## ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar

### Refine

#### Document Type

- Doctoral Thesis (29)
- Habilitation (1)

#### Institute

#### Keywords

- Finite-Elemente-Methode (4)
- Strukturmechanik (4)
- finite element method (4)
- Beton (3)
- FEM (3)
- Isogeometric Analysis (3)
- Mehrskalenmodell (3)
- NURBS (3)
- Optimierung (3)
- Isogeometrische Analyse (2)

2021,2

In the last decades, Finite Element Method has become the main method in statics and dynamics analysis in engineering practice. For current problems, this method provides a faster, more flexible solution than the analytic approach. Prognoses of complex engineer problems that used to be almost impossible to solve are now feasible.
Although the finite element method is a robust tool, it leads to new questions about engineering solutions. Among these new problems, it is possible to divide into two major groups: the first group is regarding computer performance; the second one is related to understanding the digital solution.
Simultaneously with the development of the finite element method for numerical solutions, a theory between beam theory and shell theory was developed: Generalized Beam Theory, GBT. This theory has not only a systematic and analytical clear presentation of complicated structural problems, but also a compact and elegant calculation approach that can improve computer performance.
Regrettably, GBT was not internationally known since the most publications of this theory were written in German, especially in the first years. Only in recent years, GBT has gradually become a fertile research topic, with developments from linear to non-linear analysis.
Another reason for the misuse of GBT is the isolated application of the theory. Although recently researches apply finite element method to solve the GBT's problems numerically, the coupling between finite elements of GBT and other theories (shell, solid, etc) is not the subject of previous research. Thus, the main goal of this dissertation is the coupling between GBT and shell/membrane elements. Consequently, one achieves the benefits of both sides: the versatility of shell elements with the high performance of GBT elements.
Based on the assumptions of GBT, this dissertation presents how the separation of variables leads to two calculation's domains of a beam structure: a cross-section modal analysis and the longitudinal amplification axis. Therefore, there is the possibility of applying the finite element method not only in the cross-section analysis, but also the development for an exact GBT's finite element in the longitudinal direction.
For the cross-section analysis, this dissertation presents the solution of the quadratic eigenvalue problem with an original separation between plate and membrane mechanism. Subsequently, one obtains a clearer representation of the deformation mode, as well as a reduced quadratic eigenvalue problem.
Concerning the longitudinal direction, this dissertation develops the novel exact elements, based on hyperbolic and trigonometric shape functions. Although these functions do not have trivial expressions, they provide a recursive procedure that allows periodic derivatives to systematise the development of stiffness matrices. Also, these shape functions enable a single-element discretisation of the beam structure and ensure a smooth stress field.
From these developments, this dissertation achieves the formulation of its primary objective: the connection of GBT and shell elements in a mixed model. Based on the displacement field, it is possible to define the coupling equations applied in the master-slave method. Therefore, one can model the structural connections and joints with finite shell elements and the structural beams and columns with GBT finite element.
As a side effect, the coupling equations limit the displacement field of the shell elements under the assumptions of GBT, in particular in the neighbourhood of the coupling cross-section.
Although these side effects are almost unnoticeable in linear analysis, they lead to cumulative errors in non-linear analysis. Therefore, this thesis finishes with the evaluation of the mixed GBT-shell models in non-linear analysis.

