × SAT µPD703100-33, 703100-40, 703101-33, 703102-33 (3/7) Execution Mnemonic LD.BU Operand disp16[reg1],reg2 Opcode Flags Clock Operation rr r r r 1 1 1 1 0 b R R R R R adr←GR[reg1]+sign-extend(disp16) i r 1 1 l CY OV S Z SAT × × × × × n Note 11 dd d d d d d d d d d d d d d 1 GR[reg2]←zero-extend(Load-memory Notes 8, 10 (adr,Byte)) LD.H disp16[reg1],reg2 rr r r r 1 1 1 0 0 1 R R R R R adr←GR[reg1]+sign-extend(disp16) 1 1 n Note 9 dd d d d d d d d d d d d d d 0 GR[reg2]←sign-extend(Load-memory Note 8 (adr,Half-word)) LD.HU disp16[reg1],reg2 rr r r r 1 1 1 1 1 1 R R R R R adr←GR[reg1]+sign-extend(disp16) 1 1 n Note 11 dd d d d d d d d d d d d d d 1 GR[reg2]←zero-extend(Load-memory Note 8 (adr,Half-word)) LD.W disp16[reg1],reg2 rr r r r 1 1 1 0 0 1 R R R R R adr←GR[reg1]+signe-extend(disp16) 1 1 LDSR reg2,regID Other than regID=PSW rr r r r 1 1 1 1 1 1 R R R R R SR[regID]←GR[reg2] 00 0 0 0 0 0 0 0 0 1 0 0 0 0 0 Note 12 MOV n Note 9 dd d d d d d d d d d d d d d 1 GR[reg2]←Load-memory(adr,Word) 1 1 1 regID=PSW reg1,reg2 rr r r r 0 0 0 0 0 0 R R R R R GR[reg2]←GR[reg1] 1 1 1 imm5,reg2 rr r r r 0 1 0 0 0 0 i i i i i GR[reg2]←sign-extend(imm5) 1 1 1 imm32,reg1 0 0 0 0 0 1 1 0 0 0 1 R R R R R GR[reg1]←imm32 2 2 2 1 1 1 1 1 1 2 2 ii i i i i i i i i i i i i i i ii i i i i i i i i i i i i i i MOVEA imm16,reg1,reg2 rr r r r 1 1 0 0 0 1 R R R R R GR[reg2]←GR[reg1]+ sign-extend(imm16) ii i i i i i i i i i i i i i i MOVHI imm16,reg1,reg2 rr r r r 1 1 0 0 1 0 R R R R R GR[reg2]←GR[reg1]+(imm16 II 016) ii i i i i i i i i i i i i i i MUL reg1,reg2,reg3 rr r r r 1 1 1 1 1 1 R R R R R GR[reg3] II GR[reg2]←GR[reg2] × GR[reg1] 1 Note 14 ww w w w 0 1 0 0 0 1 0 0 0 0 0 imm9,reg2,reg3 rr r r r 1 1 1 1 1 1 i i i i i GR[reg3] II GR[reg2]←GR[reg2] × sign- 1 2 2 Note 14 w w w w w 0 1 0 0 1 1 1 1 1 0 0 extend(imm9) Note 13 MULH reg1,reg2 imm5,reg2 MULHI imm16,reg1,reg2 Note 6 rr r r r 0 0 0 1 1 1 R R R R R GR[reg2]←GR[reg2] Note 6 rr r r r 0 1 0 1 1 1 i i i i i GR[reg2]←GR[reg2] Note 6 × sign-extend (imm5) Note 6 rr r r r 1 1 0 1 1 R R R R R R GR[reg2]←GR[reg1] × GR[reg1] × imm16 1 1 2 1 1 2 1 1 2 ii i i i i i i i i i i i i i i Preliminary Data Sheet U13995EJ1V0DS00 59 µPD703100-33, 703100-40, 703101-33, 703102-33 (4/7) Execution Mnemonic Operand Opcode i MULU reg1,reg2,reg3 rr r r r 1 1 1 1 1 1 R R R R R GR[reg3] II GR[reg2]←GR[reg2] × GR[reg1] 1 r r r r r 1 1 1 1 1 1 i i i i i GR[reg3] II GR[reg2]←GR[reg2] × zero- 1 l 2 2 CY OV S Z 0 × × SAT 2 2 Note 14 ww w w w 0 1 0 0 1 1 1 1 1 1 0 extend(imm9) NOP r Note 14 w w w w w 0 1 0 0 0 1 0 0 0 10 imm9,reg2,reg3 Flags Clock Operation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Pass at least one clock cycle doing nothing 1 1 1 rr r r r 0 0 0 0 0 1 R R R R R GR[reg2]←NOT(GR[reg1]) 1 1 1 3 3 3 NOT reg1,reg2 NOT1 bit#3,disp16[reg1] 0 1 b b b 1 1 1 1 1 0 R R R R R adr←GR[reg1]+sign-extend(disp16) dd d d d d d d d d d d d d d d Z flag←Not(Load-memory-bit(adr,bit#3)) × Note 3 Note 3 Note 3 Store-memory-bit(adr,bit#3,Z flag) reg2,[reg1] rr r r r 1 1 1 1 1 1 R R R R R adr←GR[reg1] 3 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 Z flag←Not(Load-memory-bit(adr,reg2)) 3 × 3 Note 3 Note 3 Note 3 Store-memory-bit(adr,reg2,Z flag) OR reg1,reg2 rr r r r 0 0 1 0 0 0 R R R R R GR[reg2]←GR[reg2] OR GR[reg1] 1 1 1 0 × × ORI imm16,reg1,reg2 rr r r r 1 1 0 1 0 0 R R R R R GR[reg2]←GR[reg1] OR zero- 1 1 1 0 × × i i i i i i i i i i i i i i i i extend(imm16) PREPARE list12,imm5 0 0 0 0 0 1 1 1 1 0 i i i i i L Store-memory(sp-4,GR[reg in list12],Word) N+1 N+1 N+1 LL L L L L L L L L L 0 0 0 0 1 sp←sp-4 Note 4 Note 4 Note 4 repeat 1 step above until all regs in list12 is stored sp←sp-zero-extend(imm5) list12,imm5, Note 15 sp/imm 0 0 0 0 0 1 1 1 1 0 i i i i i L Store-memory(sp-4,GR[reg in list12],Word) N+2 N+2 N+2 LL L L L L L L L L L f f 0 1 1 sp←sp-4 Note 4 Note 4 Note 4 imm16/imm32 repeat 1 step above until all regs in list12 is Note 17 Note 17 Note 17 Note 16 stored sp←sp-zero-extend(imm5) RETI 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 if PSW.EP=1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 then PC PSW 3 3 3 R R R R 1 1 1 × 0 × × 1 1 1 × 0 × × 1 1 1 ←EIPC ←EIPSW else if PSW.NP = 1 then PC ←FEPC PSW ←FEPSW else PC ←EIPC PSW ←EIPSW SAR reg1,reg2 rr r r r 1 1 1 1 1 1 R R R R R GR[reg2]←GR[reg2]arithmetically shift right 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 by GR[reg1] imm5,reg2 rr r r r 0 1 0 1 0 1 i i i i i GR[reg2]←GR[reg2]arithmetically shift right by zero-extend(imm5) SASF cccc,reg2 rr r r r 1 1 1 1 1 0 c c c c c if conditions are satisfied 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 then GR[reg2]←(GR[reg2] Logically shift left by 1) OR 00000001H else GR[reg2]←(GR[reg2] Logically shift left by 1) OR 00000000H 60 Preliminary Data Sheet U13995EJ1V0DS00 R µPD703100-33, 703100-40, 703101-33, 703102-33 (5/7) Execution Mnemonic SATADD Operand Opcode Flags Clock Operation i r l CY OV S Z SAT reg1,reg2 rr r r r 0 0 0 1 1 0 R R R R R GR[reg2]←saturated(GR[reg2]+GR[reg1]) 1 1 1 × × × × × imm5,reg2 rr r r r 0 1 0 0 0 1 i i i i i GR[reg2]←saturated(GR[reg2]+sign- 1 1 1 × × × × × extend(imm5) SATSUB reg1,reg2 rr r r r 0 0 0 1 0 1 R R R R R GR[reg2]←saturated(GR[reg2]−GR[reg1]) 1 1 1 × × × × × SATSUBI imm16,reg1,reg2 rr r r r 1 1 0 0 1 1 R R R R R GR[reg2]←saturated(GR[reg1]−sign- 1 1 1 × × × × × × × × × × i i i i i i i i i i i i i i i i extend(imm16) SATSUBR reg1,reg2 rr r r r 0 0 0 1 0 0 R R R R R GR[reg2]←saturated(GR[reg1]−GR[reg2]) 1 1 1 SETF cccc,reg2 rr r r r 1 1 1 1 1 1 0 c c c c If conditions are satisfied 1 1 1 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 then GR[reg2]←00000001H else GR[reg2]←00000000H SET1 bit#3,disp16[reg1] 0 0 b b b 1 1 1 1 1 0 R R R R R adr←GR[reg1]+sign-extend(disp16) dd d d d d d d d d d d d d d d Z flag←Not(Load-memory-bit(adr,bit#3)) × Note 3 Note 3 Note 3 Store-memory-bit(adr,bit#3,1) reg2,[reg1] rr r r r 1 1 1 1 1 1 R R R R R adr←GR[reg1] 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 Z flag←Not(Load-memory-bit(adr,reg2)) 3 3 × 3 Note 3 Note 3 Note 3 Store-memory-bit(adr,reg2,1) SHL reg1,reg2 rr r r r 1 1 1 1 1 1 R R R R R GR[reg2]←GR[reg2] logically shift left by 1 1 1 × 0 × × 1 1 1 × 0 × × 1 1 1 × 0 × × 1 1 1 × 0 × × 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 GR[reg1] imm5,reg2 rr r r r 0 1 0 1 1 0 i i i i i GR[reg2]←GR[reg2] logically shift left by zero-extend(imm5) SHR reg1,reg2 rr r r r 1 1 1 1 1 1 R R R R R GR[reg2]←GR[reg2] logically shift right by 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 GR[reg1] imm5,reg2 rr r r r 0 1 0 1 0 0 i i i i i GR[reg2]←GR[reg2] logically shift right by zero-extend(imm5) SLD.B disp7[ep],reg2 rr r r r 0 1 1 0 d d d d d d d adr←ep+zero-extend(disp7) n Note 9 GR[reg2]←sign-extend(Loadmemory(adr,Byte)) SLD.BU disp4[ep],reg2 rr r r r 0 0 0 0 1 1 0 d d d d adr←ep+zero-extend(disp4) 1 1 Note 18 SLD.H disp8[ep],reg2 n Note 9 GR[reg2]←zero-extend(Loadmemory(adr,Byte)) rr r r r 1 0 0 0 d d d d d d d adr←ep+zero-extend(disp8) Note 19 1 1 n Note 9 GR[reg2]←sign-extend(Loadmemory(adr,Half-word)) SLD.HU disp5[ep],reg2 rr r r r 0 0 0 0 1 1 1 d d d d adr←ep+zero-extend(disp5) 1 1 Notes 18, 20 SLD.W disp8[ep],reg2 memory(adr,Half-word)) rr r r r 1 0 1 0 d d d d d d 0 adr←ep+zero-extend(disp8) Note 21 SST.B reg2,disp7[ep] n Note 9 GR[reg2]←zero-extend(Load- 1 1 rr r r r 0 1 1 1 d d d d d d d adr←ep+zero-extend(disp7) n Note 9 GR[reg2]←Load-memory(adr,Word)) 1 1 1 Store-memory(adr,GR[reg2],Byte) Preliminary Data Sheet U13995EJ1V0DS00 61 µPD703100-33, 703100-40, 703101-33, 703102-33 (6/7) Execution Mnemonic SST.H Operand reg2,disp8[ep] Opcode rr r r r 1 0 0 1 d d d d d d d adr←ep+zero-extend(disp8) Flags Clock Operation i r l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 CY OV S Z Note 19 Store-memory(adr,GR[reg2],Half-word) SST.W reg2,disp8[ep] rr r r r 1 0 1 0 d d d d d d 1 adr←ep+zero-extend(disp8) Note 21 Store-memory(adr,GR[reg2],Word) ST.B reg2,disp16[reg1] rr r r r 1 1 1 0 1 0 R R R R R adr←GR[reg1]+sign-extend(disp16) dd d d d d d d d d d d d d d d Store-memory(adr,GR[reg2],Byte) ST.H reg2,disp16[reg1] rr r r r 1 1 1 0 1 1 R R R R R adr←GR[reg1]+sign-extend(disp16) dd d d d d d d d d d d d d d 0 Store-memory(adr,GR[reg2],Half-word) Note 8 ST.W reg2,disp16[reg1] rr r r r 1 1 1 0 1 1 R R R R R adr←GR[reg1]+sign-extend(disp16) dd d d d d d d d d d d d d d 1 Store-memory(adr,GR[reg2],Word) Note 8 STSR regID,reg2 rr r r r 1 1 1 1 1 1 R R R R R GR[reg2]←SR[regID] 00 0 0 0 0 0 0 0 1 0 0 0 0 0 0 SUB reg1,reg2 rr r r r 0 0 1 1 0 1 R R R R R GR[reg2]←GR[reg2]−GR[reg1] 1 1 1 × × × × SUBR reg1,reg2 rr r r r 0 0 1 1 0 0 R R R R R GR[reg2]←GR[reg1]−GR[reg2] 1 1 1 × × × × SWITCH reg1 0 0 0 0 0 0 0 0 0 1 0 R R R R R adr←(PC+2)+(GR[reg1] logically shift left 5 5 5 1 1 1 1 1 1 3 3 3 1 1 1 0 × × 3 3 3 by 1) PC←(PC+2)+sign-extend((Loadmemory(adr,Hafl-word)) logically shift left by 1) SXB reg1 0 0 0 0 0 0 0 0 1 0 1 R R R R R GR[reg1]←sign-extend (GR[reg1] (7 : 0) SXH reg1 0 0 0 0 0 0 0 0 1 1 1 R R R R R GR[reg1]←sign-extend (GR[reg1] (15 : 0)) TRAP vector 0 0 0 0 0 1 1 1 1 1 1 i i i i i EIPC ←PC+4 (restore PC) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 EIPSW ←PSW ECR.EICC ←Interrupt code PSW.EP ←1 PSW.ID ←1 PC ←00000040H (when vector is 00H to 0FH) 00000050H (when vector is 10H to 1FH) TST reg1,reg2 rr r r r 0 0 1 0 1 1 R R R R R result←GR[reg2] AND GR[reg1] TST1 bit#3,disp16[reg1] 1 1 b b b 1 1 1 1 1 0 R R R R R adr←GR[reg1]+sign-extend(disp16) dd d d d d d d d d d d d d d d Z flag←Not(Load-memory-bit(adr,bit#3)) reg2,[reg1] rr r r r 1 1 1 1 1 1 R R R R R adr←GR[reg1] 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 Z flag←Not(Load-memory-bit(adr,reg2)) 62 Preliminary Data Sheet U13995EJ1V0DS00 × Note 3 Note 3 Note 3 3 3 3 Note 3 Note 3 Note 3 × SAT µPD703100-33, 703100-40, 703101-33, 703102-33 (7/7) Execution Mnemonic Operand Opcode Flags Clock Operation i r l CY OV S Z XOR reg1,reg2 rr r r r 0 0 1 0 0 1 R R R R R GR[reg2]←GR[reg2] XOR GR[reg1] 1 1 1 0 × × XORI imm16,reg1,reg2 rr r r r 1 1 0 1 0 1 R R R R R GR[reg2]←GR[reg1] XOR zero-extend 1 1 1 0 × × ii i i i i i i i i i i i i i i SAT (imm16) ZXB reg1 0 0 0 0 0 0 0 0 1 0 0 R R R R R GR[reg1]←zero-extend(GR[reg1] (7 : 0)) 1 1 1 ZXH reg1 0 0 0 0 0 0 0 0 1 1 0 R R R R R GR[reg1]←zero-extend(GR[reg1] (15 : 0)) 1 1 1 Notes 1. dddddddd: Higher 8 bits of disp9. 