ADPOW APT75GP120J

APT75GP120J
1200V
E
E
®
POWER MOS 7 IGBT
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
• Low Conduction Loss
• 50 kHz operation @ 800V, 20A
• Low Gate Charge
• 20 kHz operation @ 800V, 44A
• Ultrafast Tail Current shutoff
• RBSOA rated
27
2
T-
C
G
SO
"UL Recognized"
ISOTOP ®
C
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±20
Gate-Emitter Voltage Transient
±30
I C1
Continuous Collector Current @ TC = 25°C
128
I C2
Continuous Collector Current @ TC = 110°C
57
I CM
Pulsed Collector Current
VGEM
RBSOA
PD
TJ,TSTG
TL
UNIT
APT75GP120J
1
Volts
Amps
300
@ TC = 25°C
300A @ 960V
Reverse Bias Safe Operating Area @ TJ = 150°C
Watts
543
Total Power Dissipation
-55 to 150
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
Characteristic / Test Conditions
MIN
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 75A, Tj = 25°C)
3.3
3.9
Collector-Emitter On Voltage (VGE = 15V, I C = 75A, Tj = 125°C)
3.0
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
1200
3
(VCE = VGE, I C = 2.5mA, Tj = 25°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)
1000
2
Gate-Emitter Leakage Current (VGE = ±20V)
µA
5000
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Volts
nA
5-2003
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 1000µA)
Rev B
BVCES
UNIT
050-7422
Symbol
APT75GP120J
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
Cies
Input Capacitance
Coes
Output Capacitance
Cres
VGEP
Qg
Qge
Qgc
RBSOA
MIN
TYP
Capacitance
7035
VGE = 0V, VCE = 25V
460
Reverse Transfer Capacitance
f = 1 MHz
80
Gate-to-Emitter Plateau Voltage
Gate Charge
VGE = 15V
7.5
320
VCE = 600V
50
I C = 75A
140
Total Gate Charge
3
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Reverse Bias Safe Operating Area
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
nC
300
A
15V, L = 100µH,VCE = 960V
td(on)
tr
td(off)
tf
Eon1
Eon2
Turn-on Delay Time
Current Rise Time
Turn-on Switching Energy
Turn-on Delay Time
I C = 75A
56
R G = 5Ω
4100
Inductive Switching (125°C)
VCC = 600V
20
VGE = 15V
244
I C = 75A
115
Current Fall Time
Turn-on Switching Energy (Diode)
40
R G = 5Ω
4
Eon2
µJ
2500
Turn-off Delay Time
Turn-on Switching Energy
ns
1620
TJ = +25°C
5
Current Rise Time
Turn-off Switching Energy
40
6
Eon1
Eoff
163
4
Turn-on Switching Energy (Diode)
td(on)
tf
VGE = 15V
Current Fall Time
Turn-off Switching Energy
td(off)
20
Turn-off Delay Time
Eoff
tr
Inductive Switching (25°C)
VCC = 600V
5
ns
1620
TJ = +125°C
5850
6
µJ
4820
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
.23
RΘJC
Junction to Case (DIODE)
N/A
Package Weight
29.2
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
050-7422
Rev B
5-2003
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
APT75GP120J
160
140
IC, COLLECTOR CURRENT (A)
80
60
TC=25°C
TC=125°C
40
0
0
1
2
3
4
5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
150
TJ = 25°C
100
TJ = 125°C
50
0
5
2
3
4 5
6 7
8
9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
IC = 150A
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
4
IC = 75A
3
IC = 37.5A
2
1
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
8
4
2
0.9
0.85
0.8
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
0
50
100 150 200 250 300
GATE CHARGE (nC)
FIGURE 4, Gate Charge
350
5
IC = 150A
4
IC = 75A
3
IC = 37.5A
2.0
1.0
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
25
50
75
100
125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
160
0.95
VCE=960V
6
1.15
1.0
VCE=600V
10
180
1.05
VCE=240V
12
1.2
1.10
IC = 75A
TJ = 25°C
14
0
1
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
VGE, GATE-TO-EMITTER VOLTAGE (V)
TJ = -55°C
FIGURE 2, Output Characteristics (VGE = 10V)
16
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
200
TC=125°C
40
0
FIGURE 1, Output Characteristics(VGE = 15V)
250
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
60
20
250µs PULSE TEST
<0.5 % DUTY CYCLE
TC=25°C
80
20
0
1
2
3
4
5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
100
0
140
120
100
80
60
40
