APT75GP120J 1200V E E ® POWER MOS 7 IGBT The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss • 50 kHz operation @ 800V, 20A • Low Gate Charge • 20 kHz operation @ 800V, 44A • Ultrafast Tail Current shutoff • RBSOA rated 27 2 T- C G SO "UL Recognized" ISOTOP ® C G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage ±20 Gate-Emitter Voltage Transient ±30 I C1 Continuous Collector Current @ TC = 25°C 128 I C2 Continuous Collector Current @ TC = 110°C 57 I CM Pulsed Collector Current VGEM RBSOA PD TJ,TSTG TL UNIT APT75GP120J 1 Volts Amps 300 @ TC = 25°C 300A @ 960V Reverse Bias Safe Operating Area @ TJ = 150°C Watts 543 Total Power Dissipation -55 to 150 Operating and Storage Junction Temperature Range Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS Characteristic / Test Conditions MIN TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 75A, Tj = 25°C) 3.3 3.9 Collector-Emitter On Voltage (VGE = 15V, I C = 75A, Tj = 125°C) 3.0 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES 1200 3 (VCE = VGE, I C = 2.5mA, Tj = 25°C) Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) 1000 2 Gate-Emitter Leakage Current (VGE = ±20V) µA 5000 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com Volts nA 5-2003 Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 1000µA) Rev B BVCES UNIT 050-7422 Symbol APT75GP120J DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions Cies Input Capacitance Coes Output Capacitance Cres VGEP Qg Qge Qgc RBSOA MIN TYP Capacitance 7035 VGE = 0V, VCE = 25V 460 Reverse Transfer Capacitance f = 1 MHz 80 Gate-to-Emitter Plateau Voltage Gate Charge VGE = 15V 7.5 320 VCE = 600V 50 I C = 75A 140 Total Gate Charge 3 Gate-Emitter Charge Gate-Collector ("Miller ") Charge Reverse Bias Safe Operating Area TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V nC 300 A 15V, L = 100µH,VCE = 960V td(on) tr td(off) tf Eon1 Eon2 Turn-on Delay Time Current Rise Time Turn-on Switching Energy Turn-on Delay Time I C = 75A 56 R G = 5Ω 4100 Inductive Switching (125°C) VCC = 600V 20 VGE = 15V 244 I C = 75A 115 Current Fall Time Turn-on Switching Energy (Diode) 40 R G = 5Ω 4 Eon2 µJ 2500 Turn-off Delay Time Turn-on Switching Energy ns 1620 TJ = +25°C 5 Current Rise Time Turn-off Switching Energy 40 6 Eon1 Eoff 163 4 Turn-on Switching Energy (Diode) td(on) tf VGE = 15V Current Fall Time Turn-off Switching Energy td(off) 20 Turn-off Delay Time Eoff tr Inductive Switching (25°C) VCC = 600V 5 ns 1620 TJ = +125°C 5850 6 µJ 4820 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RΘJC Junction to Case (IGBT) .23 RΘJC Junction to Case (DIODE) N/A Package Weight 29.2 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 050-7422 Rev B 5-2003 APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES APT75GP120J 160 140 IC, COLLECTOR CURRENT (A) 80 60 TC=25°C TC=125°C 40 0 0 1 2 3 4 5 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 150 TJ = 25°C 100 TJ = 125°C 50 0 5 2 3 4 5 6 7 8 9 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics IC = 150A TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 4 IC = 75A 3 IC = 37.5A 2 1 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 8 4 2 0.9 0.85 0.8 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature 0 50 100 150 200 250 300 GATE CHARGE (nC) FIGURE 4, Gate Charge 350 5 IC = 150A 4 IC = 75A 3 IC = 37.5A 2.0 1.0 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 160 0.95 VCE=960V 6 1.15 1.0 VCE=600V 10 180 1.05 VCE=240V 12 1.2 1.10 IC = 75A TJ = 25°C 14 0 1 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 VGE, GATE-TO-EMITTER VOLTAGE (V) TJ = -55°C FIGURE 2, Output Characteristics (VGE = 10V) 16 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) 200 TC=125°C 40 0 FIGURE 1, Output Characteristics(VGE = 15V) 250 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 60 20 250µs PULSE TEST <0.5 % DUTY CYCLE TC=25°C 80 20 0 1 2 3 4 5 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 100 0 140 120 100 80 