2. 3 clocks if the final instruction includes PSW write access. 3. If there is no wait state (3 + the number of read access wait states). 4. N is the total number of list 12 read registers. (according to the number of wait states. Also, if there are no wait states, N is the number of list 12 registers.) 5. RRRRR other than 00000. 6. Only the lower half word data are valid. 7. ddddddddddddddddddddd: Higher 21 bits of disp22. 8. ddddddddddddddd: Higher 15 bits of disp16. 9. According to the number of wait states (1 if there are no wait states). 10. b: bit 0 of disp16. 11. According to the number of wait states (2 if there are no wait states). 12. In this instruction, for convenience of mnemonic description, the source register is made reg2, but the reg1 field is used in the op code. Therefore, the meaning of the register specification in the mnemonic description and in the opcode differs from other instructions. rrrrr : regID specification RRRRR: reg2 specification 13. 11111: Lower 5 bits of imm9. 1111 : Lower 4 bits of imm9. 14. 1 when r = w (the lower 32 bits of the results are not written in the register) or w = r0 (the higher 32 bits of the results are not written in the register). 15. sp/imm: specified by bits 19 and 20 of the sub opcode. 16. ff = 00: load sp in ep. 01: load sign expanded 16-bit immediate data (bits 47 to 32) in ep. 10: load 16-bit logically left shifted 16-bit immediate data (bits 47 to 32) in ep. 11: load 32-bit immediate data (bits 63 to 32) in ep. 17. If imm=imm32, N + 3 clocks. 18. rrrrr other than 00000. 19. ddddddd: Higher 7 bits of disp8. 20. dddd: Higher 4 bits of disp5. 21. dddddd: Higher 6 bits of disp8. Preliminary Data Sheet U13995EJ1V0DS00 63 µPD703100-33, 703100-40, 703101-33, 703102-33 16. ELECTRICAL SPECIFICATIONS (PRELIMINARY VALUES) Absolute Maximum Ratings (TA = 25°°C) Parameter Power supply voltage Input voltage Symbol Rating Unit VDD pin −0.5 to +4.6 V HVDD HVDD pin, HVDD ≥ VDD −0.5 to +7.0 V CVDD CVDD pin −0.5 to +4.6 V CVSS CVSS pin −0.5 to +0.5 V AVDD AVDD pin −0.5 to HVDD + 0.5 V AVSS AVSS pin −0.5 to +0.5 V −0.5 to HVDD + 0.5 V MODE3 pin −0.5 to VDD + 0.5 V −0.5 to VDD + 1.0 V VDD VI Condition X1 pin, except MODE3 pin Clock input voltage VK X1, VDD = 3.0 to 3.6 V Low-level output current IOL 1 pin 4.0 mA Total of all pins 100 mA 1 pin −4.0 mA Total of all pins −100 mA −0.5 to HVDD + 0.5 V AVDD > HVDD −0.5 to HVDD + 0.5 V HVDD ≥ AVDD −0.5 to AVDD + 0.5 V AVDD > HVDD −0.5 to HVDD + 0.5 V HVDD ≥ AVDD −0.5 to AVDD + 0.5 V µPD703100-40 −40 to +70 °C µPD703100-33, 703101-33, 703102-33 −40 to +85 °C −60 to +150 °C High-level output current LOH Output voltage VO HVDD = 5.0 V ± 10 % Analog input voltage VIAN P70/ANI0 to P77/ANI7 pins A/D converter reference input voltage Operating ambient temperature Storage temperature Caution AVREF TA Tstg 1. Do not make direct connections of the output (or input/output) pins of the IC product with each other, and also avoid direct connections to VDD, VCC, or GND. However, the open drain pins or the open collector pins can be directly connected with each other. A direct connection can also be made for an external circuit designed with timing specifications that prevent conflicting output from pins subject to high-impedance state. 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions shown below for DC characteristics and AC characteristics are within the range for normal operation and quality assurance. 64 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 Capacitance (TA = 25°°C, VDD = HVDD = CVDD = VSS = 0 V) Parameter Symbol Input capacitance CI Input/output capacitance CIO Output capacitance CO Condition MIN. TYP. fc = 1 MHz Unmeasured pins returned to 0 V. MAX. Unit 15 pF 15 pF 15 pF Operating Conditions Operation Mode Direct mode PLL mode Operating Ambient Temperature (TA) Internal Operating Clock Frequency (φ) µPD703100-40 2 to 40 MHz −40 to +70°C µPD703100-33, 703101-33, 703102-33 2 to 33 MHz −40 to +85°C µPD703100-40 20 to 40 MHz −40 to +70°C µPD703100-33, 703101-33, 703102-33 20 to 33 MHz −40 to +85°C Power Supply Voltage (VDD, HVDD) VDD = 3.0 to 3.6 V, HVDD = 5.0 V ±10% Recommended Oscillation Circuits (a) Ceramic resonator or crystal resonator connection (TA = –40 to +70°°C ... µPD703100-40, TA = –40 to +85°°C ... µPD703100-33, µPD703101-33, µPD703102-33) X1 X2 C1 Cautions C2 1. Connect the oscillation circuit as closely to the X1 and X2 pins as possible. 2. Do not wire any other signal lines in the area indicated by the broken line. 3. Throughly evaluate the matching between the µPD703100-33, µPD703100-40, µPD703101-33, and µPD703102-33 and the oscillators. (b) External clock input (TA = –40 to +70°°C ... µPD703100-40, TA = –40 to +85°°C ... µPD703100-33, µPD70310133, µPD703102-33) X1 X2 Open External clock Caution Input CMOS-level voltage to the X1 pin. Preliminary Data Sheet U13995EJ1V0DS00 65 µPD703100-33, 703100-40, 703101-33, 703102-33 DC Characteristics (TA = –40 to +70°°C ... µPD703100-40,TA = –40 to +85°°C ... µPD703100-33, µPD703101-33, µPD703102-33, VDD = CVDD = 3.0 to 3.6 V, HVDD = 5.0 ±10%, VSS=0 V) Parameter High-level input voltage Symbol Condition MAX. Unit 2.2 HVDD + 0.3 V 0.8HVDD HVDD + 0.3 V Except Note 1 and Note 2 −0.5 +0.8 V Note 1 −0.5 0.2HVDD V Direct mode 0.8VDD VDD + 0.3 V PLL mode 0.8VDD VDD + 0.3 V Direct mode −0.3 0.15VDD V PLL mode −0.3 0.15VDD V Except Note 1 VIH Note 1 Low-level input voltage High-level clock input voltage Low-level clock input voltage Schmitt-triggered input threshold voltage Schmitt-triggered input hysteresis width High-level output voltage VIL VXH VXL HVT HVT X1 pin X1 pin + − + HVT –HVT− VOH MIN. TYP. Note 1, rising edge 3.0 V Note 1, falling edge 2.0 V Note 1 0.5 V IOH = −2.5 mA 0.7HVDD V IOH = −100 µA HVDD − 0.4 V Low-level output voltage VOL IOL = 2.5 mA 0.45 V High-level input leakage current ILIH Except VI = HVDD or Note 2 10 µA Low-level input leakage current ILIL Except VI = 0 V or Note 2 −10 µA High-level output leakage current ILOH VO = HVDD 10 µA Low-level output leakage current ILOL VO = 0 V −10 µA Analog pin input leakage current ILIAN Note 2 T.B.D. µA otes 1. P04/INTP100/DMARQ0 to P07/INTP103/DMARQ3, P14/INTP110/DMAAK0 to P17/INTP113/DMAAK3, P34/INTP130, P35/INTP131/SO2, P36/INTP132/S12, P37/INTP133/SCK2, P104/INTP120/TC0 to P107/INTP123/TC3, Pl14/INTP140, P115/INTP141/SO3, P116/INTP142/SI3, P117/INTP143/SCK3, P124/INTP150 to P126/INTP152, P127/INTP153/ADTRG, P02/TCLR10, P12/TCLR11, P32/TCLR13, P102/TCLR12, P112/TCLR14, P122/TCLR15, P03/TI10, P13/TI11, P33/TI13, P103/TI12, P113/TI14, P123/TI15, P20/NMI, P23/RXD0/SI0, P24/SCK0, P26/RXD1/SI1, P27/SCK1, MODE0 to MODE2, RESET 2. When the P70/ANI0 to P77/ANI7 pins are used as analog input. Remark TYP. values are reference values for when TA = 25°C, VDD = CVDD = 3.3 V, and HVDD = 5.0 V. 66 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 DC Characteristics (TA = –40 to +70°°C ... µPD703100-40,TA = –40 to +85°°C ... µPD703100-33, µPD703101-33, µPD703102-33, VDD = CVDD = 3.0 to 3.6 V, HVDD = 5.0 ±10%, VSS = 0 V) Parameter Power supply current During normal operation Symbol IDD1 Condition Direct mode PLL mode HALT mode IDD2 Direct mode PLL mode IDLE mode IDD3 Direct mode PLL mode STOP mode IDD4 MIN. TYP. MAX. Unit VDD + CVDD 2.0 × fx 3.6 × fx mA HVDD 1.8 × fx 3.0 × fx mA VDD + CVDD 2.7 × fx − 17.0 3.6 × fx mA HVDD 1.3 × fx − 3.6 3.0 × fx mA VDD + CVDD 1.4 × fx 2.5 × fx mA HVDD 0.8 × fx 1.6 × fx mA VDD + CVDD 1.8 × fx − 10.0 2.5 × fx mA HVDD 0.8 × fx − 1.0 1.6 × fx mA VDD + CVDD 1.5 3.0 mA HVDD 10 50 µA VDD + CVDD 1.8 3.0 mA HVDD 10 50 µA VDD + CVDD 20 100 µA HVDD 10 50 µA Remarks 1. TYP. values are reference values for when TA = 25°C, VDD = CVDD = 3.3 V, and HVDD = 5.0 V. 2. Direct mode: fX = 2 to 40 MHz (µPD703100-40) fX = 2 to 33 MHz (µPD703100-33, µPD703101-33, µPD703102-33) PLL mode: fX = 20 to 40 MHz (µPD703100-40) fX = 20 to 33 MHz (µPD703100-33, µPD703101-33, µPD703102-33) Preliminary Data Sheet U13995EJ1V0DS00 67 µPD703100-33, 703100-40, 703101-33, 703102-33 Data Hold Characteristics(TA = –40 to +70°°C ... µPD703100-40, TA = –40 to +85°°C ... µPD703100-33, µPD70310133, µPD703102-33) Parameter Symbol Data hold voltage Condition VDDDR MIN. MAX. Unit 1.5 3.6 V