2021,1

This thesis presents the advances and applications of phase field modeling in fracture analysis. In this approach, the sharp crack surface topology in a solid is approximated by a diffusive crack zone governed by a scalar auxiliary variable. The uniqueness of phase field modeling is that the crack paths are automatically determined as part of the solution and no interface tracking is required. The damage parameter varies continuously over the domain. But this flexibility comes with associated difficulties: (1) a very fine spatial discretization is required to represent sharp local gradients correctly; (2) fine discretization results in high computational cost; (3) computation of higher-order derivatives for improved convergence rates and (4) curse of dimensionality in conventional numerical integration techniques. As a consequence, the practical applicability of phase field models is severely limited.
The research presented in this thesis addresses the difficulties of the conventional numerical integration techniques for phase field modeling in quasi-static brittle fracture analysis. The first method relies on polynomial splines over hierarchical T-meshes (PHT-splines) in the framework of isogeometric analysis (IGA). An adaptive h-refinement scheme is developed based on the variational energy formulation of phase field modeling. The fourth-order phase field model provides increased regularity in the exact solution of the phase field equation and improved convergence rates for numerical solutions on a coarser discretization, compared to the second-order model. However, second-order derivatives of the phase field are required in the fourth-order model. Hence, at least a minimum of C1 continuous basis functions are essential, which is achieved using hierarchical cubic B-splines in IGA. PHT-splines enable the refinement to remain local at singularities and high gradients, consequently reducing the computational cost greatly. Unfortunately, when modeling complex geometries, multiple parameter spaces (patches) are joined together to describe the physical domain and there is typically a loss of continuity at the patch boundaries. This decrease of smoothness is dictated by the geometry description, where C0 parameterizations are normally used to deal with kinks and corners in the domain. Hence, the application of the fourth-order model is severely restricted. To overcome the high computational cost for the second-order model, we develop a dual-mesh adaptive h-refinement approach. This approach uses a coarser discretization for the elastic field and a finer discretization for the phase field. Independent refinement strategies have been used for each field.
The next contribution is based on physics informed deep neural networks. The network is trained based on the minimization of the variational energy of the system described by general non-linear partial differential equations while respecting any given law of physics, hence the name physics informed neural network (PINN). The developed approach needs only a set of points to define the geometry, contrary to the conventional mesh-based discretization techniques. The concept of `transfer learning' is integrated with the developed PINN approach to improve the computational efficiency of the network at each displacement step. This approach allows a numerically stable crack growth even with larger displacement steps. An adaptive h-refinement scheme based on the generation of more quadrature points in the damage zone is developed in this framework. For all the developed methods, displacement-controlled loading is considered. The accuracy and the efficiency of both methods are studied numerically showing that the developed methods are powerful and computationally efficient tools for accurately predicting fractures.

2020,3

In recent decades, a multitude of concepts and models were developed to understand, assess and predict muscular mechanics in the context of physiological and pathological events.
Most of these models are highly specialized and designed to selectively address fields in, e.g., medicine, sports science, forensics, product design or CGI; their data are often not transferable to other ranges of application. A single universal model, which covers the details of biochemical and neural processes, as well as the development of internal and external force and motion patterns and appearance could not be practical with regard to the diversity of the questions to be investigated and the task to find answers efficiently. With reasonable limitations though, a generalized approach is feasible.
The objective of the work at hand was to develop a model for muscle simulation which covers the phenomenological aspects, and thus is universally applicable in domains where up until now specialized models were utilized. This includes investigations on active and passive motion, structural interaction of muscles within the body and with external elements, for example in crash scenarios, but also research topics like the verification of in vivo experiments and parameter identification. For this purpose, elements for the simulation of incompressible deformations were studied, adapted and implemented into the finite element code SLang. Various anisotropic, visco-elastic muscle models were developed or enhanced. The applicability was demonstrated on the base of several examples, and a general base for the implementation of further material models was developed and elaborated.

2020,2

The purpose of this study is to develop self-contained methods for obtaining smooth meshes which are compatible with isogeometric analysis (IGA). The study contains three main parts. We start by developing a better understanding of shapes and splines through the study of an image-related problem. Then we proceed towards obtaining smooth volumetric meshes of the given voxel-based images. Finally, we treat the smoothness issue on the multi-patch domains with C1 coupling. Following are the highlights of each part.
First, we present a B-spline convolution method for boundary representation of voxel-based images. We adopt the filtering technique to compute the B-spline coefficients and gradients of the images effectively. We then implement the B-spline convolution for developing a non-rigid images registration method. The proposed method is in some sense of “isoparametric”, for which all the computation is done within the B-splines framework. Particularly, updating the images by using B-spline composition promote smooth transformation map between the images. We show the possible medical applications of our method by applying it for registration of brain images.
Secondly, we develop a self-contained volumetric parametrization method based on the B-splines boundary representation. We aim to convert a given voxel-based data to a matching C1 representation with hierarchical cubic splines. The concept of the osculating circle is employed to enhance the geometric approximation, where it is done by a single template and linear transformations (scaling, translations, and rotations) without the need for solving an optimization problem. Moreover, we use the Laplacian smoothing and refinement techniques to avoid irregular meshes and to improve mesh quality. We show with several examples that the method is capable of handling complex 2D and 3D configurations. In particular, we parametrize the 3D Stanford bunny which contains irregular shapes and voids.
Finally, we propose the B´ezier ordinates approach and splines approach for C1 coupling. In the first approach, the new basis functions are defined in terms of the B´ezier Bernstein polynomials. For the second approach, the new basis is defined as a linear combination of C0 basis functions. The methods are not limited to planar or bilinear mappings. They allow the modeling of solutions to fourth order partial differential equations (PDEs) on complex geometric domains, provided that the given patches are G1
continuous. Both methods have their advantages. In particular, the B´ezier approach offer more degree of freedoms, while the spline approach is more computationally efficient. In addition, we proposed partial degree elevation to overcome the C1-locking issue caused by the over constraining of the solution space. We demonstrate the potential of the resulting C1 basis functions for application in IGA which involve fourth order PDEs such as those appearing in Kirchhoff-Love shell models, Cahn-Hilliard phase field application, and biharmonic problems.