60 40 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 5-2003 100 120 Rev B 120 VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE 050-7422 140 IC, COLLECTOR CURRENT (A) 160 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE APT75GP120J 350 VGE= 10V 30 VGE= 15V 20 10 VCE = 600V TJ = 25°C or 125°C RG = 5Ω L = 100 µH td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 40 VGE =15V,TJ=125°C 300 VGE =10V,TJ=125°C 250 200 VGE =15V,TJ=25°C 150 VGE =10V,TJ=25°C 100 VCE = 600V RG = 5Ω L = 100 µH 50 0 0 0 20 40 60 80 100 120 140 160 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 0 20 40 60 80 100 120 140 160 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 120 160 RG =5Ω, L = 100µH, VCE = 600V TJ = 25 or 125°C,VGE = 10V 100 RG =5Ω, L = 100µH, VCE = 600V 140 TJ = 125°C, VGE = 10V or 15V tf, FALL TIME (ns) tr, RISE TIME (ns) 120 80 60 40 100 80 60 40 20 0 0 10 40 70 100 130 160 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 12000 12000 VCE = 600V L = 100 µH RG = 5 Ω TJ =125°C, VGE=15V TJ =125°C,VGE=10V 10000 10 40 70 100 130 160 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 8000 6000 TJ = 25°C, VGE=15V 4000 2000 EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 14000 TJ = 25°C, VGE=10V 0 10 40 70 100 130 160 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current VCE = 600V VGE = +15V TJ = 125°C 10000 TJ = 125°C, VGE = 10V or 15V 8000 6000 4000 2000 TJ = 25°C, VGE = 10V or 15V 0 20 40 60 80 100 120 140 160 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 15000 Eon2 150A Eoff 150A 15000 10000 Eon2 75A Eoff 75A 5000 Eon2 37.5A Eoff 37.5A 0 VCE = 600V L = 100 µH RG = 5 Ω 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) Rev B 5-2003 20000 050-7422 TJ = 25°C, VGE = 10V or 15V 20 TJ = 25 or 125°C,VGE = 15V VCE = 600V VGE = +15V RG = 5 Ω 12500 Eon2 150A 10000 Eoff 150A 7500 Eon2 75A 5000 0 Eon2 37.5A Eoff 75A 2500 Eoff 37.5A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature APT75GP120J TYPICAL PERFORMANCE CURVES 20,000 Cies P C, CAPACITANCE ( F) 10,000 1,000 500 Coes 100 Cres IC, COLLECTOR CURRENT (A) 350 300 250 200 150 100 50 50 0 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 800 900 1000 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Minimim Switching Safe Operating Area 0.9 0.20 0.7 0.15 0.5 Note: 0.10 0.3 t2 0.1 Duty Factor D = t1/t2 0.05 SINGLE PULSE Peak TJ = PDM x ZθJC + TC 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration RC MODEL 0.0221 0.00140F 0.0498 0.0416F 0.158 0.543F Case temperature (°C) FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL FMAX, OPERATING FREQUENCY (kHz) 50 Junction temp (°C) Power (watts) 1.0 10 TJ = 125°C TC = 75°C D = 50 % VCE = 800V RG = 5 Ω 1 20 35 50 65 80 95 110 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current Fmax = min(f max1 , f max 2 ) f max1 = 0.05 t d (on ) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = TJ − TC R θJC 5-2003 10-5 Rev B 0 t1 050-7422 0.05 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.25 APT75GP120J APT60DF120 10% Gate Voltage TJ = 125 C td(on) V CE IC V CC Collector Voltage tr A 90% D.U.T. 5% 5% 10% Collector Current Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions 90% VTEST *DRIVER SAME TYPE AS D.U.T. Gate Voltage td(off) tf TJ = 125 C Collector Voltage A V CE 90% IC 100uH V CLAMP 10% 0 A Collector Current Switching Energy DRIVER* Figure 24, EON1 Test Circuit Figure 23, Turn-off Switching Waveforms and Definitions SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) 7.8 (.307) 8.2 (.322) Rev B 5-2003 r = 4.0 (.157) (2 places) 050-7422 B W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 3.3 (.129) 3.6 (.143) 14.9 (.587) 15.1 (.594) 1.95 (.077) 2.14 (.084) * Emitter 30.1 (1.185) 30.3 (1.193) Collector * Emitter terminals are shorted internally. Current handling capability is equal for either Source terminal. 38.0 (1.496) 38.2 (1.504) * Emitter Gate Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. D.U.T.