VDDDR 5.5 V T.B.D. µA STOP mode, VDD = VDDDR STOP mode, HVDD = HVDDDR HVDDDR TYP. Data hold current IDDDR VDD = VDDDR T.B.D. Power supply voltage rise time tRVD 200 µs Power supply voltage fall time tFVD 200 µs Power supply voltage hold time (to STOP mode setting) tHVD 0 ms STOP mode release signal input time tDREL 0 ns Data hold high-level input voltage VIHDR Note 0.8 HVDDDR HVDDDR V Data hold low-level input voltage VILDR Note 0 0.2 HVDDDR V Note P04/INTP100/DMARQ0 to P07/INTP103/DMARQ3, P14/INTP110/DMAAK0 to P17/INTP113/DMAAK3, P34/INTP130, P35/INTP131/SO2, P107/INTP123/TC3, P114/INTP140, P36/INTP132/SI2, P37/INTP133/SCK2, P115/INTP141/SO3, Pl16/INTP142/SI3, P104/INTP120/TC0 to P117/INTP143/SCK3, P124/INTP150 to P126/INTP152, P127/INTP153/ADTRG, P02/TCLR10, P12/TCLR11, P32/TCLR13, P102/TCLR12, P112/TCLR14, P122/TCLR15, P03/TI10, P13/TI11, P33/TI13, P103/TI12,P113/TI14, P123/TI15, P20/NMI, P23/RXD0/SI0 ,P24/SCK0, P26/RXD1/SI1, P27/SCK1, MODE0 to MODE2, RESET Remark TYP. values are reference values for when TA = 25°C. STOP mode setting VDDDR VDD tFVD tRVD tHVD tDREL HVDD VIHDR RESET (input) NMI (input) (Released by falling edge) VIHDR NMI (input) (Released by rising edge) VILDR 68 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 AC Characteristics (TA = –40 to +70°°C ... µPD703100-40, TA = –40 to +85°°C ... µPD703100-33, µPD703101-33, µPD703102-33, VDD = CVDD = 3.0 to 3.6 V, HVDD = 5.0 ±10%, VSS = 0 V, output pin load capacitance: CL = 50 pF) AC Test Input Waveform (a) P04/INTP100/DMARQ0 to P07/INTP103/DMARQ3, P14/INTP110/DMAAK0 to P17/INTP113/DMAAK3, P34/ INTP130, P35/INTP131/SO2, P36/INTP132/SI2, P37/INTP133/SCK2, P104/INTP120/TC0 to P107/INTP123/ TC3, P114/INTP140, P115/INTP141/SO3, P116/INTP142/SI3, P117/INTP143/SCK3, P124/INTP150 to P126/ INTP152, P127/INTP153/ADTRG, P02/TCLR10, P12/TCLR11, P32/TCLR13, P102/TCLR12, P112/TCLR14, P122/TCLR15, P03/TI10, P13/TI11, P33/TI13, P103/TI12, P113/TI14, P123/TI15, P20/NMI, P23/RXD0/SI0, P24/ SCK0, P26/RXD1/SI1, P27/SCK1, MODE0 to MODE2, RESET HVDD 0.8HVDD Input signal 0V Test points 0.2HVDD 0.8HVDD 0.2HVDD (b) Pins other than those listed in (a) above 2.4 V 2.2 V Input signal 0.4 V Test points 2.2 V 0.8 V 0.8 V AC Test Output Test Points 2.4 V Output Signal Test points 0.8 V Preliminary Data Sheet U13995EJ1V0DS00 2.4 V 0.8 V 69 µPD703100-33, 703100-40, 703101-33, 703102-33 Load Condition DUT (Measured Device) CL = 50 pF Caution In cases where the load capacitance is greater than 50 pF due to the circuit configuration, insert a buffer or other element to reduce the devide's load capacitance 50 pF. (1) Clock timing Parameter X1 input cycle X1 input high-level width X1 input low-level width X1 input rise time X1 input fall time CPU operating frequency Symbol <1> <2> <3> <4> <5> Condition tCYX tWXH tWXL tXR tXF φ – MIN. MAX. Unit Direct mode µPD703100-40 12.5 250 ns µPD703100-33, 703101-33, 703102-33 15 250 ns PLL mode µPD703100-40 125 250 ns µPD703100-33, 703101-33, 703102-33 150 250 ns Direct mode 5 ns PLL mode 50 ns Direct mode 5 ns PLL mode 50 ns Direct mode 4 ns PLL mode 10 ns Direct mode 4 ns PLL mode 10 ns µPD703100-40 2 40 MHz µPD703100-33, 703101-33, 703102-33 2 33 MHz 500 ns CLKOUT output cycle <6> tCYK 30 CLKOUT input high-level width <7> tWKH 0.5T – 7 ns CLKOUT input low-level width <8> tWKL 0.5T – 4 ns CLKOUT input rise time <9> tKR 5 ns CLKOUT input fall time <10> tKF 5 ns CLKOUT output delay time from X1 ↓ <11> tDXK T.B.D. ns Direct mode T.B.D. Remark T = tCYK Parameter Free-running oscillation frequency 70 Symbol – φP Condition PLL mode Preliminary Data Sheet U13995EJ1V0DS00 TYP. Unit T.B.D. MHz µPD703100-33, 703100-40, 703101-33, 703102-33 <1> <2> <3> <4> <5> X1 (PLL mode) <1> <2> <3> <4> X1 (Direct mode) <5> <11> <11> CLKOUT (output) <9> <10> <7> <8> <6> (2) Output waveform (other than X1, CLKOUT) Parameter Symbol Condition MIN. MAX. Unit Output rise time <12> tOR 10 ns Output fall time <13> tOF 10 ns <12> <13> Signals other than X1, CLKOUT Preliminary Data Sheet U13995EJ1V0DS00 71 µPD703100-33, 703100-40, 703101-33, 703102-33 (3) Reset timing Parameter Symbol Condition RESET high-level width <14> tWRSH RESET low-level width <15> tWRSL MIN. Unit 500 ns When power supply is on, and STOP mode has been released 500 + TOS ns Other than when power supply is on, and STOP mode has been released 500 ns Remark TOS: Oscillation stabilization time <14> RESET (input) 72 MAX. Preliminary Data Sheet U13995EJ1V0DS00 <15> µPD703100-33, 703100-40, 703101-33, 703102-33 [MEMO] Preliminary Data Sheet U13995EJ1V0DS00 73 µPD703100-33, 703100-40, 703101-33, 703102-33 (4) SRAM, external ROM, or external I/O access timing (a) Access timing (SRAM, external ROM, or external I/O) (1/2) Parameter Symbol Condition MIN. MAX. Unit Address, CSn output delay time (from CLKOUT ↓) <16> tDKA 2 10 ns Address, CSn output hold time (from CLKOUT ↓) <17> tHKA 2 10 ns RD, IORD ↓ delay time (from CLKOUT ↑) <18> tDKRDL 2 14 ns RD, IORD ↑ delay time (from CLKOUT ↑) <19> tHKRDH 2 14 ns UWR, LWR, IOWR ↓ delay time (from CLKOUT ↑) <20> tDKWRL 2 10 ns UWR, LWR, IOWR ↑ delay time (from CLKOUT ↑) <21> tHKWRH 2 10 ns BCYST ↓ delay time (from CLKOUT ↓) <22> tDKBSL 2 10 ns BCYST ↑ delay time (from CLKOUT ↓) <23> tHKBSH 2 10 ns WAIT setup time (to CLKOUT ↓) <24> tSWK 15 ns WAIT hold time (from CLKOUT ↓) <25> tHKW 2 ns Data input setup time (to CLKOUT ↑) <26> tSKID 18 ns Data input hold time (from CLKOUT ↑) <27> tHKID 2 ns Data output delay time (from CLKOUT ↓) <28> tDKOD 2 10 ns Data output hold time (from CLKOUT ↓) <29> tHKOD 2 10 ns Remarks 1. Maintain at least one of the data input hold times tHKID and tHRDID. 2. n = 0 to 7 74 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 (a) Access timing (SRAM, external ROM, or external I/O) (2/2) T1 TW T2 CLKOUT (Output) <16> <17> A0 to A23 (Output) CSn (Output) <22> <23> BCYCT (Output) <18> <19> <20> <21> RD, IORD (Output) [Read time] UWR, LWR, IOWR (Output) [Write time] <26> <27> D0 to 15 (I/O) [Read time] <28> <29> D0 to 15 (I/O) [Write time] <25> <24> <25> <24> WAIT (Input) Remarks 1. This is the timing when the number of waits due to the DWC1 and DWC2 registers is zero. 2. The broken lines indicate high impedance. 3. n = 0 to 7 Preliminary Data Sheet U13995EJ1V0DS00 75 µPD703100-33, 703100-40, 703101-33, 703102-33 (b) Read timing (SRAM, external ROM, or external I/O) (1/2) Parameter Symbol Condition MIN. MAX. Unit Data input setup time (to address) <30> tSAID (1.5 + wD + w) T – 28 ns Data input setup time (to RD) <31> tSRDID (1 + wD + w) T – 32 ns RD, IORD low-level width <32> tWRDL (1 + wD + w) T – 10 ns RD, IORD high-level width <33> tWRDH T – 10 ns RD, IORD ↓ delay time from address, CSn <34> tDARD 0.5T – 10 ns Address delay time from RD, IORD ↑ <35> tDRDA (0.5 + i) T – 10 ns Data input hold time (from RD, IORD ↑) <36> tHRDID 0 ns Data output delay time from RD, IORD ↑ <37> tDRDOD (0.5 + i) T – 10 ns WAIT setup time (to address) <38> tSAW Note T – 25 ns WAIT setup time (to BCYST ↓) <39> tSBSW Note T – 25 ns WAIT hold time (to BCYST ↑) <40> tHBSW Note 0 Note For first WAIT sampling when the number of waits due to the DWC1 and DWC2 registers is zero. Remarks 1. T = tCYK 2. w: the number of waits due to WAIT. 3. wD: the number of waits due to the DWC1 and DWC2 registers. 4. i: the number of idle states that are inserted when a write cycle follows a read cycle. 5. Maintain at least one of the data input hold times tHKID and tHRDID. 6. n = 0 to 7 76 Preliminary Data Sheet U13995EJ1V0DS00 ns µPD703100-33, 703100-40, 703101-33, 703102-33 (b) Read timing (SRAM, external ROM, or external I/O) (2/2) T1 TW T2 CLKOUT (Output) A0 to A23 (Output) CSn (Output) UWR, LWR, IOWR (Output) <33> <32> <35> RD, IORD (Output) <34> <31> <30> <37> <36> D0 to 15 (I/O) <38> WAIT (Input) <39> <40> BCYST (Output) Remarks 1. This is the timing when the number of waits due to the DWC1 and DWC2 registers is zero. 2. The broken lines indicate high impedance. 3. n = 0 to 7 Preliminary Data Sheet U13995EJ1V0DS00 77 µPD703100-33, 703100-40, 703101-33, 703102-33 (c) Write timing (SRAM, external ROM, or external I/O) (1/2) Parameter Symbol Condition MIN. MAX. Unit WAIT setup time (to address) <38> tSAW Note T – 25 ns WAIT setup time (to BCYST ↓) <39> tSBSW Note T – 25 ns WAIT hold time (from BCYST ↑) <40> tHBSW Note UWR, LWR, IOWR ↓ delay time from address, CSn <41> Address setup time (to UWR, LWR, IOWR ↑) 0 ns tDAWR 0.5T – 10 ns <42> tSAWR (1.5 + wD + w) T – 10 ns Address delay time from UWR, LWR, IOWR ↑ <43> tDWRA 0.5T – 10 ns UWR, LWR, IOWR high-level width <44> tWWRH T – 10 ns UWR, LWR, IOWR low-level width <45> tWWRL (1 + wD + w) T – 10 ns Data output setup time (to UWR, LWR, IOWR ↑) <46> tSODWR (1.5 + wD + w) T – 10 ns Data output hold time (from UWR, LWR, IOWR ↑) <47> tHWROD 0.5T – 10 ns Note For first WAIT sampling when the number of waits due to the DWC1 and DWC2 registers is zero. Remarks 1. T = tCYK 2. w: the number of waits due to WAIT. 3. wD: the number of waits due to the DWC1 and DWC2 registers. 4. n = 0 to 7 78 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 (c) Write timing (SRAM, external ROM, or external I/O) (2/2) T1 TW T2 CLKOUT (Output) A0 to A23 (Output) CSn (Output) RD, IORD (Output) <41> <42> <45> <43> <44> UWR, LWR, IOWR (Output) <46> <47> D0 to 15 (I/O) <38> WAIT (Input) <39> <40> BCYST (Output) Remarks 1. This is the timing when the number of waits due to the DWC1 and DWC2 registers is zero. 2. The broken lines indicate high impedance. 