2020,1

This study permits a reliability analysis to solve the mechanical behaviour issues existing in the current structural design of fabric structures. Purely predictive material models are highly desirable to facilitate an optimized design scheme and to significantly reduce time and cost at the design stage, such as experimental characterization.
The present study examined the role of three major tasks; a) single-objective optimization, b) sensitivity analyses and c) multi-objective optimization on proposed weave structures for woven fabric composites. For single-objective optimization task, the first goal is to optimize the elastic properties of proposed complex weave structure under unit cells basis based on periodic boundary conditions.
We predict the geometric characteristics towards skewness of woven fabric composites via Evolutionary Algorithm (EA) and a parametric study. We also demonstrate the effect of complex weave structures on the fray tendency in woven fabric composites via tightness evaluation. We utilize a procedure which does not require a numerical averaging process for evaluating the elastic properties of woven fabric composites. The fray tendency and skewness of woven fabrics depends upon the behaviour of the floats which is related to the factor of weave. Results of this study may suggest a broader view for further research into the effects of complex weave structures or may provide an alternative to the fray and skewness problems of current weave structure in woven fabric composites.
A comprehensive study is developed on the complex weave structure model which adopts the dry woven fabric of the most potential pattern in singleobjective optimization incorporating the uncertainties parameters of woven fabric composites. The comprehensive study covers the regression-based and variance-based sensitivity analyses. The second task goal is to introduce the fabric uncertainties parameters and elaborate how they can be incorporated into finite element models on macroscopic material parameters such as elastic modulus and shear modulus of dry woven fabric subjected to uni-axial and biaxial deformations. Significant correlations in the study, would indicate the need for a thorough investigation of woven fabric composites under uncertainties parameters. The study describes here could serve as an alternative to identify effective material properties without prolonged time consumption and expensive experimental tests.
The last part focuses on a hierarchical stochastic multi-scale optimization approach (fine-scale and coarse-scale optimizations) under geometrical uncertainties parameters for hybrid composites considering complex weave structure. The fine-scale optimization is to determine the best lamina pattern that maximizes its macroscopic elastic properties, conducted by EA under the following uncertain mesoscopic parameters: yarn spacing, yarn height, yarn width and misalignment of yarn angle. The coarse-scale optimization has been carried out to optimize the stacking sequences of symmetric hybrid laminated composite plate with uncertain mesoscopic parameters by employing the Ant Colony Algorithm (ACO). The objective functions of the coarse-scale optimization are to minimize the cost (C) and weight (W) of the hybrid laminated composite plate considering the fundamental frequency and the buckling load factor as the design constraints.
Based on the uncertainty criteria of the design parameters, the appropriate variation required for the structural design standards can be evaluated using the reliability tool, and then an optimized design decision in consideration of cost can be subsequently determined.