20
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
5-2003
100
120
Rev B
120
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
050-7422
140
IC, COLLECTOR CURRENT (A)
160
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
APT75GP120J
350
VGE= 10V
30
VGE= 15V
20
10
VCE = 600V
TJ = 25°C or 125°C
RG = 5Ω
L = 100 µH
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
40
VGE =15V,TJ=125°C
300
VGE =10V,TJ=125°C
250
200
VGE =15V,TJ=25°C
150
VGE =10V,TJ=25°C
100
VCE = 600V
RG = 5Ω
L = 100 µH
50
0
0
0
20 40 60 80 100 120 140 160
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
0
20 40 60 80 100 120 140 160
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
120
160
RG =5Ω, L = 100µH, VCE = 600V
TJ = 25 or 125°C,VGE = 10V
100
RG =5Ω, L = 100µH, VCE = 600V
140 TJ = 125°C, VGE = 10V or 15V
tf, FALL TIME (ns)
tr, RISE TIME (ns)
120
80
60
40
100
80
60
40
20
0
0
10
40
70
100
130
160
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
12000
12000
VCE = 600V
L = 100 µH
RG = 5 Ω
TJ =125°C, VGE=15V
TJ =125°C,VGE=10V
10000
10
40
70
100
130
160
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
8000
6000
TJ = 25°C, VGE=15V
4000
2000
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
14000
TJ = 25°C, VGE=10V
0
10
40
70
100
130
160
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
VCE = 600V
VGE = +15V
TJ = 125°C
10000
TJ = 125°C, VGE = 10V or 15V
8000
6000
4000
2000
TJ = 25°C, VGE = 10V or 15V
0
20 40 60 80 100 120 140 160
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
15000
Eon2 150A
Eoff 150A
15000
10000
Eon2 75A
Eoff 75A
5000
Eon2 37.5A
Eoff 37.5A
0
VCE = 600V
L = 100 µH
RG = 5 Ω
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
Rev B
5-2003
20000
050-7422
TJ = 25°C, VGE = 10V or 15V
20
TJ = 25 or 125°C,VGE = 15V
VCE = 600V
VGE = +15V
RG = 5 Ω
12500
Eon2 150A
10000
Eoff 150A
7500
Eon2 75A
5000
0
Eon2 37.5A
Eoff 75A
2500
Eoff 37.5A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
APT75GP120J
TYPICAL PERFORMANCE CURVES
20,000
Cies
P
C, CAPACITANCE ( F)
10,000
1,000
500
Coes
100
Cres
IC, COLLECTOR CURRENT (A)
350
300
250
200
150
100
50
50
0
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0 100 200 300 400 500 600 700 800 900 1000
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
0.9
0.20
0.7
0.15
0.5
Note:
0.10
0.3
t2
0.1
Duty Factor D = t1/t2
0.05
SINGLE PULSE
Peak TJ = PDM x ZθJC + TC
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
RC MODEL
0.0221
0.00140F
0.0498
0.0416F
0.158
0.543F
Case temperature (°C)
FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL
FMAX, OPERATING FREQUENCY (kHz)
50
Junction
temp (°C)
Power
(watts)
1.0
10
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 800V
RG = 5 Ω
1
20
35
50
65
80
95
110
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector
Current
Fmax = min(f max1 , f max 2 )
f max1 =
0.05
t d (on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
TJ − TC
R θJC
5-2003
10-5
Rev B
0
t1
050-7422
0.05
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.25
APT75GP120J
APT60DF120
10%
Gate Voltage
TJ = 125 C
td(on)
V CE
IC
V CC
Collector Voltage
tr
A
90%
D.U.T.
5%
5%
10%
Collector Current
Switching Energy
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
90%
VTEST
*DRIVER SAME TYPE AS D.U.T.
Gate Voltage
td(off)
tf
TJ = 125 C
Collector Voltage
A
V CE
90%
IC
100uH
V CLAMP
10%
0
A
Collector Current
Switching
Energy
DRIVER*
Figure 24, EON1 Test Circuit
Figure 23, Turn-off Switching Waveforms and Definitions
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
7.8 (.307)
8.2 (.322)
Rev B
5-2003
r = 4.0 (.157)
(2 places)
050-7422
B
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
3.3 (.129)
3.6 (.143)
14.9 (.587)
15.1 (.594)
1.95 (.077)
2.14 (.084)
* Emitter
30.1 (1.185)
30.3 (1.193)
Collector
* Emitter terminals are shorted
internally. Current handling
capability is equal for either
Source terminal.
38.0 (1.496)
38.2 (1.504)
* Emitter
Gate
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
D.U.T.