3. n = 0 to 7 Preliminary Data Sheet U13995EJ1V0DS00 79 µPD703100-33, 703100-40, 703101-33, 703102-33 (d) DMA flyby transfer timing (SRAM → external I/O transfer) (1/2) Parameter Symbol Condition MIN. MAX. Unit WAIT setup time (to CLKOUT ↓) <24> tSWK 15 ns WAIT hold time (from CLKOUT ↓) <25> tHKW 2 ns RD low-level width <32> tWRDL (1 + wD + wF + w) T – 10 ns RD high-level width <33> tWRDH T – 10 ns RD ↓ delay time from address, CSn <34> tDARD 0.5T – 10 ns Address delay time from RD ↑ <35> tDRDA (0.5 + i) T – 10 ns Data output delay time from RD ↑ <37> tDRDOD (0.5 + i) T – 10 ns WAIT setup time (to address) <38> tSAW Note T – 25 ns WAIT setup time (to BCYST ↓) <39> tSBSW Note T – 25 ns WAIT hold time (from BCYST ↑) <40> tHBSW Note IOWR ↓ delay time from address <41> Address setup time (to IOWR ↑) 0 ns tDAWR 0.5T – 10 ns <42> tSAWR (1.5 + wD + w) T – 10 ns Address delay time from UWR, LWR, IOWR ↑ <43> tDWRA 0.5T – 10 ns IOWR high-level width <44> tWWRH T – 10 ns IOWR low-level width <45> tWWRL (1 + wD + w) T – 10 ns RD ↑ delay time from IOWR ↑ <48> tDWRRD wF = 0 0 ns wF = 1 T – 10 ns IOWR ↓ delay time from DMAAKm ↓ <49> tDDAWR 0.5T – 10 ns DMAAKm ↑ delay time from IOWR ↑ <50> tDWRDA (0.5 + wF) T – 10 ns Note For first WAIT sampling when the number of waits due to the DWC1 and DWC2 registers is zero. Remarks 1. T = tCYK 2. w: the number of waits due to WAIT. 3. wD: the number of waits due to the DWC1 and DWC2 registers. 4. wF: the number of waits that are inserted for a source-side access during a DMA flyby transfer. 5. i: the number of idle states that are inserted when a write cycle follows a read cycle. 6. n = 0 to 7, m = 0 to 3 80 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 (d) DMA flyby transfer timing (SRAM → external I/O transfer) (2/2) T1 TW T2 CLKOUT (Output) A0 to A23 (Output) CSn (Output) <33> <32> <35> RD (Output) <34> <48> UWR, LWR (Output) DMAAKm (Output) <49> <50> IORD (Output) <42> <41> <43> <45> <44> IOWR (Output) <37> D0 to 15 (I/O) <38> <24> <25> <25> <24> WAIT (Input) <40> <39> BCYST (Output) Remarks 1. This is the timing when the number of waits due to the DWC1 and DWC2 registers is zero and wF = 0. 2. The broken lines indicate high impedance. 3. n = 0 to 7, m = 0 to 3 Preliminary Data Sheet U13995EJ1V0DS00 81 µPD703100-33, 703100-40, 703101-33, 703102-33 (e) DMA flyby transfer timing (external I/O → SRAM transfer) (1/2) Parameter Symbol Condition MIN. MAX. Unit WAIT setup time (to CLKOUT ↓) <24> tSWK 15 ns WAIT hold time (from CLKOUT ↓) <25> tHKW 2 ns IORD low-level width <32> tWRDL (1 + wD + wF + w) T – 10 ns IORD high-level width <33> tWRDH T – 10 ns IORD ↓ delay time from address, CSn <34> tDARD 0.5T – 10 ns Address delay time from IORD ↑ <35> tDRDA (0.5 + i) T – 10 ns Data output delay time from IORD ↑ <37> tDRDOD (0.5 + i) T – 10 ns WAIT setup time (to address) <38> tSAW Note T – 25 ns WAIT setup time (to BCYST ↓) <39> tSBSW Note T – 25 ns WAIT hold time (from BCYST ↑) <40> tHBSW Note UWR, LWR ↓ delay time from address <41> Address setup time (to UWR, LWR ↑) 0 ns tDAWR 0.5T – 10 ns <42> tSAWR (1.5 + wD + w) T – 10 ns Address delay time from UWR, LWR, IOWR ↑ <43> tDWRA 0.5T – 10 ns UWR, LWR high-level width <44> tWWRH T – 10 ns UWR, LWR low-level width <45> tWWRL (1 + wD + w) T – 10 ns IORD ↑ delay time from UWR, LWR↑ <48> tDWRRD wF = 0 0 ns wF = 1 T – 10 ns IORD ↓ delay time from DMAAKm ↓ <51> tDDARD 0.5T – 10 ns DMAAKm ↑ delay time from IORD ↑ <52> tDRDDA 0.5T – 10 ns Note For first WAIT sampling when the number of waits due to the DWC1 and DWC2 registers is zero. Remarks 1. T = tCYK 2. w: the number of waits due to WAIT. 3. wD: the number of waits due to the DWC1 and DWC2 registers. 4. wF: the number of waits that are inserted for a source-side access during a DMA flyby transfer. 5. i: the number of idle states that are inserted when a write cycle follows a read cycle. 6. n = 0 to 7, m = 0 to 3 82 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 (e) DMA flyby transfer timing (external I/O → SRAM transfer) (2/2) T1 TW T2 CLKOUT (Output) A0 to A23 (Output) CSn (Output) <41> <42> <45> <43> <35> <44> UWR, LWR (Output) <48> RD (Output) <51> <52> DMAAKm (Output) IOWR (Output) <34> <33> <32> <35> IORD (Output) <37> D0 to 15 (I/O) <38> <24> <25> <25> <24> WAIT (Input) <40> <39> BCYST (Output) Remarks 1. This is the timing when the number of waits due to the DWC1 and DWC2 registers is zero and wF = 0. 2. The broken lines indicate high impedance. 3. n = 0 to 7, m = 0 to 3 Preliminary Data Sheet U13995EJ1V0DS00 83 µPD703100-33, 703100-40, 703101-33, 703102-33 (5) Page ROM access timing (1/2) Parameter Symbol Condition MIN. MAX. Unit WAIT setup time (to CLKOUT ↓) <24> tSWK 15 ns WAIT hold time (from CLKOUT ↓) <25> tHKW 2 ns Data input setup time (to CLKOUT ↑) <26> tSKID 18 ns Data input hold time (from CLKOUT ↑) <27> tHKID 2 ns Off-page data input setup time (to address) <30> tSAID (1.5 + wD + w) T – 28 ns Off-page data input setup time (to RD) <31> tSRDID (1 + wD + w) T – 32 ns Off-page RD low-level width <32> tWRDL (1 + wD + w) T – 10 ns RD high-level width <33> tWRDH 0.5T – 10 ns Data input hold time (from RD) <36> tHRDID 0 ns Data output delay time from RD ↑ <37> tDRDOD (0.5 + i) T – 10 ns On-page RD low-level width <53> tWORDL (1.5 + wPR + w) T – 10 ns On-page data input setup time (to address) <54> tSOAID (1.5 + wPR + w) T – 28 ns On-page data input setup time (to RD) <55> tSORDID (1.5 + wPR + w) T – 32 ns Remarks 1. T = tCYK 2. w: the number of waits due to WAIT. 3. wD: the number of waits due to the DWC1 and DWC2 registers. 4. wPR: the number of waits due to the PRC register. 5. i: the number of idle states that are inserted when a write cycle follows a read cycle. 6. Maintain at least one of the data input hold times tHKID and tHRDID. 84 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 (5) Page ROM access timing (2/2) T1 TDW TW T2 TO1 TPRW TW TO2 CLKOUT (Output) Off-page address Note CSn (Output) On-page address Note <26> <30> <54> UWR, LWR (Output) <33> <32> <53> <55> <31> <37> RD (Output) <36> <36> <26> <27> <27> D0 to 15 (I/O) <25> <25> <24> <25> <24> <24> <25> <24> WAIT (Input) BCYST (Output) Note On-page and off-page addresses are as follows. PRC register On-page Addresses Off-page Addresses 0 A0, A1 A2 to A23 0 1 A0 to A2 A3 to A23 1 1 A0 to A3 A4 to A23 1 1 A0 to A4 A5 to A23 MA5 MA4 MA3 0 0 0 0 1 Remarks 1. This is the timing for the following case. Number of waits due to the DWC1 and DWC2 registers (TDW): 1 Number of waits due to the PRC register (TPRW) : 1 2. The broken lines indicate high impedance. 3. n = 0 to 7 Preliminary Data Sheet U13995EJ1V0DS00 85 µPD703100-33, 703100-40, 703101-33, 703102-33 (6) DRAM access timing (a) Read timing (high-speed page DRAM access, normal access: off-page) (1/3) Parameter Symbol Condition MIN. MAX. Unit WAIT setup time (to CLKOUT ↓) <24> tSWK 15 ns WAIT hold time (from CLKOUT ↓) <25> tHKW 2 ns Data input setup time (to CLKOUT ↑) <26> tSKID 18 ns Data input hold time (from CLKOUT ↑) <27> tHKID 2 ns Data output delay time from OE ↑ <37> tDRDOD (0.5 + i) T – 10 ns Row address setup time <56> tASR (0.5 + wRP) T – 10 ns Row address hold time <57> tRAH (0.5 + wRH) T – 10 ns Column address setup time <58> tASC 0.5T – 10 ns Column address hold time <59> tCAH (1.5 + wDA + w) T – 10 ns Read/write cycle time <60> tRC (3 + wRP + wRH + wDA + w) T – 10 ns RAS precharge time <61> tRP (0.5 + wRP) T – 10 ns RAS pulse time <62> tRAS (2.5 + wRH + wDA + w) T – 10 ns RAS hold time <63> tRSH (1.5 + wDA + w) T – 10 ns Column address read time for RAS <64> tRAL (2 + wDA + w) T – 10 ns CAS pulse width <65> tCAS (1 + wDA + w) T – 10 ns CAS-RAS precharge time <66> tCRP (1 + wRP) T – 10 ns CAS hold time <67> tCSH (2 + wRH + wDA + w) T – 10 ns WE setup time <68> tRCS (2 + wRP + wRH) T – 10 ns WE hold time (from RAS ↑) <69> tRRH 0.5T – 10 ns WE hold time (from CAS ↑) <70> tRCH T – 10 ns CAS precharge time <71> tCPN (2 + wRP + wRH) T – 10 ns Output enable access time <72> tOEA (2 + wRP + wRH + wDA + w) T – 28 ns RAS access time <73> tRAC (2 + wRH + wDA + w) T – 28 ns Access time from column address <74> tAA (1.5 + wDA + w) T – 28 ns CAS access time <75> tCAC (1 + wDA + w) T – 28 ns Remarks 1. T = tCYK 2. w: the number of waits due to WAIT. 3. wRP: the number of waits due to the RPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 4. wRH: the number of waits due to the RHCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 5. wDA: the number of waits due to the DACxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 6. i: the number of idle states that are inserted when a write cycle follows a read cycle. 