2019,5

In recent years the demand on dynamic analyses of existing structures in civil engineering has remarkably increased. These analyses are mainly based on numerical models. Accordingly, the generated results depend on the quality of the used models. Therefore it is very important that the models describe the considered systems such that the behaviour of the physical structure is realistically represented. As any model is based on assumptions, there is always a certain degree of uncertainty present in the results of a simulation based on the respective numerical model. To minimise these uncertainties in the prediction of the response of a structure to a certain loading, it has become common practice to update or calibrate the parameters of a numerical model based on observations of the structural behaviour of the respective existing system.
The determination of the behaviour of an existing structure requires experimental investigations. If the numerical analyses concern the dynamic response of a structure it is sensible to direct the experimental investigations towards the identification of the dynamic structural behaviour which is determined by the modal parameters of the system. In consequence, several methods for the experimental identification of modal parameters have been developed since the 1980ies.
Due to various technical restraints in civil engineering which limit the possibilities to excitate a structure with economically reasonable effort, several methods have been developed that allow a modal identification form tests with an ambient excitation. The approach of identifying modal parameters only from measurements of the structural response without precise knowledge of the excitation is known as output-only or operational modal analysis.
Since operational modal analysis (OMA) can be considered as a link between numerical modelling and simulation on the one hand and the dynamic behaviour of an existing structure on the other hand, the respective algorithms connect both the concepts of structural dynamics and mathematical tools applied within the processing of experimental data. Accordingly, the related theoretical topics are revised after an introduction into the topic.
Several OMA methods have been developed over the last decades. The most established algorithms are presented here and their application is illustrated by means of both a small numerical and an experimental example. Since experimentally obtained results always underly manifold influences, an appropriate postprocessing of the results is necessary for a respective quality assessment. This quality assessment does not only require respective indicators but should also include the quantification of uncertainties.
One special feature in modal testing is that it is common to instrument the structure in different sensor setups to improve the spacial resolution of identified mode shapes. The modal information identified from tests in several setups needs to be merged a posteriori. Algorithms to cope with this problem are also presented.
Due to the fact that the amount of data generated in modal tests can become very large, manual processing can become extremely expensive or even impossible, for example in the case of a long-term continuous structural monitoring. In these situations an automated analysis and postprocessing are essential. Descriptions of respective methodologies are therefore also included in this work.
Every structural system in civil engineering is unique and so also every identification of modal parameters has its specific challenges. Some aspects that can be faced in practical applications of operational modal analysis are presented and discussed in a chapter that is dedicated specific problems that an analyst may have to overcome. Case studies of systems with very close modes, with limited accessibility as well as the application of different OMA methods are described and discussed. In this context the focus is put on several types of uncertainty that may occur in the multiple stages of an operational modal analysis. In literature only very specific uncertainties at certain stages of the analysis are addressed. Here, the topic of uncertainties has been considered in a broader sense and approaches for treating respective problems are suggested.
Eventually, it is concluded that the methodologies of operatinal modal analysis and related technical solutions have been well-engineered already. However, as in any discipline that includes experiments, a certain degree of uncertainty always remains in the results. From these conclusions has been derived a demand for further research and development that should be directed towards the minimisation of these uncertainties and to a respective optimisation of the steps and corresponding parameters included in an operational modal analysis.

2019,4

The underlying goal of this work is to reduce the uncertainty related to thermally induced stress prediction. This is accomplished by considering use of non-linear material behavior, notably path dependent thermal hysteresis behavior in the elastic properties.
Primary novel factors of this work center on two aspects.
1. Broad material characterization and mechanistic material understanding, giving insight into why this class of material behaves in characteristic manners.
2. Development and implementation of a thermal hysteresis material model and its use to determine impact on overall macroscopic stress predictions.
Results highlight microcracking evolution and behavior as the dominant mechanism for material property complexity in this class of materials. Additionally, it was found that for the cases studied, thermal hysteresis behavior impacts relevant peak stress predictions of a heavy-duty diesel particulate filter undergoing a drop-to-idle regeneration by less than ~15% for all conditions tested. It is also found that path independent heating curves may be utilized for a linear solution assumption to simplify analysis.
This work brings forth a newly conceived concept of a 3 state, 4 path, thermally induced microcrack evolution process; demonstrates experimental behavior that is consistent with the proposed mechanisms, develops a mathematical framework that describes the process and quantifies the impact in a real world application space.

2019,3

Turbomachinery plays an important role in many cases of energy generation or conversion. Therefore, turbomachinery is a promising approaching point for optimization in order to increase the efficiency of energy use. In recent years, the use of automated optimization strategies in combination with numerical simulation has become increasingly popular in many fields of engineering. The complex interactions between fluid and solid mechanics encountered in turbomachines on the one hand and the high computational expense needed to calculate the performance on the other hand, have, however, prevented a widespread use of these techniques in this field of engineering. The objective of this work was the development of a strategy for efficient metamodel based optimization of centrifugal compressor impellers. In this context, the main focus is the reduction of the required numerical expense. The central idea followed in this research was the incorporation of preliminary information acquired from low-fidelity computation methods and empirical correlations into the sampling process to identify promising regions of the parameter space. This information was then used to concentrate the numerically expensive high-fidelity computations of the fluid dynamic and structure mechanic performance of the impeller in these regions while still maintaining a good coverage of the whole parameter space. The development of the optimization strategy can be divided into three main tasks. Firstly, the available preliminary information had to be researched and rated. This research identified loss models based on one dimensional flow physics and empirical correlations as the best suited method to predict the aerodynamic performance. The loss models were calibrated using available performance data to obtain a high prediction quality. As no sufficiently exact models for the prediction of the mechanical loading of the impellercould be identified, a metamodel based on finite element computations was chosen for this estimation. The second task was the development of a sampling method which concentrates samples in regions of the parameter space where high quality designs are predicted by the preliminary information while maintaining a good overall coverage. As available methods like rejection sampling or Markov-chain Monte-Carlo methods did not meet the requirements in terms of sample distribution and input correlation, a new multi-fidelity sampling method called “Filtered Sampling“has been developed. The last task was the development of an automated computational workflow. This workflow encompasses geometry parametrization, geometry generation, grid generation and computation of the aerodynamic performance and the structure mechanic loading. Special emphasis was put into the development of a geometry parametrization strategy based on fluid mechanic considerations to prevent the generation of physically inexpedient designs. Finally, the optimization strategy, which utilizes the previously developed tools, was successfully employed to carry out three optimization tasks. The efficiency of the method was proven by the first and second testcase where an existing compressor design was optimized by the presented method. The results were comparable to optimizations which did not take preliminary information into account, while the required computational expense cloud be halved. In the third testcase, the method was applied to generate a new impeller design. In contrast to the previous examples, this optimization featuredlargervariationsoftheimpellerdesigns. Therefore, theapplicability of the method to parameter spaces with significantly varying designs could be proven, too.