86 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 (a) Read timing (high-speed page DRAM access, normal access: off-page) (2/3) Parameter Symbol Condition MIN. MAX. Unit RAS column address delay time <76> tRAD (0.5 + wRH) T – 10 ns RAS-CAS delay time <77> tRCD (1 + wRH) T – 10 ns Output buffer turn-off delay time (from OE ↑) <78> tOEZ 0 ns Output buffer turn-off delay time (from CAS ↑) <79> tOFF 0 Remarks 1. T = tCYK 2. wRH: the number of waits due to the RHCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). Preliminary Data Sheet U13995EJ1V0DS00 87 µPD703100-33, 703100-40, 703101-33, 703102-33 (a) Read timing (high-speed page DRAM access, normal access: off-page) (3/3) TRPW T1 TRHW T2 TDAW TW T3 CLKOUT (Output) <58> <56> <57> <59> Row address A0 to A23 (Output) Column address <63> <64> <76> <61> <62> RASn (Output) <60> <77> <65> <66> <67> UCAS (Output) LCAS (Output) <69> <71> <73> <68> <75> <70> WE (Output) <79> <74> <27> <72> <37> OE (Output) <78> <26> D0 to D15 (I/O) <24> <25> <25> <24> WAIT (Input) Remarks 1. This is the timing for the following case (n = 0 to 3, xx = 00 to 03, 10 to 13). Number of waits due to the RPCxx bit of the DRCn register (TRPW): 1 Number of waits due to the RHCxx bit of the DRCn register (TRHW): 1 Number of waits due to the DACxx bit of the DRCn register (TDAW): 1 2. The broken lines indicate high impedance. 3. n = 0 to 7 88 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 [MEMO] Preliminary Data Sheet U13995EJ1V0DS00 89 µPD703100-33, 703100-40, 703101-33, 703102-33 (b) Read timing (high-speed page DRAM access: on-page) (1/2) Parameter Symbol Condition MIN. MAX. Unit Data input setup time (to CLKOUT ↑) <26> tSKID 18 ns Data input hold time (from CLKOUT ↑) <27> tHKID 2 ns Data output delay time from OE ↑ <37> tDRDOD (0.5 + i) T – 10 ns Column address setup time <58> tASC (0.5 + wCP) T – 10 ns Column address hold time <59> tCAH (1.5 + wDA) T – 10 ns RAS hold time <63> tRSH (1.5 + wDA) T – 10 ns Column address read time for RAS <64> tRAL (2 + wCP + wDA) T – 10 ns CAS pulse width <65> tCAS (1 + wDA) T – 10 ns WE setup time (to CAS ↓) <68> tRCS (1 + wCP) T – 10 ns WE hold time (from RAS ↑) <69> tRRH 0.5T – 10 ns WE hold time (from CAS ↑) <70> tRCH T – 10 ns Output enable access time <72> tOEA (1 + wCP + wDA) T – 28 ns Access time from column address <74> tAA (1.5 + wCP + wDA) T – 28 ns CAS access time <75> tCAC (1 + wDA) T – 28 ns Output buffer turn-off delay time (from OE ↑) <78> tOEZ 0 ns Output buffer turn-off delay time (from CAS ↑) <79> tOFF 0 ns Access time from CAS precharge <80> tACP CAS precharge time <81> tCP (1 + wCP) T – 10 ns High-speed page mode cycle time <82> tPC (2 + wCP + wDA) T – 10 ns RAS hold time for CAS precharge <83> tRHCP (2.5 + wCP + wDA) T – 10 ns (2 + wCP + wDA) T – 28 ns Remarks 1. T = tCYK 2. wCP: the number of waits due to the CPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 3. wDA: the number of waits due to the DACxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 4. i: the number of idle states that are inserted when a write cycle follows a read cycle. 90 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 (b) Read timing (high-speed page DRAM access: on-page) (2/2) TCPW TO1 TDAW TO2 CLKOUT (Output) <58> <59> A0 to A23 (Output) Column address <63> <64> RASn (Output) <83> <81> <65> <82> UCAS (Output) LCAS (Output) <69> <68> <70> WE (Output) <75> <72> <79> <26> <37> OE (Output) <74> <80> <78> <27> D0 to D15 (I/O) WAIT (Input) Remarks 1. This is the timing for the following case (n = 0 to 3, xx = 00 to 03, 10 to 13). Number of waits due to the CPCxx bit of the DRCn register (TCPW): 1 Number of waits due to the DACxx bit of the DRCn register (TDAW): 1 2. The broken lines indicate high impedance. 3. n = 0 to 7 Preliminary Data Sheet U13995EJ1V0DS00 91 µPD703100-33, 703100-40, 703101-33, 703102-33 (c) Write timing (high-speed page DRAM access, normal access: off-page) (1/2) Parameter Symbol Condition MIN. MAX. Unit WAIT setup time (to CLKOUT ↓) <24> tSWK 15 ns WAIT hold time (from CLKOUT ↓) <25> tHKW 2 ns Row address setup time <56> tASR (0.5 + wRP) T – 10 ns Row address hold time <57> tRAH (0.5 + wRH) T – 10 ns Column address setup time <58> tASC 0.5T – 10 ns Column address hold time <59> tCAH (1.5 + wDA + w) T – 10 ns Read/write cycle time <60> tRC (3 + wRP + wRH + wDA + w) T – 10 ns RAS precharge time <61> tRP (0.5 + wRP) T – 10 ns RAS pulse time <62> tRAS (2.5 + wRH + wDA + w) T – 10 ns RAS hold time <63> tRSH (1.5 + wDA + w) T – 10 ns Column address read time (from RAS ↑) <64> tRAL (2 + wDA + w) T – 10 ns CAS pulse width <65> tCAS (1 + wDA + w) T – 10 ns CAS-RAS precharge time <66> tCRP (1 + wRH) T – 10 ns CAS hold time <67> tCSH (2 + wRH + wDA + w) T – 10 ns CAS precharge time <71> tCPN (2 + wRP + wRH) T – 10 ns RAS column address delay time <76> tRAD (0.5 + wRH) T – 10 ns RAS-CAS delay time <77> tRCD (1 + wRH) T – 10 ns WE setup time (to CAS ↓) <84> tWCS (1 + wRP + wRH ) T – 10 ns WE hold time (from CAS ↓) <85> tWCH (1 + wDA + w) T – 10 ns Data setup time (to CAS ↓) <86> tDS (1.5 + wRP + wRH) T – 10 ns Data hold time (from CAS ↓) <87> tDH (1.5 + wDA + w) T – 10 ns Remarks 1. T = tCYK 2. w: the number of waits due to WAIT. 3. wRP: the number of waits due to the RPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 4. wRH: the number of waits due to the RHCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 5. wDA: the number of waits due to the DACxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 92 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 (c) Write timing (high-speed page DRAM access, normal access: off-page) (2/2) TRPW T1 TRHW T2 TDAW TW T3 CLKOUT (Output) <58> <56> A0 to A23 (Output) <57> <59> Row address Column address <63> <64> <76> <61> <62> RASn (Output) <60> <77> <66> <65> <67> UCAS (Output) LCAS (Output) <71> OE (Output) <84> <85> WE (Output) <86> <87> D0 to D15 (I/O) <24> <25> <25> <24> WAIT (Input) Remarks 1. This is the timing for the following case (n = 0 to 3, xx = 00 to 03, 10 to 13). Number of waits due to the RPCxx bit of the DRCn register (TRPW): 1 Number of waits due to the RHCxx bit of the DRCn register (TRHW): 1 Number of waits due to the DACxx bit of the DRCn register (TDAW): 1 2. The broken lines indicate high impedance. 3. n = 0 to 7 Preliminary Data Sheet U13995EJ1V0DS00 93 µPD703100-33, 703100-40, 703101-33, 703102-33 (d) Write timing (high-speed page DRAM access: on-page) (1/2) Parameter Symbol Condition MIN. MAX. Unit Column address setup time <58> tASC (0.5 + wCP) T – 10 ns Column address hold time <59> tCAH (1.5 + wDA) T – 10 ns RAS hold time <63> tRSH (1.5 + wDA) T – 10 ns Column address read time (from RAS ↑) <64> tRAL (2 + wCP + wDA) T – 10 ns CAS pulse width <65> tCAS (1 + wDA) T – 10 ns CAS precharge time <81> tCP (1 + wCP) T – 10 ns RAS hold time for CAS precharge <83> tRHCP (2.5 + wCP + wDA) T – 10 ns WE setup time (to CAS ↓) <84> tWCS wCPT – 10 ns WE hold time (from CAS ↓) <85> tWCH (1 + wDA) T – 10 ns Data setup time (to CAS ↓) <86> tDS (0.5 + wCP) T – 10 ns Data hold time (from CAS ↓) <87> tDH (1.5 + wDA) T – 10 ns WE read time (from RAS ↑) <88> tRWL wCP = 0 (1.5 + wDA) T – 10 ns WE read time (from CAS ↑) <89> tCWL wCP = 0 (1 + wDA) T – 10 ns Data setup time (to WE ↓) <90> tDSWE wCP = 0 0.5T – 10 ns Data hold time (from WE ↓) <91> tDHWE wCP = 0 (1.5 + wDA) T – 10 ns WE pulse width <92> tWP wCP = 0 (1 + wDA) T – 10 ns wCP ≥ 1 Remarks 1. T = tCYK 2. wCP: the number of waits due to the CPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 3. wDA: the number of waits due to the DACxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 94 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 (d) Write timing (high-speed page DRAM access: on-page) (2/2) TCPW TO1 TDAW TO2 CLKOUT (Output) <58> A0 to A23 (Output) <59> Column address <63> <64> RASn (Output) <83> <81> <65> UCAS (Output) LCAS (Output) <89> <88> OE (Output) <84> <85> <92> WE (Output) <91> <90> <86> <87> D0 to D15 (I/O) WAIT (Input) Remarks 1. This is the timing for the following case (n = 0 to 3, xx = 00 to 03, 10 to 13). Number of waits due to the CPCxx bit of the DRCn register (TCPW ): 1 Number of waits due to the DACxx bit of the DRCn register (TDAW): 1 2. The broken lines indicate high impedance. 3. n = 0 to 7 Preliminary Data Sheet U13995EJ1V0DS00 95 µPD703100-33, 703100-40, 703101-33, 703102-33 (e) Read timing (EDO DRAM) (1/3) Parameter Symbol Condition MIN. MAX. Unit Data input setup time (to CLKOUT ↑) <26> tSKID 18 ns Data input hold time (from CLKOUT ↑) <27> tHKID 2 ns Data output delay time from OE ↑ <37> tDRDOD (0.5 + i) T – 10 ns Row address setup time <56> tASR (0.5 + wRP) T – 10 ns Row address hold time <57> tRAH (0.5 + wRH) T – 10 ns Column address setup time <58> tASC 0.5T – 10 ns Column address hold time <59> tCAH (0.5 + wDA) T – 10 ns RAS precharge time <61> tRP (0.5 + wRP) T – 10 ns Column address read time (from RAS ↑) <64> tRAL (2 + wCP + wDA) T – 10 ns CAS-RAS precharge time <66> tCRP (1 + wRP) T – 10 ns CAS hold time <67> tCSH (1.5 + wRH + wDA) T – 10 ns WE setup time (to CAS ↓) <68> tRCS (2 + wRP + wRH) T – 10 ns WE hold time (from RAS ↑) <69> tRRH 0.5T – 10 ns WE hold time (from CAS ↑) <70> tRCH 1.5T – 10 ns RAS access time <73> tRAC (2 + wRH + wDA) T – 28 ns Access time from column address <74> tAA (1.5 + wDA) T – 28 ns CAS access time <75> tCAC (1 + wDA) T – 28 ns Column address delay time from RAS <76> tRAD (0.5 + wRH) T – 10 ns RAS-CAS delay time <77> tRCD (1 + wRH) T – 10 ns Output buffer turn-off delay time (from OE) <78> tOEZ 0 ns Access time from CAS precharge <80> tACP CAS precharge time <81> tCP (0.5 + wCP) T – 10 ns RAS hold time for CAS precharge <83> tRHCP (2 + wCP + wDA) T – 10 ns Read cycle time <93> tHPC (1 + wDA + wCP) T – 10 ns RAS pulse width <94> tRASP (2.5 + wRH + wDA) T – 10 ns CAS pulse width <95> tHCAS (0.5 + wDA) T – 10 ns Off-page <96> tOCH1 (2 + wRH + wDA) T – 10 ns On-page <97> tOCH2 (0.5 + wDA) T – 10 ns <98> tDHC 0 ns CAS hold time from OE Data input hold time (from CAS ↓) (1.5 + wCP + wDA) T – 28 ns Remarks 1. T = tCYK 2. wRP: the number of waits due to the RPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 3. wRH: the number of waits due to the RHCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 4. wDA: the number of waits due to the DACxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 5. wCP: the number of waits due to the CPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 6. i: the number of idle states that are inserted when a write cycle follows a read cycle. 