2019,2

Due to an increased need for hydro-electricity, water storage, and flood protection, it is assumed that a series of new dams will be built throughout the world. Comparing existing design methodologies for arch-type dams, model-based shape optimization can effectively reduce construction costs and leverage the properties of construction materials. To apply the means of shape optimization, suitable variables need to be chosen to formulate the objective function, which is the volume of the arch dam here. In order to increase the consistency with practical conditions, a great number of geometrical and behavioral constraints are included in the mathematical model. An optimization method, namely Genetic Algorithm is adopted which allows a global search.
Traditional optimization techniques are realized based on a deterministic approach, which means that the material properties and loading conditions are assumed to be fixed values. As a result, the real-world structures that are optimized by these approaches suffer from uncertainties that one needs to be aware of. Hence, in any optimization process for arch dams, it is nec- essary to find a methodology that is capable of considering the influences of uncertainties and generating a solution which is robust enough against the uncertainties.
The focus of this thesis is the formulation and the numerical method for the optimization of the arch dam under the uncertainties. The two main models, the probabilistic model, and non-probabilistic models are intro- duced and discussed. Classic procedures of probabilistic approaches un- der uncertainties, such as RDO (robust design optimization) and RBDO (reliability-based design optimization), are in general computationally ex- pensive and rely on estimates of the system’s response variance and fail- ure probabilities. Instead, the robust optimization (RO) method which is based on the non-probabilistic model, will not follow a full probabilistic approach but works with pre-defined confidence levels. This leads to a bi-level optimization program where the volume of the dam is optimized under the worst combination of the uncertain parameters. By this, robust and reliable designs are obtained and the result is independent of any as- sumptions on stochastic properties of the random variables in the model.
The optimization of an arch-type dam is realized here by a robust optimiza- tion method under load uncertainty, where hydraulic and thermal loads are considered. The load uncertainty is modeled as an ellipsoidal expression. Comparing with any traditional deterministic optimization (DO) method, which only concerns the minimum objective value and offers a solution candidate close to limit-states, the RO method provides a robust solution against uncertainties.
All the above mentioned methods are applied to the optimization of the arch dam to compare with the optimal design with DO methods. The re- sults are compared and analyzed to discuss the advantages and drawbacks of each method.
In order to reduce the computational cost, a ranking strategy and an ap- proximation model are further involved to do a preliminary screening. By means of these, the robust design can generate an improved arch dam structure which ensures both safety and serviceability during its lifetime.

2019,1

Since the Industrial Revolution in the 1700s, the high emission of gaseous wastes into the atmosphere from the usage of fossil fuels has caused a general increase in temperatures globally. To combat the environmental imbalance, there is an increase in the demand for renewable energy sources. Dams play a major role in the generation of “green" energy. However, these structures require frequent and strict monitoring to ensure safe and efficient operation. To tackle the challenges faced in the application of convention dam monitoring techniques, this work proposes the inverse analysis of numerical models to identify damaged regions in the dam. Using a dynamic coupled hydro-mechanical Extended Finite Element Method (XFEM) model and a global optimization strategy, damage (crack) in the dam is identified. By employing seismic waves to probe the dam structure, a more detailed information on the distribution of heterogeneous materials and damaged regions are obtained by the application of the Full Waveform Inversion (FWI) method. The FWI is based on a local optimization strategy and thus it is highly dependent on the starting model. A variety of data acquisition setups are investigated, and an optimal setup is proposed. The effect of different starting models and noise in the measured data on the damage identification is considered. Combining the non-dependence of a starting model of the global optimization strategy based dynamic coupled hydro-mechanical XFEM method and the detailed output of the local optimization strategy based FWI method, an enhanced Full Waveform Inversion is proposed for the structural analysis of dams.