96 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 (e) Read timing (EDO DRAM) (2/3) Parameter Output enable access time Symbol Condition MIN. MAX. Unit Off-page <99> tOEA1 (2 + wPR + wRH + wDA) T – 28 ns On-page <100> tOEA2 (1 + wCP + wDA) T – 28 ns Remarks 1. T = tCYK 2. wRP: the number of waits due to the RPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 3. wRH: the number of waits due to the RHCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 4. wDA: the number of waits due to the DACxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 5. wCP: the number of waits due to the CPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). Preliminary Data Sheet U13995EJ1V0DS00 97 µPD703100-33, 703100-40, 703101-33, 703102-33 (e) Read timing (EDO DRAM) (3/3) TRPW T1 TRHW T2 TDAW TCPW TB TDAW TE CLKOUT (Output) <58> <56> A0 to A23 (Output) <57> Row address <59> Column address Column address <64> <76> <74> <94> <61> RASn (Output) <67> <66> <83> <77> <95> <81> <75> UCAS (Output) LCAS (Output) <68> <93> <69> <95> <80> <70> WE (Output) <97> <96> <100> <26> OE (Output) <75> <74> D0 to D15 (I/O) <98> <27> <27> <78> <26> Data <73> <99> BCYST (Output) WAIT (Input) Note For on-page access from another cycle during the RASn low level signal. Remarks 1. This is the timing for the following case (n = 0 to 3, xx = 00 to 03, 10 to 13). Number of waits due to the RPCxx bit of the DRCn register (TRPW): 1 Number of waits due to the RHCxx bit of the DRCn register (TRHW): 1 Number of waits due to the DACxx bit of the DRCn register (TDAW): 1 Number of waits due to the CPCxx bit of the DRCn register (TCPW): 1 2. The broken lines indicate high impedance. 3. n = 0 to 7 98 Preliminary Data Sheet U13995EJ1V0DS00 Data <37> µPD703100-33, 703100-40, 703101-33, 703102-33 [MEMO] Preliminary Data Sheet U13995EJ1V0DS00 99 µPD703100-33, 703100-40, 703101-33, 703102-33 (f) Write timing (EDO DRAM) (1/2) Parameter Symbol Condition MIN. MAX. Unit Row address setup time <56> tASR (0.5 + wRP) T – 10 ns Row address hold time <57> tRAH (0.5 + wRH) T – 10 ns Column address setup time <58> tASC 0.5T – 10 ns Column address hold time <59> tCAH (0.5 + wDA) T – 10 ns RAS precharge time <61> tRP (0.5 + wRP) T – 10 ns RAS hold time <63> tRSH (1.5 + wDA) T – 10 ns Column address read time (from RAS ↑) <64> tRAL (2 + wCP + wDA) T – 10 ns CAS-RAS precharge time <66> tCRP (1 + wRP) T – 10 ns CAS hold time <67> tCSH (1.5 + wRH + wDA) T – 10 ns Column address delay time from RAS <76> tRAD (0.5 + wRH) T – 10 ns RAS-CAS delay time <77> tRCD (1 + wRH) T – 10 ns CAS precharge time <81> tCP (0.5 + wCP) T – 10 ns RAS hold time for CAS precharge <83> tRHCP (2 + wCP + wDA) T – 10 ns WE hold time (from CAS ↓) <85> tWCH (1 + wDA) T – 10 ns Data hold time (from CAS ↓) <87> tDH (0.5 + wDA) T – 10 ns WE read time (from RAS ↑) On-page <88> tRWL wCP = 0 (1.5 + wDA) T – 10 ns WE read time (from CAS ↑) On-page <89> tCWL wCP = 0 (0.5 + wDA) T – 10 ns WE pulse width On-page <92> tWP wCP = 0 (1 + wDA) T – 10 ns Write cycle time <93> tHPC (1 + wDA + wCP) T – 10 ns RAS pulse width <94> tRASP (2.5 + wRH + wDA) T – 10 ns CAS pulse width <95> tHCAS (0.5 + wDA) T – 10 ns Off-page <101> tWCS1 (1 + wRP + wRH) T – 10 ns On-page <102> tWCS2 wCPT – 10 ns Off-page <103> tDS1 (1.5 + wRP + wRH) T – 10 ns On-page <104> tDS2 (0.5 + wCP) T – 10 ns WE setup time (to CAS ↓) Data setup time (to CAS ↓) wCP ≥ 1 Remarks 1. T = tCYK 2. wRP: the number of waits due to the RPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 3. wRH: the number of waits due to the RHCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 4. wDA: the number of waits due to the DACxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 5. wCP: the number of waits due to the CPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 100 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 (f) Write timing (EDO DRAM) (2/2) TRPW T1 TRHW T2 TDAW TCPW TB TDAW TE CLKOUT (Output) <58> <56> <57> <59> Row address A0 to A23 (Output) <58> Column address <59> Column address <76> <64> <61> <94> RASn (Output) <67> <66> <77> <83> <95> <81> <63> UCAS (Output) LCAS (Output) <93> <95> <89> <88> RD (Output) OE (Output) <102> <85> <101> <85> <92> WE (Output) <103> D0 to D15 (I/O) <87> Data <104> <87> Data BCYST (Output) WAIT (Input) Remarks 1. This is the timing for the following case (n = 0 to 3, xx = 00 to 03, 10 to 13). Number of waits due to the RPCxx bit of the DRCn register (TRPW): 1 Number of waits due to the RHCxx bit of the DRCn register (TRHW): 1 Number of waits due to the DACxx bit of the DRCn register (TDAW): 1 Number of waits due to the CPCxx bit of the DRCn register (TCPW): 1 2. The broken lines indicate high impedance. 3. n = 0 to 7 Preliminary Data Sheet U13995EJ1V0DS00 101 µPD703100-33, 703100-40, 703101-33, 703102-33 (g) DMA flyby transfer timing (DRAM (EDO, high-speed page) → external I/O transfer) (1/3) Parameter Symbol Condition MIN. MAX. Unit WAIT setup time (to CLKOUT ↓) <24> tSWK 15 ns WAIT hold time (from CLKOUT ↓) <25> tHKW 2 ns Data output delay time from OE ↑ <37> tDRDOD (0.5 + i) T – 10 ns IOWR ↓ delay time from address <41> tDAWR (0.5 + wRP) T – 10 ns Address setup time (to UWR, LWR IOWR ↑) <42> tSAWR (2 + wRP + wRH + wDA) T – 10 ns Address delay time from IOWR ↑ <43> tDWRA 0.5T – 10 ns RD ↑ delay time from IOWR ↑ <48> tDWRRD wF = 0 0 ns wF = 1 T – 10 ns IOWR low-level width <50> tWWRL (2 + wRH + wDA + w) T – 10 ns Row address setup time <56> tASR (0.5 + wRP) T – 10 ns Row address hold time <57> tRAH (0.5 + wRH) T – 10 ns Column address setup time <58> tASC 0.5T – 10 ns Column address hold time <59> tCAH (1.5 + wDA + wF + w) T – 10 ns Read/write cycle time <60> tRC (3 + wRP + wRH + wDA + wF +w) T – 10 ns RAS precharge time <61> tRP (0.5 + wRP) T – 10 ns RAS hold time <63> tRSH (1.5 + wDA + wF + w) T – 10 ns Column address read time for RAS <64> tRAL (2 + wCP + wDA + wF + w) T – 10 ns CAS pulse width <65> tCAS (1 + wDA + wF + w) T – 10 ns CAS-RAS precharge time <66> tCRP (1 + wRP) T – 10 ns CAS hold time <67> tCSH (2 + wRH + wDA + wF +w) T – 10 ns WE setup time (to CAS ↓) <68> tRCS (2 + wRP + wRH) T – 10 ns WE hold time (from RAS ↑) <69> tRRH 0.5T – 10 ns WE hold time (from CAS ↑) <70> tRCH 1.5T – 10 ns CAS precharge time <71> tCPN (2 + wRP + wRH) T – 10 ns RAS column address delay time <76> tRAD (0.5 + wRH) T – 10 ns RAS-CAS delay time <77> tRCD (1 + wRH) T – 10 ns 102 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 Remarks 1. T = tCYK 2. w: the number of waits due to WAIT. 3. wRP: the number of waits due to the RPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 4. wRH: the number of waits due to the RHCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 5. wDA: the number of waits due to the DACxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 6. wCP: the number of waits due to the CPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 7. wF: the number of waits that are inserted for a source-side access during a DMA flyby transfer. 8. i: the number of idle states that are inserted when a write cycle follows a read cycle. Preliminary Data Sheet U13995EJ1V0DS00 103 µPD703100-33, 703100-40, 703101-33, 703102-33 (g) DMA flyby transfer timing (DRAM (EDO, high-speed page) R external I/O transfer) (2/3) Parameter Symbol Condition MIN. MAX. Unit Output buffer turn-off delay time (from OE ↑) <78> tOEZ 0 ns Output buffer turn-off delay time (from CAS ↑) <79> tOFF 0 ns CAS precharge time <81> tCP (0.5 + wCP) T – 10 ns High-speed page mode cycle time <82> tPC (2 + wCP + wDA + wF + w) T – 10 ns RAS hold time for CAS precharge <83> tRHCP (2.5 + wCP + wDA + wF + w) T – 10 ns RAS pulse width <94> tRASP (2.5 + wRH + wDA + wF + w) T – 10 ns Off-page <96> tOCH1 (2.5 + wRP + wRH + wDA + wF + w) T – 10 ns On-page <97> tOCH2 (1.5 + wCP + wDA + wF + w) T – 10 ns CAS ↓ delay time from DMAAKm ↓ <105> tDDACS (1.5 + wRH) T – 10 ns CAS ↓ delay time from IOWR ↓ <106> tDRDCS (1 + wRH) T – 10 ns OE → CAS hold time (from CAS ↑) Remarks 1. T=tCYK 2. w: the number of waits due to WAIT. 3. wCP: the number of waits due to the CPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 4. wDA: the number of waits due to the DACxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 5. wRH: the number of waits due to the RHCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 6. wRP: the number of waits due to the RPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 7. wF: the number of waits that are inserted for a source-side access during a DMA flyby transfer. 8. m = 0 to 3 104 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 (g) DMA flyby transfer timing (DRAM (EDO, high-speed page) → external I/O transfer) (3/3) TRPW T1 T2 TRHW TDAW TW T3 TCPW TO1 TDAW TW TO2 CLKOUT (Output) <58> <56> A0 to A23 (Output) <57> <59> Row address Column address Column address <76> <64> <61> <94> <60> RASn (Output) <77> <65> <66> <69> <83> <67> <81> <63> UCAS (Output) LCAS (Output) <71> <70> <82> <96> <79> RD (Output) OE (Output) <105> <48> <97> DMAAKm (Output) <68> WE (Output) IORD (Output) <106> <42> <41> <43> <78> <37> <50> IOWR (Output) <24> D0 to D15 (I/O) Data <25> <24> Data <24> <25> <25> WAIT (Input) BCYST (Output) Remarks 1. This is the timing for the following case (n = 0 to 3, xx = 00 to 03, 10 to 13). Number of waits due to the RPCxx bit of the DRCn register (TRPW): 1 Number of waits due to the RHCxx bit of the DRCn register (TRHW): 1 Number of waits due to the DACxx bit of the DRCn register (TDAW): 1 Number of waits due to the CPCxx bit of the DRCn register (TCPW): 1 Number of waits that are inserted for a source-side access during a DMA flyby transfer: 0 2. The broken lines indicate high impedance. 3. n = 0 to 7, m = 0 to 3 Preliminary Data Sheet U13995EJ1V0DS00 105 µPD703100-33, 703100-40, 703101-33, 703102-33 (h) DMA flyby transfer timing (external I/O → DRAM (EDO, high-speed page) transfer) (1/3) Parameter Symbol Condition MIN. MAX. Unit WAIT setup time (to CLKOUT ↓) <24> tSWK 15 ns WAIT hold time (from CLKOUT ↓) <25> tHKW 2 ns IORD low-level width <32> tWRDL (2 + wRH + wDA + wF + w) T – 10 ns IORD high-level width <33> tWRDH T – 10 ns IORD ↑ delay time from address, CSn <34> tDARD 0.5T – 10 ns Address delay time from IORD ↑ <35> tDRDA (0.5 + i) T – 10 ns Row address setup time <56> tASR (0.5 + wRP) T – 10 ns Row address hold time <57> tRAH (0.5 + wRH) T – 10 ns Column address setup time <58> tASC 0.5T – 10 ns Column address hold time <59> tCAH (1.5 + wDA + wF) T – 10 ns Read/write cycle time <60> tRC (3 + wRP + wRH + wDA + wF + w) T – 10 ns RAS precharge time <61> tRP (0.5 + wRP) T – 10 ns RAS hold time <63> tRSH (1.5 + wDA + wF) T – 10 ns Column address read time for RAS <64> tRAL (2 + wCP + wDA + wF + w) T – 10 ns CAS pulse width <65> tCAS (1 + wDA + wF) T – 10 ns CAS-RAS precharge time <66> tCRP (1 + wRP) T – 10 ns CAS hold time <67> tCSH (2 + wRH + wDA + wF + w) T – 10 ns CAS precharge time <71> tCPN (2 + wRP + wRH + w) T – 10 ns RAS column address delay time <76> tRAD (0.5 + wRH) T – 10 ns RAS-CAS delay time <77> tRCD (1 + wRH + w) T – 10 ns CAS precharge time <81> tCP (0.5 + wCP + w) T – 10 ns High-speed page mode cycle time <82> tPC (2 + wCP + wDA + wF + w) T – 10 ns RAS hold time for CAS precharge <83> tRHCP (2.5 + wCP + wDA + w) T – 10 ns WE hold time (from CAS ↓) <85> tWCH (1 + wDA) T – 10 ns WE read time (from RAS ↑) <88> tRWL wCP = 0 (1.5 + wDA + w) T – 10 ns WE read time (from CAS ↑) <89> tCWL wCP = 0 (1 + wDA + w) T – 10 ns WE pulse width <92> tWP wCP = 0 (1 + wDA + w) T – 10 ns RAS pulse width <94> tRASP (2.5 + wRH + wDA + wF + w) T – 10 ns Off-page <101> tWCS1 wCP = 0 (1 + wRH + wRP + w) T – 10 ns On-page <102> tWCS2 wCP ≥ 1 wCPT – 10 ns WE setup time (to CAS ↓) 106 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 Remarks 1. T = tCYK 2. w: the number of waits due to WAIT. 3. wRH: the number of waits due to the RHCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 4. wDA: the number of waits due to the DACxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 5. wRP: the number of waits due to the RPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 6. wCP: the number of waits due to the CPCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 7. wF: the number of waits that are inserted for a source-side access during a DMA flyby transfer. 8. i: the number of idle states that are inserted when a write cycle follows a read cycle. 9. n = 0 to 7 Preliminary Data Sheet U13995EJ1V0DS00 107 µPD703100-33, 703100-40, 703101-33, 703102-33 (h) DMA flyby transfer timing (external I/O → DRAM (EDO, high-speed page) transfer) (2/3) Parameter Symbol Condition MIN. MAX. Unit CAS ↓ delay time from DMAAKm ↓ <105> tDDACS (1.5 + wRH + w) T – 10 ns CAS ↓ delay time from IORD ↓ <106> tDRDCS (1 + wRH + w) T – 10 ns IORD ↑ delay time from WE ↑ <107> tDWERD wF= 0 0 ns wF= 1 T – 10 ns Remarks 1. T = tCYK 2. w: the number of waits due to WAIT. 3. wRH: the number of waits due to the RHCxx bit of the DRCn register (n = 0 to 3, xx = 00 to 03, 10 to 13). 4. wF: the number of waits that are inserted for a source-side access during a DMA flyby transfer. 5. m = 0 to 3 108 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 (h) DMA flyby transfer timing (external I/O → DRAM (EDO, high-speed page) transfer) (3/3) TRPW T1 TRHW TW T2 TDAW T3 TCPW TW TO1 TDAW TO2 CLKOUT (Output) <56> A0 to A23 (Output) <57> <58> Row address <59> Column address Column address <76> <64> <61> <94> <60> RASn (Output) <77> <65> <66> <67> <63> <81> UCAS (Output) LCAS (Output) <71> <82> <83> RD (Output) OE (Output) <101> <102> <88> <89> <85> WE (Output) <92> <105> DMAAKm (Output) IOWR (Output) <106> <107> <35> <34> IORD (Output) <32> <25> <33> D0 to D15 (I/O) Data <24> <24> Data <24> <25> <25> WAIT (Input) BCYST (Output) Remarks 1. This is the timing for the following case (n = 0 to 3, xx = 00 to 03, 10 to 13). Number of waits due to the RPCxx bit of the DRCn register (TRPW): 1 Number of waits due to the RHCxx bit of the DRCn register (TRHW): 1 Number of waits due to the DACxx bit of the DRCn register (TDAW): 1 Number of waits due to the CPCxx bit of the DRCn register (TCPW): 1 Number of waits that are inserted for a source-side access during a DMA flyby transfer: 0 2. The broken lines indicate high impedance. 3. n = 0 to 7, m = 0 to 3 Preliminary Data Sheet U13995EJ1V0DS00 109 µPD703100-33, 703100-40, 703101-33, 703102-33 (i) CBR refresh timing Parameter RAS precharge time Symbol <61> Condition MIN. tRP MAX. (1.5 + wRRW) T – 10 RAS pulse width <62> tRAS (1.5 + wRCW Note CAS hold time <108> tCHR (1.5 + wRCW Note ns ) T – 10 (3 + wRRW + wRCW Unit ns ) T – 10 ns Note ns ) T – 10 REFRQ pulse width <109> tWRFL RAS precharge CAS hold time <110> tRPC (0.5 + wRRW) T – 10 REFRQ active delay time (from CLKOUT ↑) <111> tDKRF 2 10 ns REFRQ inactive delay time (from CLKOUT ↑) <112> tHKRF 2 10 ns CAS setup time <113> tCSR T – 10 ns ns Note At least one clock cycle is inserted by default for wRCW regardless of the settings of the RCW0 to RCW2 bits of the RWC register. Remarks 1. T = tCYK 2. wRRW: the number of waits due to the RRW0 and RRW1 bits of the RWC register. 3. wRCW: the number of waits due to the RCW0 to RCW2 bits of the RWC register. TRRW T1 T2 TRCWNote TRCW T3 TI CLKOUT (Output) <111> <112> <109> REFRQ (Output) <61> <62> RASn (Output) <110> <110> <113> <108> UCAS (Output) LCAS (Output) Note This TRCW is always inserted regardless of the settings of the RCW0 to RCW2 bits of the RWC register. Remarks 1. This is the timing for the following case. Number of waits due to the RRW0 and RRW1 bits of the RWC register (TRRW): 1 Number of waits due to the RCW0 to RCW2 bits of the RWC register (TRCW): 2 2. n = 0 to 7 110 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 (j) CBR self-refresh timing Parameter Symbol Condition MIN. MAX. Unit REFRQ active delay time (from CLKOUT ↑) <111> tDKRF 2 10 ns REFRQ inactive delay time (from CLKOUT ↑) <112> tHKRF 2 10 ns CAS hold time <114> tCHS −5 ns RAS precharge time <115> tRPS (1 + 2wSRW) T – 10 ns Remarks 1. T = tCYK 2. wSRW: the number of waits due to the SRW0 to SRW2 bits of the RWC register. TRRW TH TH TH TRCW TH TI TSRW TSRW CLKOUT (Output) <111> <112> REFRQ (Output) <115> RASn (Output) <114> UCAS (Output) LCAS (Output) Output signals other than above Remarks 1. This is the timing for the following case. Number of waits due to the RRW0 and RRW1 bits of the RWC register (TRRW): 1 Number of waits due to the RCW0 to RCW2 bits of the RWC register (TRCW): 1 Number of waits due to the SRW0 to SRW2 bits of the RWC register (TSRW): 2 2. The broken lines indicate high impedance. 3. n = 0 to 7 Preliminary Data Sheet U13995EJ1V0DS00 111 µPD703100-33, 703100-40, 703101-33, 703102-33 (7) DMAC timing Parameter Symbol Condition MIN. MAX. Unit DMARQn setup time (to CLKOUT ↑) <116> tSDRK 15 ns DMARQn hold time (from CLKOUT ↑) <117> tHKDR1 2 ns <118> tHKDR2 Until DMAAKn ↓ ns DMAAKn output delay time (from CLKOUT ↓) <119> tDKDA 2 10 ns DMAAKn output hold time (from CLKOUT ↓) <120> tHKDA 2 10 ns TCn output delay time (from CLKOUT ↓) <121> tDKTC 2 10 ns TCn output hold time (from CLKOUT ↓) <122> tHKTC 2 10 ns Remark n = 0 to 3 CLKOUT (Output) <117> <116> <118> DMARQn (Input) <116> <119> <120> DMAAKn (Output) <122> <121> TCn (Output) Remark n = 0 to 3 112 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 [MEMO] Preliminary Data Sheet U13995EJ1V0DS00 113 µPD703100-33, 703100-40, 703101-33, 703102-33 (8) Bus hold timing (1/2) Parameter Symbol Condition MIN. MAX. Unit HLDRQ setup time (to CLKOUT ↑) <123> tSHRK 15 ns HLDRQ hold time (from CLKOUT ↑) <124> tHKHR 2 ns HLDAK delay time from CLKOUT ↓ <125> tDKHA 2 HLDRQ high-level width <126> tWHQH T + 17 ns HLDAK low-level width <127> tWHAL T–8 ns Bus float delay time from CLKOUT ↓ <128> tDKCF Bus output delay time from HLDAK ↓ <129> tDHAC 0 ns HLDAK ↓ delay time from HLDRQ ↓ <130> tDHQHA1 2.5T ns HLDAK ↑ delay time from HLDRQ ↑ <131> tDHQHA2 0.5T Remark T = tCYK 114 Preliminary Data Sheet U13995EJ1V0DS00 10 10 1.5T ns ns ns µPD703100-33, 703100-40, 703101-33, 703102-33 (8) Bus hold timing (2/2) T1 T2 T3 TI TH TH TH TI T1 CLKOUT (Output) <123> <124> <123> <123> <124> <123> <126> HLDRQ (Intput) <125> <125> <130> <131> HLDAK (Output) <127> <128> A0 to A23 (Output) D0 to D15 (I/O) Address <129> Undefined Data CSn/RASn (Output) BCYST (Output) RD (Output) WE (Output) UCAS (Output) LCAS (Output) WAIT (Input) Remarks 1. The broken lines indicate high impedance. 2. n = 0 to 7 Preliminary Data Sheet U13995EJ1V0DS00 115 µPD703100-33, 703100-40, 703101-33, 703102-33 (9) Interrupt timing Parameter Symbol Condition MIN. MAX. Unit NMI high-level width <132> tWNIH 500 ns NMI low-level width <133> tWNIL 500 ns INTPn high-level width <134> tWITH 4T + 10 ns INTPn low-level width <135> tWITL 4T + 10 ns Remarks 1. n = 100 to 103, 110 to 113, 120 to 123, 130 to 133, 140 to 143, or 150 to 153 2. T = tCYK <132> <133> <134> <135> NMI (Input) INTPn (Input) Remark n = 100 to 103, 110 to 113, 120 to 123, 130 to 133, 140 to 143, or 150 to 153 (10) RPU timing Parameter Symbol Condition MIN. MAX. Unit TI1n high-level width <136> tWTIH 3T + 18 ns TI1n low-level width <137> tWTIL 3T + 18 ns TCLR1n high-level width <138> tWTCH 3T + 18 ns TCLR1n low-level width <139> tWTCL 3T + 18 ns Remarks 1. n = 0 to 5 2. T = tCYK <136> <137> <138> <139> TI1n (Input) TCLR1n (Input) Remark n = 0 to 5 116 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 (11) UART0, UART1 timing (clock-synchronized or master mode only) Parameter Symbol Condition MIN. MAX. Unit SCKn cycle <140> tCYSK0 Output 250 ns SCKn high-level width <141> tWSK0H Output 0.5tCYSK0 – 20 ns SCKn low-level width <142> tWSK0L Output 0.5tCYSK0 – 20 ns RXDn setup time (to SCKn ↑) <143> tSRXSK 30 ns RXDn hold time (from SCKn ↑) <144> tHSKRX 0 ns TXDn output delay time (from SCKn ↓) <145> tDSKTX TXDn output hold time (from SCKn ↑) <146> tHSKTX 20 0.5tCYSK0 – 5 ns ns Remark n = 0, 1 <140> <142> <141> SCKn (I/O) <143> <144> Input data RXDn (Input) <145> TXDn (Output) <146> Output data Remarks 1. The broken lines indicate high impedance. 2. n = 0, 1 Preliminary Data Sheet U13995EJ1V0DS00 117 µPD703100-33, 703100-40, 703101-33, 703102-33 (12) CSI0 to CSI3 timing (a) Master mode Parameter Symbol Condition MIN. MAX. Unit SCKn cycle <147> tCYSK1 Output 100 ns SCKn high-level width <148> tWSK1H Output 0.5tCYSK1 – 20 ns SCKn low-level width <149> tWSK1L Output 0.5tCYSK1 – 20 ns SIn setup time (to SCKn ↑) <150> tSSISK 30 ns SIn hold time (from SCKn ↑) <151> tHSKSI 0 ns SOn output delay time (from SCKn ↓) <152> tDSKSO SOn output hold time (from SCKn ↑) <153> tHSKSO 20 0.5tCYSK1 – 5 ns ns Remark n = 0 to 3 (b) Slave mode Parameter Symbol Condition MIN. MAX. Unit SCKn cycle <147> tCYSK1 Input 100 ns SCKn high-level width <148> tWSK1H Input 30 ns SCKn low-level width <149> tWSK1L Input 30 ns SIn setup time (to SCKn ↑) <150> tSSISK 10 ns SIn hold time (from SCKn ↑) <151> tHSKSI 10 ns SOn output delay time (from SCKn ↓) <152> tDSKSO SOn output hold time (from SCKn ↑) <153> tHSKSO 30 tWSK1H Remark n = 0 to 3 <147> <149> <148> SCKn (I/O) <150> <151> Input data Sln (Input) <152> SOn (Output) <153> Output data Remarks 1. The broken lines indicate high impedance. 2. n = 0 to 3 118 Preliminary Data Sheet U13995EJ1V0DS00 ns ns µPD703100-33, 703100-40, 703101-33, 703102-33 A/D Converter Characteristics (TA = –40 to +70°°C ... µPD703100-40, TA = –40 to +85°°C ... µPD703100-33, µPD703101-33, µPD703102-33, VDD = CVDD = 3.0 to 3.6 V, HVDD = 5.0 V ±10%, VSS = 0 V, HVDD – 0.5 V < AVDD < HVDD, output pin load capacitance: CL = 50 pF) Parameter Symbol Condition MIN. TYP. MAX. 10 Unit Resolution – bit Total error – ±4 LSB Quantization error – ± 1/2 LSB Conversion time tCONV 5 µs Sampling time tSAMP 833 ns Zero scale error – ±2 LSB Full scale error – ±2 LSB Nonlinearity error – ±1 LSB AVREF + 0.3 V Analog input voltage VIAN Analog input resistance RAN AVREF input voltage AVREF AVREF input current AVDD current −0.3 2 AVREF = AVDD 4.5 MΩ 5.5 V AIREF 1.6 mA AIDD 6 mA Preliminary Data Sheet U13995EJ1V0DS00 119 µPD703100-33, 703100-40, 703101-33, 703102-33 17. PACKAGE DRAWING 144 PIN PLASTIC LQFP (FINE PITCH) (20 20) A B 108 109 73 72 detail of lead end C D S R Q 144 1 37 36 F G H I M J K P M N L NOTE Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition. ITEM A MILLIMETERS 22.0±0.2 INCHES 0.866±0.008 B 20.0±0.2 0.787 +0.009 –0.008 C 20.0±0.2 0.787 +0.009 –0.008 D 22.0±0.2 0.866±0.008 F 1.25 0.049 G 1.25 0.049 H 0.22 +0.05 –0.04 0.009±0.002 I 0.10 0.004 J 0.5 (T.P.) 0.020 (T.P.) K 1.0±0.2 0.039 +0.009 –0.008 L 0.5±0.2 0.020 +0.008 –0.009 M 0.145 +0.055 –0.045 0.006±0.002 N 0.10 0.004 P 1.4±0.1 0.055±0.004 Q 0.125±0.075 0.005±0.003 R 3° +7° –3° 3° +7° –3° S 1.7 MAX. 0.067 MAX. S144GJ-50-8EU-2 120 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 18. RECOMMENDED SOLDERING CONDITIONS This product should be soldered and mounted under the following recommended conditions. For the details of the recommended soldering conditions, refer to the document Semiconductor Device Mounting Technology Manual (C10535E). For soldering methods and conditions other than those recommended below, contact your NEC sales representative. Table 18-1. Surface Mounting Type Soldering Conditions µPD703100GJ-40-8EU µPD703100GJ-33-8EU : 144-pin plastic LQFP (fine pitch) (20 × 20 mm) : 144-pin plastic LQFP (fine pitch) (20 × 20 mm) µPD703101GJ-33-xxx-8EU : 144-pin plastic LQFP (fine pitch) (20 × 20 mm) µPD703102GJ-33-xxx-8EU : 144-pin plastic LQFP (fine pitch) (20 × 20 mm) Soldering Method Soldering Conditions Infrared reflow Package peak temperature: 235°C, Time: 30 sec. Max. (at 210°C or higher), Count: Note two times or less, Exposure limit: 3 days (after that, prebake at 125°C for 10 hours) Partial heating Pin temperature: 300°C Max., Time: 3 sec. Max. (per pin row) Recommended Condition Symbol IR35-103-2 – Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period. Preliminary Data Sheet U13995EJ1V0DS00 121 µPD703100-33, 703100-40, 703101-33, 703102-33 [MEMO] 122 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 NOTES FOR CMOS DEVICES 1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it. 2 HANDLING OF UNUSED INPUT PINS FOR CMOS Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to V DD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices. 3 STATUS BEFORE INITIALIZATION OF MOS DEVICES Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function. Related Documents µPD70F3102-33 Data Sheet (U13844E) µPD703100-A33, µPD703100-A40, µPD703101-A33, µPD703102-A33 Data Sheet (To be prepared) µPD70F3102-A33 Data Sheet (U13845E) V850 Family Application Note Flash Memory Self-Programming Library (U13261E) Reference Materials: Electrical Characteristics for Microcomputer (IEI-601 Note ) Note This document number is that of Japanese version. The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such. V850E/MS1 Family and V850 are trademarks of NEC Corporation. Preliminary Data Sheet U13995EJ1V0DS00 123 µPD703100-33, 703100-40, 703101-33, 703102-33 [MEMO] 124 Preliminary Data Sheet U13995EJ1V0DS00 µPD703100-33, 703100-40, 703101-33, 703102-33 Regional Information Some information contained in this document may vary from country to country. Before using any NEC product in your application, pIease contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify: • Device availability • Ordering information • Product release schedule • Availability of related technical literature • Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth) • Network requirements In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country. NEC Electronics Inc. (U.S.) NEC Electronics (Germany) GmbH NEC Electronics Hong Kong Ltd. Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288 Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580 Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044 NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99 Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411 NEC Electronics (France) S.A. NEC Electronics Singapore Pte. Ltd. Spain Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860 United Square, Singapore 1130 Tel: 65-253-8311 Fax: 65-250-3583 NEC Electronics (Germany) GmbH Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490 NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290 NEC Electronics Hong Kong Ltd. NEC Electronics Taiwan Ltd. NEC Electronics Italiana s.r.l. NEC Electronics (Germany) GmbH Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99 Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951 NEC do Brasil S.A. Electron Devices Division Rodovia Presidente Dutra, Km 214 07210-902-Guarulhos-SP Brasil Tel: 55-11-6465-6810 Fax: 55-11-6465-6829 J99.1 Preliminary Data Sheet U13995EJ1V0DS00 125 µPD703100-33, 703100-40, 703101-33, The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative. Lisence not needed : µPD703100-33, 703100-40 The customer must judge the need for lisence : µPD703101-33, 703102-33 No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. Anti-radioactive design is not implemented in this product. M4 96. 5